ACS Publications. Most Trusted. Most Cited. Most Read
Mechanisms of DNA Polymerases
My Activity
    Review

    Mechanisms of DNA Polymerases
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
    Other Access Options

    Chemical Reviews

    Cite this: Chem. Rev. 2009, 109, 7, 2862–2879
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cr800530b
    Published June 2, 2009
    Copyright © 2009 American Chemical Society
    Copyright © 2009 American Chemical Society

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 88 publications.

    1. Madison B. Berger, G. Andrés Cisneros. Distal Mutations in the β-Clamp of DNA Polymerase III* Disrupt DNA Orientation and Affect Exonuclease Activity. Journal of the American Chemical Society 2023, 145 (6) , 3478-3490. https://doi.org/10.1021/jacs.2c11713
    2. Aidan I. Brown, David A. Sivak. Theory of Nonequilibrium Free Energy Transduction by Molecular Machines. Chemical Reviews 2020, 120 (1) , 434-459. https://doi.org/10.1021/acs.chemrev.9b00254
    3. Maria Ciaccia, Diego Núñez-Villanueva, Christopher A. Hunter. Capping Strategies for Covalent Template-Directed Synthesis of Linear Oligomers Using CuAAC. Journal of the American Chemical Society 2019, 141 (27) , 10862-10875. https://doi.org/10.1021/jacs.9b04973
    4. Vito Genna, Elisa Donati, Marco De Vivo. The Catalytic Mechanism of DNA and RNA Polymerases. ACS Catalysis 2018, 8 (12) , 11103-11118. https://doi.org/10.1021/acscatal.8b03363
    5. Austin T. Raper, Andrew J. Reed, Zucai Suo. Kinetic Mechanism of DNA Polymerases: Contributions of Conformational Dynamics and a Third Divalent Metal Ion. Chemical Reviews 2018, 118 (12) , 6000-6025. https://doi.org/10.1021/acs.chemrev.7b00685
    6. Stefan A. P. Lenz and Stacey D. Wetmore . QM/MM Study of the Reaction Catalyzed by Alkyladenine DNA Glycosylase: Examination of the Substrate Specificity of a DNA Repair Enzyme. The Journal of Physical Chemistry B 2017, 121 (49) , 11096-11108. https://doi.org/10.1021/acs.jpcb.7b09646
    7. Beth Moscato, Monalisa Swain, and J. Patrick Loria . Induced Fit in the Selection of Correct versus Incorrect Nucleotides by DNA Polymerase β. Biochemistry 2016, 55 (2) , 382-395. https://doi.org/10.1021/acs.biochem.5b01213
    8. Youngkyu Kim, Eung-Sam Kim, Yoonhee Lee, Joung-Hun Kim, Bong Chu Shim, Seong Moon Cho, Jeong Soo Lee, and Joon Won Park . Reading Single DNA with DNA Polymerase Followed by Atomic Force Microscopy. Journal of the American Chemical Society 2014, 136 (39) , 13754-13760. https://doi.org/10.1021/ja5063983
    9. Jackelyn Golden, Edward Motea, Xuemei Zhang, Jung-Suk Choi, Ye Feng, Yan Xu, Irene Lee, and Anthony J. Berdis . Development and Characterization of a Non-natural Nucleoside that Displays Anticancer Activity Against Solid Tumors. ACS Chemical Biology 2013, 8 (11) , 2452-2465. https://doi.org/10.1021/cb400350h
    10. Hailey L. Gahlon, W. Bernd Schweizer, and Shana J. Sturla . Tolerance of Base Pair Size and Shape in Postlesion DNA Synthesis. Journal of the American Chemical Society 2013, 135 (17) , 6384-6387. https://doi.org/10.1021/ja311434s
    11. Andrew C. Olson, Jennifer N. Patro, Milan Urban, and Robert D. Kuchta . The Energetic Difference between Synthesis of Correct and Incorrect Base Pairs Accounts for Highly Accurate DNA Replication. Journal of the American Chemical Society 2013, 135 (4) , 1205-1208. https://doi.org/10.1021/ja309866m
    12. Lanting Li, Chao Wang, Bo Song, Lijuan Mi, and Jun Hu . Kinetic Parameters Estimation in the Polymerase Chain Reaction Process Using the Genetic Algorithm. Industrial & Engineering Chemistry Research 2012, 51 (40) , 13268-13273. https://doi.org/10.1021/ie3003717
    13. Morwena J. Solivio, Dessalegn B. Nemera, Larry Sallans, and Edward J. Merino . Biologically Relevant Oxidants Cause Bound Proteins To Readily Oxidatively Cross-Link at Guanine. Chemical Research in Toxicology 2012, 25 (2) , 326-336. https://doi.org/10.1021/tx200376e
    14. Xiaorong Yang, Jesse L. Welch, Jamie J. Arnold, and David D. Boehr . Long-Range Interaction Networks in the Function and Fidelity of Poliovirus RNA-Dependent RNA Polymerase Studied by Nuclear Magnetic Resonance. Biochemistry 2010, 49 (43) , 9361-9371. https://doi.org/10.1021/bi100833r
    15. Manuel Röthlingshöfer and Clemens Richert . Chemical Primer Extension at Submillimolar Concentration of Deoxynucleotides. The Journal of Organic Chemistry 2010, 75 (12) , 3945-3952. https://doi.org/10.1021/jo1002467
    16. Yusuke Takezawa, Mitsuhiko Shionoya. Enzymatic synthesis of ligand-bearing oligonucleotides for the development of metal-responsive DNA materials. Organic & Biomolecular Chemistry 2024, 22 (36) , 7259-7270. https://doi.org/10.1039/D4OB00947A
    17. Yan Shan Ang, Lin‐Yue Lanry Yung. Robust Sequence Design Space for the Isothermal Exponential Amplification of Short Oligonucleotides. Small 2024, 118 https://doi.org/10.1002/smll.202405250
    18. Joana Ferreira da Silva, Connor J. Tou, Emily M. King, Madeline L. Eller, David Rufino-Ramos, Linyuan Ma, Christopher R. Cromwell, Jasna Metovic, Friederike M. C. Benning, Luke H. Chao, Florian S. Eichler, Benjamin P. Kleinstiver. Click editing enables programmable genome writing using DNA polymerases and HUH endonucleases. Nature Biotechnology 2024, 578 https://doi.org/10.1038/s41587-024-02324-x
    19. Lorenzo Carré, Ghislaine Henneke, Etienne Henry, Didier Flament, Éric Girard, Bruno Franzetti. DNA Polymerization in Icy Moon Abyssal Pressure Conditions. Astrobiology 2024, 24 (2) , 151-162. https://doi.org/10.1089/ast.2021.0201
    20. Aleksandra A. Kuznetsova, Svetlana I. Senchurova, Anastasia A. Gavrilova, Timofey E. Tyugashev, Elena S. Mikushina, Nikita A. Kuznetsov. Substrate Specificity Diversity of Human Terminal Deoxynucleotidyltransferase May Be a Naturally Programmed Feature Facilitating Its Biological Function. International Journal of Molecular Sciences 2024, 25 (2) , 879. https://doi.org/10.3390/ijms25020879
    21. Anup Singhania, Sudeshna Kalita, Prerna Chettri, Subrata Ghosh. Accounts of applied molecular rotors and rotary motors: recent advances. Nanoscale Advances 2023, 5 (12) , 3177-3208. https://doi.org/10.1039/D3NA00010A
    22. A. A. Bulygin, A. A. Kuznetsova, O. S. Fedorova, N. A. Kuznetsov. Comparative Analysis of Family A DNA-Polymerases as a Searching Tool for Enzymes with New Properties. Molecular Biology 2023, 57 (2) , 182-192. https://doi.org/10.1134/S0026893323020048
    23. A. A. Bulygin, A. A. Kuznetsova, O. S. Fedorova, N. A. Kuznetsov. Comparative Analysis of DNA-Polymerases from Family A as a Tool to Search for Enzymes with New Properties. Молекулярная биология 2023, 57 (2) , 185-196. https://doi.org/10.31857/S0026898423020040
    24. Xiao‐Yang Chen, Hongliang Chen, J. Fraser Stoddart. The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angewandte Chemie International Edition 2023, 62 (1) https://doi.org/10.1002/anie.202211387
    25. Xiao‐Yang Chen, Hongliang Chen, J. Fraser Stoddart. The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angewandte Chemie 2023, 135 (1) https://doi.org/10.1002/ange.202211387
    26. Roger M. Bialy, Alexa Mainguy, Yingfu Li, John D. Brennan. Functional nucleic acid biosensors utilizing rolling circle amplification. Chemical Society Reviews 2022, 51 (21) , 9009-9067. https://doi.org/10.1039/D2CS00613H
    27. Dana J. Biechele-Speziale, Treshaun B. Sutton, Sarah Delaney. Obstacles and opportunities for base excision repair in chromatin. DNA Repair 2022, 116 , 103345. https://doi.org/10.1016/j.dnarep.2022.103345
    28. Aleksandra A. Kuznetsova, Olga S. Fedorova, Nikita A. Kuznetsov. Structural and Molecular Kinetic Features of Activities of DNA Polymerases. International Journal of Molecular Sciences 2022, 23 (12) , 6373. https://doi.org/10.3390/ijms23126373
    29. Juan Aranda, Milosz Wieczór, Montserrat Terrazas, Isabelle Brun-Heath, Modesto Orozco. Mechanism of reaction of RNA-dependent RNA polymerase from SARS-CoV-2. Chem Catalysis 2022, 2 (5) , 1084-1099. https://doi.org/10.1016/j.checat.2022.03.019
    30. Joseph D. Kaszubowski, Michael A. Trakselis. Beyond the Lesion: Back to High Fidelity DNA Synthesis. Frontiers in Molecular Biosciences 2022, 8 https://doi.org/10.3389/fmolb.2021.811540
    31. Aishik Chakraborty, Shruthi Polla Ravi, Yasmeen Shamiya, Caroline Cui, Arghya Paul. Harnessing the physicochemical properties of DNA as a multifunctional biomaterial for biomedical and other applications. Chemical Society Reviews 2021, 50 (13) , 7779-7819. https://doi.org/10.1039/D0CS01387K
    32. Zahra Ouaray, Steven A. Benner, Millie M. Georgiadis, Nigel G.J. Richards. Building better polymerases: Engineering the replication of expanded genetic alphabets. Journal of Biological Chemistry 2020, 295 (50) , 17046-17059. https://doi.org/10.1074/jbc.REV120.013745
    33. Thomas Dodd, Margherita Botto, Fabian Paul, Rafael Fernandez-Leiro, Meindert H. Lamers, Ivaylo Ivanov. Polymerization and editing modes of a high-fidelity DNA polymerase are linked by a well-defined path. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-19165-2
    34. Max E. Gottesman, Maxim Chudaev, Arkady Mustaev. Key features of magnesium that underpin its role as the major ion for electrophilic biocatalysis. The FEBS Journal 2020, 287 (24) , 5439-5463. https://doi.org/10.1111/febs.15318
    35. Irena Roci, Jeramie D. Watrous, Kim A. Lagerborg, Mohit Jain, Roland Nilsson. Mapping metabolic oscillations during cell cycle progression. Cell Cycle 2020, 19 (20) , 2676-2684. https://doi.org/10.1080/15384101.2020.1825203
    36. P.S. Sears. polymerase. 2020https://doi.org/10.1002/9783527809080.cataz13281
    37. Hui-Lan Chang, Kang-Yi Su, Steven D. Goodman, Neng-An Chou, Kuei-Ching Lin, Wern-Cherng Cheng, Liang-In Lin, Sui-Yuan Chang, Woei-horng Fang. Proofreading of single nucleotide insertion/deletion replication errors analyzed by MALDI-TOF mass spectrometry assay. DNA Repair 2020, 88 , 102810. https://doi.org/10.1016/j.dnarep.2020.102810
    38. Diego Núñez-Villanueva, Christopher A. Hunter. Molecular replication using covalent base-pairs with traceless linkers. Organic & Biomolecular Chemistry 2019, 17 (44) , 9660-9665. https://doi.org/10.1039/C9OB02336D
    39. Michael G Mohsen, Debin Ji, Eric T Kool. Polymerase synthesis of four-base DNA from two stable dimeric nucleotides. Nucleic Acids Research 2019, 47 (18) , 9495-9501. https://doi.org/10.1093/nar/gkz741
    40. Diego Núñez-Villanueva, Maria Ciaccia, Christopher A. Hunter. Cap control: cyclic versus linear oligomerisation in covalent template-directed synthesis. RSC Advances 2019, 9 (51) , 29566-29569. https://doi.org/10.1039/C9RA07233K
    41. Issay NARUMI, Shigenori MARUYAMA. The Role of Natural Radiation in the Evolution of Ancient Microbes. Journal of Geography (Chigaku Zasshi) 2019, 128 (4) , 649-665. https://doi.org/10.5026/jgeography.128.649
    42. Juan Aranda, Montserrat Terrazas, Hansel Gómez, Núria Villegas, Modesto Orozco. An artificial DNAzyme RNA ligase shows a reaction mechanism resembling that of cellular polymerases. Nature Catalysis 2019, 2 (6) , 544-552. https://doi.org/10.1038/s41929-019-0290-y
    43. Diego Núñez-Villanueva, Maria Ciaccia, Giulia Iadevaia, Elena Sanna, Christopher A. Hunter. Sequence information transfer using covalent template-directed synthesis. Chemical Science 2019, 10 (20) , 5258-5266. https://doi.org/10.1039/C9SC01460H
    44. Xingxing Zhang, Qiang Liu, Yan Jin, Baoxin Li. Facile and Sensitive Fluorescence Assay of DNA Polymerase Activity Using Cu 2+ and Ascorbate as Signal Developers. ChemistrySelect 2019, 4 (8) , 2398-2403. https://doi.org/10.1002/slct.201803850
    45. Hailey L. Gahlon, Shana J. Sturla. Determining Steady-State Kinetics of DNA Polymerase Nucleotide Incorporation. 2019, 299-311. https://doi.org/10.1007/978-1-4939-9216-4_19
    46. Jithesh Kottur, Deepak T Nair. Pyrophosphate hydrolysis is an intrinsic and critical step of the DNA synthesis reaction. Nucleic Acids Research 2018, 46 (12) , 5875-5885. https://doi.org/10.1093/nar/gky402
    47. Trevor A. Hamlin, Marcel Swart, F. Matthias Bickelhaupt. Nucleophilic Substitution (S N 2): Dependence on Nucleophile, Leaving Group, Central Atom, Substituents, and Solvent. ChemPhysChem 2018, 19 (11) , 1315-1330. https://doi.org/10.1002/cphc.201701363
    48. Kang-Yi Su, Hung-Ming Lai, Steven D. Goodman, Wei-Yao Hu, Wern-Cherng Cheng, Liang-In Lin, Ya-Chien Yang, Woei-horng Fang. Application of single nucleotide extension and MALDI-TOF mass spectrometry in proofreading and DNA repair assay. DNA Repair 2018, 61 , 63-75. https://doi.org/10.1016/j.dnarep.2017.11.011
    49. Marc A. van Bochove, Goedele Roos, Célia Fonseca Guerra, Trevor A. Hamlin, F. Matthias Bickelhaupt. How Mg 2+ ions lower the S N 2@P barrier in enzymatic triphosphate hydrolysis. Chemical Communications 2018, 54 (28) , 3448-3451. https://doi.org/10.1039/C8CC00700D
    50. Anthony J. Berdis. Inhibiting DNA Polymerases as a Therapeutic Intervention against Cancer. Frontiers in Molecular Biosciences 2017, 4 https://doi.org/10.3389/fmolb.2017.00078
    51. Yufang Hu, Qingqing Zhang, Lihua Xu, Jiao Wang, Jiajia Rao, Zhiyong Guo, Sui Wang. Signal-on electrochemical assay for label-free detection of TdT and BamHI activity based on grown DNA nanowire-templated copper nanoclusters. Analytical and Bioanalytical Chemistry 2017, 409 (28) , 6677-6688. https://doi.org/10.1007/s00216-017-0623-0
    52. Yi-Ben Fu, Zhan-Feng Wang, Peng-Ye Wang, Ping Xie. Optimal numbers of residues in linkers of DNA polymerase I, T7 primase and DNA polymerase IV. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep29125
    53. Changbei Ma, Haisheng Liu, Jun Wang, Shunxin Jin, Kemin Wang. Label-free molecular beacon for real-time monitoring of DNA polymerase activity. Analytical and Bioanalytical Chemistry 2016, 408 (12) , 3275-3280. https://doi.org/10.1007/s00216-016-9398-y
    54. Taiping Qing, Dinggeng He, Xiaoxiao He, Kemin Wang, Fengzhou Xu, Li Wen, Jingfang Shangguan, Zhengui Mao, Yanli Lei. Nucleic acid tool enzymes-aided signal amplification strategy for biochemical analysis: status and challenges. Analytical and Bioanalytical Chemistry 2016, 408 (11) , 2793-2811. https://doi.org/10.1007/s00216-015-9240-y
    55. A. Yu. Nyporko. The 8-oxo-dGTP interaction with human DNA polymerase β: two patterns of ligand behavior. Structural Chemistry 2016, 27 (1) , 175-183. https://doi.org/10.1007/s11224-015-0691-8
    56. A. Dasari, J.-S. Choi, A.J. Berdis. Chemotherapeutic intervention by inhibiting DNA polymerases. 2016, 179-224. https://doi.org/10.1016/B978-0-12-803582-5.00007-3
    57. J. Chao, P. Zhang, Q. Wang, N. Wu, F. Zhang, J. Hu, C. H. Fan, B. Li. Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy. Nanoscale 2016, 8 (11) , 5842-5846. https://doi.org/10.1039/C5NR06544E
    58. Andreas Langer, Michael Schräml, Ralf Strasser, Herwin Daub, Thomas Myers, Dieter Heindl, Ulrich Rant. Polymerase/DNA interactions and enzymatic activity: multi-parameter analysis with electro-switchable biosurfaces. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep12066
    59. Cristina Ferrer-Orta, Diego Ferrero, Núria Verdaguer. RNA-Dependent RNA Polymerases of Picornaviruses: From the Structure to Regulatory Mechanisms. Viruses 2015, 7 (8) , 4438-4460. https://doi.org/10.3390/v7082829
    60. Philip Nevin, John R. Engen, Penny J. Beuning. Steric gate residues of Y-family DNA polymerases DinB and pol kappa are crucial for dNTP-induced conformational change. DNA Repair 2015, 29 , 65-73. https://doi.org/10.1016/j.dnarep.2015.01.012
    61. David D. Boehr. The Ins and Outs of Viral RNA Polymerase Translocation. Journal of Molecular Biology 2014, 426 (7) , 1373-1376. https://doi.org/10.1016/j.jmb.2013.12.030
    62. Theo T. Nikiforov. Oligonucleotides labeled with single fluorophores as sensors for deoxynucleotide triphosphate binding by DNA polymerases. Analytical Biochemistry 2014, 444 , 60-66. https://doi.org/10.1016/j.ab.2013.09.024
    63. Alexey Yu. Nyporko. DNA Dependent DNA Polymerases as Targets for Low-Weight Molecular Inhibitors: State of Art and Prospects of Rational Design. 2014, 95-135. https://doi.org/10.1007/978-94-017-9257-8_4
    64. Ka-Ho Leung, Hong-Zhang He, Hai-Jing Zhong, Lihua Lu, Daniel Shiu-Hin Chan, Dik-Lung Ma, Chung-Hang Leung. A highly sensitive G-quadruplex-based luminescent switch-on probe for the detection of polymerase 3′–5′ proofreading activity. Methods 2013, 64 (3) , 224-228. https://doi.org/10.1016/j.ymeth.2013.05.017
    65. Xinran Liu, Xiaorong Yang, Cheri A. Lee, Ibrahim M. Moustafa, Eric D. Smidansky, David Lum, Jamie J. Arnold, Craig E. Cameron, David D. Boehr. Vaccine-derived Mutation in Motif D of Poliovirus RNA-dependent RNA Polymerase Lowers Nucleotide Incorporation Fidelity. Journal of Biological Chemistry 2013, 288 (45) , 32753-32765. https://doi.org/10.1074/jbc.M113.484428
    66. Ajeet K Sharma, Debashish Chowdhury. First-passage problems in DNA replication: effects of template tension on stepping and exonuclease activities of a DNA polymerase motor. Journal of Physics: Condensed Matter 2013, 25 (37) , 374105. https://doi.org/10.1088/0953-8984/25/37/374105
    67. Dessalegn B. Nemera, Amy R. Jones, Edward J. Merino. DNA Oxidation. 2013, 93-112. https://doi.org/10.1002/9781118355886.ch4
    68. Jason M. Walsh, Ramya Parasuram, Pradyumna R. Rajput, Eriks Rozners, Mary Jo Ondrechen, Penny J. Beuning. Effects of non‐catalytic, distal amino acid residues on activity of E. coli DinB (DNA polymerase IV). Environmental and Molecular Mutagenesis 2012, 53 (9) , 766-776. https://doi.org/10.1002/em.21730
    69. Yue Zhang, Dennis Salahub. A theoretical study of the mechanism of the nucleotidyl transfer reaction catalyzed by yeast RNA polymerase II. Science China Chemistry 2012, 55 (9) , 1887-1894. https://doi.org/10.1007/s11426-012-4708-5
    70. Andreas Kaiser, Sebastian Spies, Tanja Lommel, Clemens Richert. Template‐Directed Synthesis in 3′‐ and 5′‐Direction with Reversible Termination. Angewandte Chemie International Edition 2012, 51 (33) , 8299-8303. https://doi.org/10.1002/anie.201203859
    71. Andreas Kaiser, Sebastian Spies, Tanja Lommel, Clemens Richert. Template‐Directed Synthesis in 3′‐ and 5′‐Direction with Reversible Termination. Angewandte Chemie 2012, 124 (33) , 8424-8428. https://doi.org/10.1002/ange.201203859
    72. Bastian Holzberger, M. Gabriele Pszolla, Andreas Marx, Heiko M. Möller. KlenTaq DNA Polymerase Adopts Unique Recognition States when Encountering Matched, Mismatched, and Abasic Template Sites: An NMR Study. ChemBioChem 2012, 13 (5) , 635-639. https://doi.org/10.1002/cbic.201100802
    73. Anthony J. Berdis. Chemotherapeutic Intervention by Inhibiting DNA Polymerases. 2012, 75-107. https://doi.org/10.1016/B978-0-12-384999-1.10005-8
    74. Fengzhou Xu, Hui Shi, Xiaoxiao He, Kemin Wang, Xiaosheng Ye, Lv'an Yan, Shuyong Wei. A facile graphene oxide-based DNA polymerase assay. The Analyst 2012, 137 (17) , 3989. https://doi.org/10.1039/c2an35585j
    75. Jason M. Walsh, Penny J. Beuning. Synthetic Nucleotides as Probes of DNA Polymerase Specificity. Journal of Nucleic Acids 2012, 2012 , 1-17. https://doi.org/10.1155/2012/530963
    76. Liliya Euro, Gregory A. Farnum, Eino Palin, Anu Suomalainen, Laurie S. Kaguni. Clustering of Alpers disease mutations and catalytic defects in biochemical variants reveal new features of molecular mechanism of the human mitochondrial replicase, Pol γ. Nucleic Acids Research 2011, 39 (21) , 9072-9084. https://doi.org/10.1093/nar/gkr618
    77. Delia Chavarria, Andrea Ramos-Serrano, Ichiro Hirao, Anthony J. Berdis. Exploring the Roles of Nucleobase Desolvation and Shape Complementarity during the Misreplication of O6-Methylguanine. Journal of Molecular Biology 2011, 412 (3) , 325-339. https://doi.org/10.1016/j.jmb.2011.07.011
    78. Guorui Li, Tiffany Bell, Edward J. Merino. Oxidatively Activated DNA‐Modifying Agents for Selective Cytotoxicity. ChemMedChem 2011, 6 (5) , 869-875. https://doi.org/10.1002/cmdc.201100014
    79. Vladimir P. Zhdanov. Periodic perturbation of the bistable kinetics of gene expression. Physica A: Statistical Mechanics and its Applications 2011, 390 (1) , 57-64. https://doi.org/10.1016/j.physa.2010.03.036
    80. Shiqiong Yang, Mathy Froeyen, Eveline Lescrinier, Philippe Marlière, Piet Herdewijn. 3-Phosphono-l-alanine as pyrophosphate mimic for DNA synthesis using HIV-1 reverse transcriptase. Org. Biomol. Chem. 2011, 9 (1) , 111-119. https://doi.org/10.1039/C0OB00554A
    81. Max von Delius, David A. Leigh. Walking molecules. Chemical Society Reviews 2011, 40 (7) , 3656. https://doi.org/10.1039/c1cs15005g
    82. Chen Song, Chen Zhang, Meiping Zhao. Rapid and sensitive detection of DNA polymerase fidelity by singly labeled smart fluorescent probes. Biosensors and Bioelectronics 2011, 26 (5) , 2699-2702. https://doi.org/10.1016/j.bios.2010.08.073
    83. William J Allen, Ying Li, Gabriel Waksman. Bacterial DNA Polymerase I. 2010https://doi.org/10.1002/9780470015902.a0001043.pub2
    84. Karin Betz, Frank Streckenbach, Andreas Schnur, Thomas Exner, Wolfram Welte, Kay Diederichs, Andreas Marx. Structures of DNA Polymerases Caught Processing Size‐Augmented Nucleotide Probes. Angewandte Chemie International Edition 2010, 49 (30) , 5181-5184. https://doi.org/10.1002/anie.200905724
    85. Karin Betz, Frank Streckenbach, Andreas Schnur, Thomas Exner, Wolfram Welte, Kay Diederichs, Andreas Marx. Strukturen von DNA‐Polymerasen mit 4′‐alkylierten Nucleotiden im aktiven Zentrum. Angewandte Chemie 2010, 122 (30) , 5308-5311. https://doi.org/10.1002/ange.200905724
    86. E. Kervio, A. Hochgesand, U. E. Steiner, C. Richert. Templating efficiency of naked DNA. Proceedings of the National Academy of Sciences 2010, 107 (27) , 12074-12079. https://doi.org/10.1073/pnas.0914872107
    87. Kenneth A. Johnson. The kinetic and chemical mechanism of high-fidelity DNA polymerases. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2010, 1804 (5) , 1041-1048. https://doi.org/10.1016/j.bbapap.2010.01.006
    88. Anthony J. Berdis. ChemInform Abstract: Mechanisms of DNA Polymerases. ChemInform 2009, 40 (45) https://doi.org/10.1002/chin.200945280

    Chemical Reviews

    Cite this: Chem. Rev. 2009, 109, 7, 2862–2879
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cr800530b
    Published June 2, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    6779

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.