Management of Tropospheric Ozone by Reducing Methane EmissionsClick to copy article linkArticle link copied!
Abstract
Background concentrations of tropospheric ozone are increasing and are sensitive to methane emissions, yet methane mitigation is currently considered only for climate change. Methane control is shown here to be viable for ozone management. Identified global abatement measures can reduce ∼10% of anthropogenic methane emissions at a cost-savings, decreasing surface ozone by 0.4−0.7 ppb. Methane controls produce ozone reductions that are widespread globally and are realized gradually (∼12 yr). In contrast, controls on nitrogen oxides (NOX) and nonmethane volatile organic compounds (NMVOCs) target high-ozone episodes in polluted regions and affect ozone rapidly but have a smaller climate benefit. A coarse estimate of the monetized global benefits of ozone reductions for agriculture, forestry, and human health (neglecting ozone mortality) justifies reducing ∼17% of global anthropogenic methane emissions. If implemented, these controls would decrease ozone by ∼1 ppb and radiative forcing by ∼0.12 W m-2. We also find that climate-motivated methane reductions have air quality-related ancillary benefits comparable to those for CO2. Air quality planning should consider reducing methane emissions alongside NOX and NMVOCs, and because the benefits of methane controls are shared internationally, industrialized nations should consider emphasizing methane in the further development of climate change or ozone policies.
This publication is licensed for personal use by The American Chemical Society.
*
Corresponding author phone: (609)258-2694; fax: (609)258-6082; e-mail: [email protected].
†
Current address: Atmospheric and Oceanic Sciences Program, and Woodrow Wilson School of Public and International Affairs, Princeton University, 411A Robertson Hall, Princeton, NJ 08540.
‡
Current address: National Oceanic & Atmospheric Administra tion, Geophysical Fluid Dynamics Laboratory, 201 Forrestal Rd, Princeton, NJ 08542-0380.
Introduction
Response of Ozone to Methane Emission Reductions
Figure 1 Global change in mean summer (June−July−August) afternoon (1300 to 1700 local time) surface ozone (ppb) ultimately achieved when anthropogenic methane emissions are decreased by 50% in the GEOS−CHEM tropospheric chemistry model (driven by assimilated meteorology from NASA GEOS-1 at 4° × 5° horizontal resolution), as described by Fiore et al. ( 10).
Figure 2 Frequency distribution of daily mean afternoon (1300−1700 local time) ozone concentrations in surface air for summer 1995 in the United States as simulated with the GEOS−CHEM model (solid black). Also shown are results when global anthropogenic ozone precursor emissions are reduced by 50% as described by Fiore et al. ( 10): methane only (thick-dashed blue), NOX only (dotted red), and methane, NOX, NMVOC, and CO (thin-dashed green). NMVOC and CO reductions have a negligible impact on surface O3 in the 4° × 5° resolution used here, so the thin-dashed green line reflects the combined impact from 50% decreases in anthropogenic methane and NOX.
Ozone Control via Methane Reductions: Potential and Cost
Figure 3 Marginal global costs of methane abatement from five industrial sectors, using data from IEA (21; solid line). Our estimated marginal benefit of methane reductions ($81/ton CH4) is shown as a horizontal line (dashed), since we assume that benefits are proportional to the methane reductions.
Figure 4 Methane emission reduction potential in 2010 in North America, Annex I, and the world estimated by IEA (top bar of each pair, 21) and EPA (lower bar, 23). The top axis and the numbers to the right of the bars show the resulting reductions in northern hemisphere summer surface ozone ultimately achieved if the available methane reductions are implemented. These reductions would be fully achieved after more than 20 years. Annex I refers to all nations in Annex I of the United Nations Framework Convention on Climate Change. For EPA ( 23) at <$10/ton CO2 equiv, we used their estimates for $200/ton CH4, which is $9.5/ton CO2 equiv using their global warming potential of 21. Percentages are relative to current global anthropogenic emissions, taken as 340 Mton CH4 yr-1.
Monetized Benefits of Global Ozone Reductions
Table 1. Annual Nonmortality Benefits of a Uniform 1 ppb Ozone Reduction (in $Billion yr-1 ppb-1)a
United States | EU-15 | East Asia | globalb | |
agriculture | 0.40 | 0.51 | 0.42 | 2.8 (0.04−5.6) |
forestry | 0.44 | 1.7 (0.5−2.9) | ||
human health (nonmortality) | 0.59 | 0.60 | 3.0 (2.0−4.1) | |
total | 1.4 | >1.1 | >0.4 | 7.5 (4.4−10.7) |
a Derived from regional studies ( 29−33).b Global benefits extrapolated from regional studies with estimated uncertainty (in parentheses, 90% confidence interval from EPA (30) applied proportionally to the central estimates).
Ancillary Benefits of Climate-Motivated Methane and CO2 Reductions
Discussion of Uncertainties


Using Methane Controls to Manage Ozone
Table 2. Advantages of Ozone Management via Local and Regional NOX and NMVOC Emission Reductions and via Methane Emission Reductions
NOX and NMVOCs | methane | |
low-cost emission reductions | few; least-cost options already exhausted in some polluted regions | many cost-saving and low-cost measures exist |
potential for ozone reductions | large | limited to ∼2 ppb in the coming decades |
time scale | hours to weeks | realized gradually over ∼12 yr |
spatial scale | local to regional, focusing on polluted areas (NOX also global) | global, with benefits for all nations, ecosystems, and agriculture |
impact on high-ozone episodes | strong | ozone reduced roughly equally in all cases |
radiative forcing of climate | small | beneficial, from both methane and ozone |
ancillary benefits | reduced fine PM, nitrogen and acidic deposition (NOX), and airborne toxics (NMVOCs) | many measures make methane available for energy, addressing energy security; controls may also reduce NMVOC emissions |
Methane Reduction Scenario
Methane Controls for Ozone and Climate Management
Supporting Information Available
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgment
We thank T. Keating, A. Grambsch, D. Jacob, D. Kruger, C. Delhotal, B. DeAngelo, J. Levy, J. DeMocker, D. Mauzerall, L. Horowitz, M. Prather, and three anonymous referees. The opinions expressed are those of the authors and are not necessarily those of AAAS, the U.S. EPA, NOAA, or the U.S. Department of Commerce. The GEOS-CHEM model is managed by the Atmospheric Chemistry Modeling Group at Harvard University with support from the NASA Atmospheric Chemistry Modeling and Analysis Program.
This article references 42 other publications.
- 1Jacob, D. J.; Logan, J. A.; Murti, P. P. Effect of rising Asian emissions on surface ozone in the United States. Geophys. Res. Lett.1999, 26, 2175−2178.Google ScholarThere is no corresponding record for this reference.
- 2Keating, T. J.; West, J. J.; Farrell, A. Prospects for International Management of Intercontinental Air Pollution Transport. In Intercontinental Transport of Air Pollution; Stohl, A., Ed.; Springer: Berlin, 2004; pp 295−320.Google ScholarThere is no corresponding record for this reference.
- 3Volz, A.; Kley, D. Evaluation of the Montsouris series of ozone measurements made in the nineteenth century. Nature1988, 332, 240.Google Scholar3https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaL1cXhsFGksL4%253D&md5=f541d15cbdc57af1fc0b94a954c04cf7Evaluation of the Montsouris series of ozone measurements made in the nineteenth centuryVolz, Andreas; Kley, DieterNature (London, United Kingdom) (1988), 332 (6161), 240-2CODEN: NATUAS; ISSN:0028-0836.Reconstruction of the anal. method used (oxidn. of arsenite) in, and anal. of the data from, the measurements of atm. O3 at the Montsouris Observatory (Paris, France) during the 2nd half of the 19th century, indicate conclusively that O3 levels in central Europe 100 yr ago averaged 10 ppb and exhibited a seasonal variation, with a max. during the spring months. Comparisons with modern data show that O3 levels in rural areas more than doubled over the past century and that the tropospheric O3 budget is now strongly influenced by photochem. prodn. due to increased levels of NOx. Interferences in the original analyses and corrections of the data are discussed.
- 4Marenco, A.; Gouget, H.; Nedelec, P.; Pages J.-P. Evidence of a long-term increase in tropospheric ozone from Pic du Midi data series: consequences: positive radiative forcing. J. Geophys. Res.1994, 99, 16617−16632.Google ScholarThere is no corresponding record for this reference.
- 5Vingarzan, R. A review of surface ozone background levels and trends. Atmos. Environ.2004, 38, 3431−3442.Google ScholarThere is no corresponding record for this reference.
- 6Lelieveld, J.; van Aardenne, J.; Fischer, H.; de Reus, M.; Williams, J.; Winkler, P. Increasing ozone over the Atlantic Ocean. Science2004, 304, 1483−1487.Google ScholarThere is no corresponding record for this reference.
- 7Lelieveld, J.; Dentener, F. J. What controls tropospheric ozone? J. Geophys. Res.2000, 105 (D3), 3531−3551.Google ScholarThere is no corresponding record for this reference.
- 8Wang, Y.; Jacob, D. J. Anthropogenic forcing on tropospheric ozone and OH since preindustrial times. J. Geophys. Res.1998, 103, 31123−31135.Google ScholarThere is no corresponding record for this reference.
- 9Prather, M.; Gauss, M.; Berntsen, T.; Isaksen, I.; Sundet, J.; Bey, I.; Brasseur, G.; Dentener, F.; Derwent, R.; Stevenson, D.; Grenfell, L.; Hauglustaine, D.; Horowitz, L.; Jacob, D.; Mickley, L.; Lawrence, M.; von Kuhlmann, R.; Muller, J.-F.; Pitari, G.; Rogers, H.; Johnson, M.; Pyle, J.; Law, K.; van Weele, M.; Wild, O. Fresh air in the 21st Century? Geophys. Res. Lett.2003, 30 (2), 1100.Google ScholarThere is no corresponding record for this reference.
- 10Fiore, A. M.; Jacob, D. J.; Field, B. D.; Streets, D. G.; Fernandes, S. D.; Jang, C. Linking ozone pollution and climate change: the case for controlling methane. Geophys. Res. Lett.2002, 29, 1919.Google ScholarThere is no corresponding record for this reference.
- 11Ramaswamy, V.; Boucher, O.; Haigh, J.; Hauglustaine, D.; Haywood, J.; Myrhe, G.; Nakajima, T.; Shi, G. Y.; Solomon, S. Radiative forcing of climate change. In Climate Change 2001: The Scientific Basis; Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., Johnson, C. A., Eds.; Cambridge University Press: Cambridge, U.K., 2001; pp 349−416.Google ScholarThere is no corresponding record for this reference.
- 12Reilly, J.; Prinn, R.; Harnisch, J.; Fitzmaurice, J.; Jacoby, H.; Kicklighter, D.; Melillo, J.; Stone, P.; Sokolov, A.; Wang, C. Multi-gas assessment of the Kyoto Protocol. Nature1999, 401, 549−555.Google ScholarThere is no corresponding record for this reference.
- 13Hayhoe, K.; Jain, A.; Pitcher, H.; MacCracken, C.; Gibbs, M.; Wuebbles, D.; Harvey, R.; Kruger, D. Costs of multigreenhouse gas reduction targets for the USA. Science1999, 286, 905−906.Google ScholarThere is no corresponding record for this reference.
- 14Hansen, J.; Sato, M.; Ruedy, R.; Lacis, A.; Oinas, V. Global warming in the twenty-first century: an alternative scenario. Proc. Natl. Acad. Sci. U.S.A.2000, 97, 9875−9880.Google ScholarThere is no corresponding record for this reference.
- 15Crutzen, P. J. A discussion of the chemistry of some minor constitutents in the stratosphere and troposphere. Pure Appl. Geophys.1973, 106−108, 1385−1399.Google ScholarThere is no corresponding record for this reference.
- 16Li, Q.; Jacob, D. J.; Logan, J. A.; Bey, I.; Yantosca, R. M.; Liu, H.; Martin, R. V.; Fiore, A. M.; Field, B. D.; Duncan, B. N. Transatlantic transport of pollution and its effects on surface ozone in Europe and the United States. Geophys. Res. Lett.2001, 28, 3235.Google Scholar16https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD3MXmvF2qtLs%253D&md5=f822cd7b22c8f6885e4e3cd1ece79515A tropospheric ozone maximum over the Middle EastLi, Qinbin; Jacob, Daniel J.; Logan, Jennifer A.; Bey, Isabelle; Yantosca, Robert M.; Liu, Hongyu; Martin, Randall V.; Fiore, Arlene M.; Field, Brendan D.; Duncan, Bryan N.; Thouret, ValerieGeophysical Research Letters (2001), 28 (17), 3235-3238CODEN: GPRLAJ; ISSN:0094-8276. (American Geophysical Union)The GEOS-CHEM global 3-D model of tropospheric chem. predicts a summertime O3 max. over the Middle East, with mean mixing ratios in the middle and upper troposphere in excess of 80 ppbv. This model feature is consistent with the few observations from com. aircraft in the region. Its origin in the model reflects a complex interplay of dynamical and chem. factors, and of anthropogenic and natural influences. The anticyclonic circulation in the middle and upper troposphere over the Middle East funnels northern mid-latitude pollution transported in the westerly subtropical jet as well as lightning outflow from the Indian monsoon and pollution from eastern Asia transported in an easterly tropical jet. Large-scale subsidence over the region takes place with continued net prodn. of O3 and little mid-level outflow. Transport from the stratosphere does not contribute significantly to the O3 max. Sensitivity simulations with anthropogenic or lightning emissions shut off indicate decreases of 20-30% and 10-15% resp. in the tropospheric O3 column over the Middle East. More observations in this region are needed to confirm the presence of the O3 max.
- 17Prather, M.; Ehhalt, D.; Dentener, F.; Derwent, R.; Dlugokencky, E.; Holland, E.; Isaksen, I.; Katima, J.; Kirchhoff, V.; Matson, P.; Midgley, P.; Wang, M. Atmospheric chemistry and greenhouse gases. In Climate Change 2001: The Scientific Basis; Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., Johnson, C. A., Eds.; Cambridge University Press: Cambridge, U.K., 2001; pp 239−287.Google ScholarThere is no corresponding record for this reference.
- 18Fiore, A. M.; Jacob, D. J.; Liu, H.; Yantosca, R. M.; Fairlie, T. D.; Li, Q. Variability in surface ozone background over the United States: Implications for air quality policy. J. Geophys. Res. 2003, 108, 4787.Google ScholarThere is no corresponding record for this reference.
- 19Wang, J. S.; Logan, J. A.; McElroy, M. B.; Duncan, B. N.; Megretskaia, I. A.; Yantosca, R. M. A 3-D model analysis of the slowdown and interannual variability in the methane growth rate from 1988 to 1997. Global Biogeochem. Cycles2004, 18, GB3011.Google ScholarThere is no corresponding record for this reference.
- 20Mikaloff Fletcher, S. E.; Tans, P. P.; Bruhwiler, L. M.; Miller, J. B.; Heimann, M. CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 1. Inverse modeling of source processes. Global Biogeochem. Cycles2004, 18, GB4004.Google ScholarThere is no corresponding record for this reference.
- 21International Energy Agency Greenhouse Gas R&D Programme. Building the Cost Curves for the Industrial Sources of Non-CO2Greenhouse Gases; Report No. PH4/25; IAE Greenhouse Gas R&D Programme: Cheltenham, UK, 2003.Google ScholarThere is no corresponding record for this reference.
- 22U.S. Environmental Protection Agency. US Methane Emissions 1990−2010: Inventories, Projections, and Opportunities for Reductions; EPA Publication 430-R-99-013; U.S. Government Printing Office: Washington, DC, 1999.Google ScholarThere is no corresponding record for this reference.
- 23U.S. Environmental Protection Agency. International Analysis of Methane and Nitrous Oxide Abatement Opportunities: Report to the Energy Modeling Forum, Working Group 21; www.epa.gov/methane/pdfs/ methodologych4.pdf (accessed May 2004).Google ScholarThere is no corresponding record for this reference.
- 24Delhotal, K. C.; de la Chesnaye, F. C.; Gardiner, A.; Bates, J.; Sankovski, A. Mitigation of methane and nitrous oxide emissions from waste, energy, and industry, Energy J. in press.Google ScholarThere is no corresponding record for this reference.
- 25Reilly, J.; Mayer, M.; Harnisch, J. The Kyoto Protocol and non-CO2 greenhouse gases and carbon sinks. Environ. Modell. Assess.2002, 7, 217−229.Google ScholarThere is no corresponding record for this reference.
- 26Hyman, R. C.; Reilly, J. M.; Babiker, M. H.; De Masin, A.; Jacoby, H. D. Modeling non-CO2 greenhouse gas abatement. Environ. Modell. Assess.2003, 8, 175−186.Google ScholarThere is no corresponding record for this reference.
- 27U.S. Environmental Protection Agency. Economic & Energy Analysis for the Proposed Interstate Air Quality Rulemaking; www.epa.gov/interstateairquality/technical.html (accessed May 2004).Google ScholarThere is no corresponding record for this reference.
- 28U.S. Environmental Protection Agency. Benefits of the Proposed Inter-state Air Quality Rule; EPA Publication 452/-03-001; U.S. Government Printing Office: Washington, DC, 2004; www.epa.gov/interstateairquality/technical.html.Google ScholarThere is no corresponding record for this reference.
- 29U.S. Environmental Protection Agency. Regulatory Impact Analysis −Control of Emissions from New Motor Vehicles; EPA-420-R-99-023; U.S. Government Printing Office: Washington, DC, 1999.Google ScholarThere is no corresponding record for this reference.
- 30U.S. Environmental Protection Agency. The Benefits and Costs of the Clean Air Act 1990 to 2010; 410-R-99-001; U.S. Government Printing Office: Washington, DC, 1999.Google ScholarThere is no corresponding record for this reference.
- 31Wang, X.; Mauzerall, D. L. Characterizing distributions of surface ozone and its impact on grain production in China, Japan, and South Korea: 1990 and 2020. Atmos. Environ.2004, 38, 4383−4402.Google ScholarThere is no corresponding record for this reference.
- 32Cofala, J.; Heyes, C.; Klimont, Z.; Amann, M.; Pearce, D. W.; Howarth, A. Technical Report on Acidification, Eutrophication, and Tropospheric Ozone in Europe; RIVM report 481505014; RIVM: Bilthoven, Netherlands, 2001.Google ScholarThere is no corresponding record for this reference.
- 33Rabl, A.; Eyre, N. An estimate of regional and global O3 damage from precursor NOX and VOC emissions. Environ. Int.1998, 24, 835−850.Google ScholarThere is no corresponding record for this reference.
- 34Levy, J. I.; Carruthers, T. J.; Toumisto, J. I.; Hammitt, J. K.; Evans, J. S. Assessing the public health benefits of reduced ozone concentrations. Environ. Health Perspect.2001, 109, 9−20.Google ScholarThere is no corresponding record for this reference.
- 35Bell, M. L.; McDermott, A.; Zeger, S. L.; Samet, J. M.; Domenici, F. Ozone and short-term mortality in 95 US urban communities 1987−2000. J. Am. Med. Assoc.2004, 292 (19), 2372−2378.Google ScholarThere is no corresponding record for this reference.
- 36Cifuentes, L.; Borja-Aburto, V. H.; Gouveia, N.; Thurston, G.; Davis, D. L. Hidden health benefits of greenhouse gas mitigation. Science2001, 293, 1257−1259.Google ScholarThere is no corresponding record for this reference.
- 37Hourcade, J.; Shukla, P.; Cifuentes, L.; Davis, D.; Edmonds, J.; Fisher, B.; Fortin, E.; Golub, A.; Hohmeyer, O.; Krupnick, A.; Kverndokk, S.; Loulou, R.; Richels, R.; Segenovic, H.; Yamaji, K. Global, regional, and national costs and ancillary benefits of mitigation. In Climate Change 2001: Mitigation; Metz, B., Davidson, O., Swart, R., Pan, J., Eds.; Cambridge University Press: Cambridge, U.K., 2001; pp 499−559.Google ScholarThere is no corresponding record for this reference.
- 38Felzer, B.; Kicklighter, D.; Melillo, J.; Wang, C.; Zhuang, Q.; Prinn, R. Effects of ozone on net primary production and carbon sequestration in the coterminous United States using a biogeochemistry model. Tellus2004, 56B, 230−248.Google ScholarThere is no corresponding record for this reference.
- 39Tromp, T. K.; Shia, R.-L.; Allen, M.; Eiler, J. M.; Yung, Y. L. Potential environmental impact of a hydrogen economy on the stratosphere. Science2003, 300, 1740−1741.Google ScholarThere is no corresponding record for this reference.
- 40Fuglestvedt, J. S.; Berntsen, T. K.; Isaksen, I. S. A.; Mao, H.; Liang, X.-Z.; Wang, W.-C. Climatic forcing of nitrogen oxides through changes in tropospheric ozone and methane; global 3D model studies. Atmos. Environ.1999, 33, 961−977.Google ScholarThere is no corresponding record for this reference.
- 41Methane to Markets. www.methanetomarkets.org (accessed April 2005).Google ScholarThere is no corresponding record for this reference.
- 42Holloway, T.; Fiore, A.; Hastings, M. G. Intercontinental transport of air pollution: will emerging science lead to a new hemispheric treaty? Environ. Sci. Technol.2003, 37, 4535−4542.Google ScholarThere is no corresponding record for this reference.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 64 publications.
- Adrienne J. Phillips, Alfred B. Cunningham, Robin Gerlach, Randy Hiebert, Chiachi Hwang, Bartholomeus P. Lomans, Joseph Westrich, Cesar Mantilla, Jim Kirksey, Richard Esposito, and Lee Spangler . Fracture Sealing with Microbially-Induced Calcium Carbonate Precipitation: A Field Study. Environmental Science & Technology 2016, 50
(7)
, 4111-4117. https://doi.org/10.1021/acs.est.5b05559
- Pavan N. Racherla and Peter J. Adams. U.S. Ozone Air Quality under Changing Climate and Anthropogenic Emissions. Environmental Science & Technology 2009, 43
(3)
, 571-577. https://doi.org/10.1021/es800854f
- Kathryn Wigley, Charlotte Armstrong, Simeon J. Smaill, Nicki M. Reid, Laura Kiely, Steve A. Wakelin. Methane cycling in temperate forests. Carbon Balance and Management 2024, 19
(1)
https://doi.org/10.1186/s13021-024-00283-z
- Ganime Tuğba ÖNDER. A Comparative Analysis of Advanced Modeling Techniques for Global Methane Emission Forecasting Using SARIMA, LSTM, and GRU Models. 2024https://doi.org/10.21203/rs.3.rs-5017969/v1
- Angela Pilogallo, Filomena Pietrapertosa, Monica Salvia. Are we going towards an effective integration of air quality and climate planning? A comparative analysis for Italian regions. Journal of Environmental Management 2024, 368 , 122138. https://doi.org/10.1016/j.jenvman.2024.122138
- Sammy N. Aso. Dialing Back the Doomsday Clock with Circular Bioeconomy. 2024https://doi.org/10.5772/intechopen.113181
- Chhabeel Kumar, Ankit Tandon. Deciphering multi-temporal scale dynamics in the concentration, sources and processes of near surface ozone over different climatic regions of India. Environmental Science and Pollution Research 2024, 31
(23)
, 34709-34725. https://doi.org/10.1007/s11356-024-33470-z
- Li Qin, Jialin Li, Xu Guan, Anbao Gong, Meng Fan, Liangfu Chen, Xiao Han, Meigen Zhang. Numerical analysis of CH4 concentration distributions over East Asia with a regional chemical transport model. Atmospheric Environment 2024, 317 , 120207. https://doi.org/10.1016/j.atmosenv.2023.120207
- Tian Xia, Sachraa G. Borjigin, Julia Raneses, Craig A. Stroud, Stuart A. Batterman. Mobile Measurements of Atmospheric Methane at Eight Large Landfills: An Assessment of Temporal and Spatial Variability. Atmosphere 2023, 14
(6)
, 906. https://doi.org/10.3390/atmos14060906
- J. Jason West, Christopher G. Nolte, Michelle L. Bell, Arlene M. Fiore, Panos G. Georgopoulos, Jeremy J. Hess, Loretta J. Mickley, Susan M. O'Neill, Jeffrey R. Pierce, Robert W. Pinder, Sally Pusede, Drew T. Shindell, Sacoby M. Wilson, , , , , , . Chapter 14 : Air Quality. Fifth National Climate Assessment. 2023https://doi.org/10.7930/NCA5.2023.CH14
- Mukunda D. Behera, Sujoy Mudi, Parthiva Shome, Pringale K. Das, Sudhanshu Kumar, Akash Joshi, Abhishek Rathore, Akash Deep, Akhilesh Kumar, Chanchal Sanwariya, Naveen Kumar, Raghvendra Chandrakar, Seetharaman Seshadri, Shivam Mukherjee, Shravan K. Bhattaram, Zephaniah Sirivella. COVID-19 slowdown induced improvement in air quality in India: rapid assessment using Sentinel-5P TROPOMI data. Geocarto International 2022, 37
(25)
, 8127-8147. https://doi.org/10.1080/10106049.2021.1993351
- Sulaiman A. Alarifi, Ayyaz Mustafa, Kamal Omarov, Abdul Rehman Baig, Zeeshan Tariq, Mohamed Mahmoud. A Review of Enzyme-Induced Calcium Carbonate Precipitation Applicability in the Oil and Gas Industry. Frontiers in Bioengineering and Biotechnology 2022, 10 https://doi.org/10.3389/fbioe.2022.900881
- Eric D. Billman, S. Leanne Dillard, Ana Isabel Roca-Fernández, Kathy J. Soder. Supplementation of Oilseeds to an Herbage Diet High in Condensed Tannins Affects Methane Production with Minimal Impact on Ruminal Fermentation in Continuous Culture. Fermentation 2022, 8
(3)
, 109. https://doi.org/10.3390/fermentation8030109
- Michelle Cain, Stuart Jenkins, Myles R. Allen, John Lynch, David J. Frame, Adrian H. Macey, Glen P. Peters. Methane and the Paris Agreement temperature goals. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2022, 380
(2215)
https://doi.org/10.1098/rsta.2020.0456
- Aurelia Lupaşcu, Noelia Otero, Andrea Minkos, Tim Butler. Attribution of surface ozone to NO
x
and volatile organic compound sources during two different high ozone events. Atmospheric Chemistry and Physics 2022, 22
(17)
, 11675-11699. https://doi.org/10.5194/acp-22-11675-2022
- Ilaria Quaglia, Daniele Visioni, Giovanni Pitari, Ben Kravitz. An approach to sulfate geoengineering with surface emissions of carbonyl sulfide. Atmospheric Chemistry and Physics 2022, 22
(9)
, 5757-5773. https://doi.org/10.5194/acp-22-5757-2022
- Marcin Dreger, Sławomir Kędzior. Methane emissions against the background of natural and mining conditions in the Budryk and Pniówek mines in the Upper Silesian Coal Basin (Poland). Environmental Earth Sciences 2021, 80
(22)
https://doi.org/10.1007/s12665-021-10063-4
- Peter Velin, Felix Hemmingsson, Andreas Schaefer, Magnus Skoglundh, Kirill A. Lomachenko, Agnes Raj, David Thompsett, Gudmund Smedler, Per‐Anders Carlsson. Hampered PdO Redox Dynamics by Water Suppresses Lean Methane Oxidation over Realistic Palladium Catalysts. ChemCatChem 2021, 13
(17)
, 3765-3771. https://doi.org/10.1002/cctc.202100829
- Eduardo P. Olaguer. The Potential Ozone Impacts of Landfills. Atmosphere 2021, 12
(7)
, 877. https://doi.org/10.3390/atmos12070877
- Ivan Tadic, Clara M. Nussbaumer, Birger Bohn, Hartwig Harder, Daniel Marno, Monica Martinez, Florian Obersteiner, Uwe Parchatka, Andrea Pozzer, Roland Rohloff, Martin Zöger, Jos Lelieveld, Horst Fischer. Central role of nitric oxide in ozone production in the upper tropical troposphere over the Atlantic Ocean and western Africa. Atmospheric Chemistry and Physics 2021, 21
(10)
, 8195-8211. https://doi.org/10.5194/acp-21-8195-2021
- Till M. Bachmann. Considering environmental costs of greenhouse gas emissions for setting a CO2 tax: A review. Science of The Total Environment 2020, 720 , 137524. https://doi.org/10.1016/j.scitotenv.2020.137524
- Chong Wei, Maohua Wang, Qingyan Fu, Cheng Dai, Rong Huang, Quan Bao. Temporal characteristics of greenhouse gases (CO2 and CH4) in the megacity Shanghai, China: Association with air pollutants and meteorological conditions. Atmospheric Research 2020, 235 , 104759. https://doi.org/10.1016/j.atmosres.2019.104759
- U.C. Dumka, A.S. Gautam, S. Tiwari, D.S. Mahar, S.D. Attri, R.K. Chakrabarty, P. Permita, Philip K. Hopke, Ritu Hooda. Evaluation of urban ozone in the Brahmaputra River Valley. Atmospheric Pollution Research 2020, 11
(3)
, 610-618. https://doi.org/10.1016/j.apr.2019.12.013
- Detlev Helmig, , . Air quality impacts from oil and natural gas development in Colorado. Elementa: Science of the Anthropocene 2020, 8 https://doi.org/10.1525/elementa.398
- Shuting Yang, Xin Lan, Robert Talbot, Lei Liu. Characterizing anthropogenic methane sources in the Houston and Barnett Shale areas of Texas using the isotopic signature δ13C in CH4. Science of The Total Environment 2019, 696 , 133856. https://doi.org/10.1016/j.scitotenv.2019.133856
- Shuting Yang, Robert W. Talbot, Michael B. Frish, Levi M. Golston, Nicholas F. Aubut, Mark A. Zondlo, Christopher Gretencord, James McSpiritt. Natural Gas Fugitive Leak Detection Using an Unmanned Aerial Vehicle: Measurement System Description and Mass Balance Approach. Atmosphere 2018, 9
(10)
, 383. https://doi.org/10.3390/atmos9100383
- Yaqian Mu, Can Wang, Wenjia Cai. The economic impact of China's INDC: Distinguishing the roles of the renewable energy quota and the carbon market. Renewable and Sustainable Energy Reviews 2018, 81 , 2955-2966. https://doi.org/10.1016/j.rser.2017.06.105
- Christopher G. Nolte, Tanya L. Spero, Jared H. Bowden, Megan S. Mallard, Patrick D. Dolwick. The potential effects of climate change on air quality across the conterminous US at 2030 under three Representative Concentration Pathways. Atmospheric Chemistry and Physics 2018, 18
(20)
, 15471-15489. https://doi.org/10.5194/acp-18-15471-2018
- Jian-Xiong Sheng, Daniel J. Jacob, Joannes D. Maasakkers, Yuzhong Zhang, Melissa P. Sulprizio. Comparative analysis of low-Earth orbit (TROPOMI) and geostationary (GeoCARB, GEO-CAPE) satellite instruments for constraining methane emissions on fine regional scales: application to the Southeast US. Atmospheric Measurement Techniques 2018, 11
(12)
, 6379-6388. https://doi.org/10.5194/amt-11-6379-2018
- Kandice L. Harper, Yiqi Zheng, Nadine Unger. Advances in representing interactive methane in ModelE2-YIBs (version 1.1). Geoscientific Model Development 2018, 11
(11)
, 4417-4434. https://doi.org/10.5194/gmd-11-4417-2018
- Jennifer D. Stowell, Young-min Kim, Yang Gao, Joshua S. Fu, Howard H. Chang, Yang Liu. The impact of climate change and emissions control on future ozone levels: Implications for human health. Environment International 2017, 108 , 41-50. https://doi.org/10.1016/j.envint.2017.08.001
- Sylvia Toet, Viktoria Oliver, Phil Ineson, Sophie McLoughlin, Thorunn Helgason, Simon Peacock, Andrew W. Stott, Jeremy Barnes, Mike Ashmore. How does elevated ozone reduce methane emissions from peatlands?. Science of The Total Environment 2017, 579 , 60-71. https://doi.org/10.1016/j.scitotenv.2016.10.188
- D. T. Shindell, J. S. Fuglestvedt, W. J. Collins. The social cost of methane: theory and applications. Faraday Discussions 2017, 200 , 429-451. https://doi.org/10.1039/C7FD00009J
- Jürg Fuhrer, Maria Val Martin, Gina Mills, Colette L. Heald, Harry Harmens, Felicity Hayes, Katrina Sharps, Jürgen Bender, Mike R. Ashmore. Current and future ozone risks to global terrestrial biodiversity and ecosystem processes. Ecology and Evolution 2016, 6
(24)
, 8785-8799. https://doi.org/10.1002/ece3.2568
- Pavan S. Kulkarni, Hari Prasad Dasari, Ashish Sharma, D. Bortoli, Rui Salgado, A.M. Silva. Nocturnal surface ozone enhancement over Portugal during winter: Influence of different atmospheric conditions. Atmospheric Environment 2016, 147 , 109-120. https://doi.org/10.1016/j.atmosenv.2016.09.056
- Yan Cheng, Huijun He, Chunping Yang, Guangming Zeng, Xiang Li, Hong Chen, Guanlong Yu. Challenges and solutions for biofiltration of hydrophobic volatile organic compounds. Biotechnology Advances 2016, 34
(6)
, 1091-1102. https://doi.org/10.1016/j.biotechadv.2016.06.007
- Stig B. Dalsøren, Cathrine L. Myhre, Gunnar Myhre, Angel J. Gomez-Pelaez, Ole A. Søvde, Ivar S. A. Isaksen, Ray F. Weiss, Christina M. Harth. Atmospheric methane evolution the last 40 years. Atmospheric Chemistry and Physics 2016, 16
(5)
, 3099-3126. https://doi.org/10.5194/acp-16-3099-2016
- Nicolas Bousserez, Daven K. Henze, Brigitte Rooney, Andre Perkins, Kevin J. Wecht, Alexander J. Turner, Vijay Natraj, John R. Worden. Constraints on methane emissions in North America from future geostationary remote-sensing measurements. Atmospheric Chemistry and Physics 2016, 16
(10)
, 6175-6190. https://doi.org/10.5194/acp-16-6175-2016
- Hajime Akimoto, Jun‘ichi Kurokawa, Kengo Sudo, Tatsuya Nagashima, Toshihiko Takemura, Zbigniew Klimont, Markus Amann, Katsunori Suzuki. SLCP co-control approach in East Asia: Tropospheric ozone reduction strategy by simultaneous reduction of NO x /NMVOC and methane. Atmospheric Environment 2015, 122 , 588-595. https://doi.org/10.1016/j.atmosenv.2015.10.003
- S. B. Dalsøren, C. L. Myhre, G. Myhre, A. J. Gomez-Pelaez, O. A. Søvde, I. S. A. Isaksen, R. F. Weiss, C. M. Harth. Atmospheric methane evolution the last 40 years. 2015https://doi.org/10.5194/acpd-15-30895-2015
- N. Bousserez, D. K. Henze, B. Rooney, A. Perkins, K. J. Wecht, A. J. Turner, V. Natraj, J. R. Worden. Constraints on methane emissions in North America from future geostationary remote sensing measurements. 2015https://doi.org/10.5194/acpd-15-19017-2015
- Arlene M. Fiore, Vaishali Naik, Eric M. Leibensperger. Air Quality and Climate Connections. Journal of the Air & Waste Management Association 2015, 65
(6)
, 645-685. https://doi.org/10.1080/10962247.2015.1040526
- Gautam R. Eapi, Madhu S. Sabnis, Melanie L. Sattler. Mobile measurement of methane and hydrogen sulfide at natural gas production site fence lines in the Texas Barnett Shale. Journal of the Air & Waste Management Association 2014, 64
(8)
, 927-944. https://doi.org/10.1080/10962247.2014.907098
- G. G. Pfister, S. Walters, J.‐F. Lamarque, J. Fast, M. C. Barth, J. Wong, J. Done, G. Holland, C. L. Bruyère. Projections of future summertime ozone over the U.S.. Journal of Geophysical Research: Atmospheres 2014, 119
(9)
, 5559-5582. https://doi.org/10.1002/2013JD020932
- Shiri Avnery, Denise L. Mauzerall, Arlene M. Fiore. Increasing global agricultural production by reducing ozone damages via methane emission controls and ozone‐resistant cultivar selection. Global Change Biology 2013, 19
(4)
, 1285-1299. https://doi.org/10.1111/gcb.12118
- Raúl Muñoz, Andrew J. Daugulis, María Hernández, Guillermo Quijano. Recent advances in two-phase partitioning bioreactors for the treatment of volatile organic compounds. Biotechnology Advances 2012, 30
(6)
, 1707-1720. https://doi.org/10.1016/j.biotechadv.2012.08.009
- J. Jason West, Arlene M. Fiore, Larry W. Horowitz. Scenarios of methane emission reductions to 2030: abatement costs and co-benefits to ozone air quality and human mortality. Climatic Change 2012, 114
(3-4)
, 441-461. https://doi.org/10.1007/s10584-012-0426-4
- Elizabeth A. Ainsworth, Craig R. Yendrek, Stephen Sitch, William J. Collins, Lisa D. Emberson. The Effects of Tropospheric Ozone on Net Primary Productivity and Implications for Climate Change. Annual Review of Plant Biology 2012, 63
(1)
, 637-661. https://doi.org/10.1146/annurev-arplant-042110-103829
- Drew Shindell, Johan C. I. Kuylenstierna, Elisabetta Vignati, Rita van Dingenen, Markus Amann, Zbigniew Klimont, Susan C. Anenberg, Nicholas Muller, Greet Janssens-Maenhout, Frank Raes, Joel Schwartz, Greg Faluvegi, Luca Pozzoli, Kaarle Kupiainen, Lena Höglund-Isaksson, Lisa Emberson, David Streets, V. Ramanathan, Kevin Hicks, N. T. Kim Oanh, George Milly, Martin Williams, Volodymyr Demkine, David Fowler. Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security. Science 2012, 335
(6065)
, 183-189. https://doi.org/10.1126/science.1210026
- Arlene M. Fiore, Vaishali Naik, Dominick V. Spracklen, Allison Steiner, Nadine Unger, Michael Prather, Dan Bergmann, Philip J. Cameron-Smith, Irene Cionni, William J. Collins, Stig Dalsøren, Veronika Eyring, Gerd A. Folberth, Paul Ginoux, Larry W. Horowitz, Béatrice Josse, Jean-François Lamarque, Ian A. MacKenzie, Tatsuya Nagashima, Fiona M. O'Connor, Mattia Righi, Steven T. Rumbold, Drew T. Shindell, Ragnhild B. Skeie, Kengo Sudo, Sophie Szopa, Toshihiko Takemura, Guang Zeng. Global air quality and climate. Chemical Society Reviews 2012, 41
(19)
, 6663. https://doi.org/10.1039/c2cs35095e
- Yu Zhao, Michael B. McElroy, Jia Xing, Lei Duan, Chris P. Nielsen, Yu Lei, Jiming Hao. Multiple effects and uncertainties of emission control policies in China: Implications for public health, soil acidification, and global temperature. Science of The Total Environment 2011, 409
(24)
, 5177-5187. https://doi.org/10.1016/j.scitotenv.2011.08.026
- Daniel J. Jacob, Denise L. Mauzerall, Julia Martínez Fernández, William T. Pennell. Global Change and Air Quality. 2011, 395-432. https://doi.org/10.1007/978-94-007-0304-9_11
- SYLVIA TOET, PHIL INESON, SIMON PEACOCK, MIKE ASHMORE. Elevated ozone reduces methane emissions from peatland mesocosms. Global Change Biology 2011, 17
(1)
, 288-296. https://doi.org/10.1111/j.1365-2486.2010.02267.x
- K. Elampari, T. Chitambarathanu, R. Krishnasharma. Surface ozone variability in the southern most semi-urban area, Nagercoil, India. 2010, 45-49. https://doi.org/10.1109/RSTSCC.2010.5712796
- Claudia Kemfert, Wolf-Peter Schill, David Anthoff, Daniel J.A. Johansson, Fredrik Hedenus. Methane Mitigation. 2010, 172-221. https://doi.org/10.1017/CBO9780511779015.006
- Luisa Molina, Bhola Gurjar. Regional and Global Environmental Issues of Air Pollution. 2010, 493-518. https://doi.org/10.1201/EBK1439809624-c17
- E. Renner, Y. Zhang. Interactions between air quality and climate change. 2010, 479-518. https://doi.org/10.1007/978-90-481-3812-8_6
- K. S. Hui, C. W. Kwong, C. Y. H. Chao. Methane emission abatement by Pd-ion-exchanged zeolite 13X with ozone. Energy & Environmental Science 2010, 3
(8)
, 1092. https://doi.org/10.1039/c002669g
- J. J. West, V. Naik, L. W. Horowitz, A. M. Fiore. Effect of regional precursor emission controls on long-range ozone transport – Part 2: steady-state changes in ozone air quality and impacts on human mortality. 2009https://doi.org/10.5194/acpd-9-7079-2009
- J. J. West, V. Naik, L. W. Horowitz, A. M. Fiore. Effect of regional precursor emission controls on long-range ozone transport – Part 2: Steady-state changes in ozone air quality and impacts on human mortality. Atmospheric Chemistry and Physics 2009, 9
(16)
, 6095-6107. https://doi.org/10.5194/acp-9-6095-2009
- Christopher G. Nolte, Alice B. Gilliland, Christian Hogrefe, Loretta J. Mickley. Linking global to regional models to assess future climate impacts on surface ozone levels in the United States. Journal of Geophysical Research: Atmospheres 2008, 113
(D14)
https://doi.org/10.1029/2007JD008497
- Drew T. Shindell, Hiram Levy, M. Daniel Schwarzkopf, Larry W. Horowitz, Jean‐Francois Lamarque, Greg Faluvegi. Multimodel projections of climate change from short‐lived emissions due to human activities. Journal of Geophysical Research: Atmospheres 2008, 113
(D11)
https://doi.org/10.1029/2007JD009152
- Arlene M. Fiore, J. Jason West, Larry W. Horowitz, Vaishali Naik, M. Daniel Schwarzkopf. Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality. Journal of Geophysical Research: Atmospheres 2008, 113
(D8)
https://doi.org/10.1029/2007JD009162
- K. Ellingsen, M. Gauss, R. Van Dingenen, F. J. Dentener, L. Emberson, A. M. Fiore, M. G. Schultz, D. S. Stevenson, M. R. Ashmore, C. S. Atherton, D. J. Bergmann, I. Bey, T. Butler, J. Drevet, H. Eskes, D. A. Hauglustaine, I. S. A. Isaksen, L. W. Horowitz, M. Krol, J. F. Lamarque, M. G. Lawrence, T. van Noije, J. Pyle, S. Rast, J. Rodriguez, N. Savage, S. Strahan, K. Sudo, S. Szopa, O. Wild. Global ozone and air quality: a multi-model assessment of risks to human health and crops. 2008https://doi.org/10.5194/acpd-8-2163-2008
- J. Jason West, Arlene M. Fiore, Vaishali Naik, Larry W. Horowitz, M. Daniel Schwarzkopf, Denise L. Mauzerall. Ozone air quality and radiative forcing consequences of changes in ozone precursor emissions. Geophysical Research Letters 2007, 34
(6)
https://doi.org/10.1029/2006GL029173
- F. Dentener, J. Drevet, J. F. Lamarque, I. Bey, B. Eickhout, A. M. Fiore, D. Hauglustaine, L. W. Horowitz, M. Krol, U. C. Kulshrestha, M. Lawrence, C. Galy‐Lacaux, S. Rast, D. Shindell, D. Stevenson, T. Van Noije, C. Atherton, N. Bell, D. Bergman, T. Butler, J. Cofala, B. Collins, R. Doherty, K. Ellingsen, J. Galloway, M. Gauss, V. Montanaro, J. F. Müller, G. Pitari, J. Rodriguez, M. Sanderson, F. Solmon, S. Strahan, M. Schultz, K. Sudo, S. Szopa, O. Wild. Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochemical Cycles 2006, 20
(4)
https://doi.org/10.1029/2005GB002672
- Nadine Unger, Drew T. Shindell, Dorothy M. Koch, Markus Amann, Janusz Cofala, David G. Streets. Influences of man‐made emissions and climate changes on tropospheric ozone, methane, and sulfate at 2030 from a broad range of possible futures. Journal of Geophysical Research: Atmospheres 2006, 111
(D12)
https://doi.org/10.1029/2005JD006518
- Arlene M. Fiore, Larry W. Horowitz, Edward J. Dlugokencky, J. Jason West. Impact of meteorology and emissions on methane trends, 1990–2004. Geophysical Research Letters 2006, 33
(12)
https://doi.org/10.1029/2006GL026199
- J. Jason West, Arlene M. Fiore, Larry W. Horowitz, Denise L. Mauzerall. Global health benefits of mitigating ozone pollution with methane emission controls. Proceedings of the National Academy of Sciences 2006, 103
(11)
, 3988-3993. https://doi.org/10.1073/pnas.0600201103
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles
Figure 1 Global change in mean summer (June−July−August) afternoon (1300 to 1700 local time) surface ozone (ppb) ultimately achieved when anthropogenic methane emissions are decreased by 50% in the GEOS−CHEM tropospheric chemistry model (driven by assimilated meteorology from NASA GEOS-1 at 4° × 5° horizontal resolution), as described by Fiore et al. ( 10).
Figure 2 Frequency distribution of daily mean afternoon (1300−1700 local time) ozone concentrations in surface air for summer 1995 in the United States as simulated with the GEOS−CHEM model (solid black). Also shown are results when global anthropogenic ozone precursor emissions are reduced by 50% as described by Fiore et al. ( 10): methane only (thick-dashed blue), NOX only (dotted red), and methane, NOX, NMVOC, and CO (thin-dashed green). NMVOC and CO reductions have a negligible impact on surface O3 in the 4° × 5° resolution used here, so the thin-dashed green line reflects the combined impact from 50% decreases in anthropogenic methane and NOX.
Figure 3 Marginal global costs of methane abatement from five industrial sectors, using data from IEA (21; solid line). Our estimated marginal benefit of methane reductions ($81/ton CH4) is shown as a horizontal line (dashed), since we assume that benefits are proportional to the methane reductions.
Figure 4 Methane emission reduction potential in 2010 in North America, Annex I, and the world estimated by IEA (top bar of each pair, 21) and EPA (lower bar, 23). The top axis and the numbers to the right of the bars show the resulting reductions in northern hemisphere summer surface ozone ultimately achieved if the available methane reductions are implemented. These reductions would be fully achieved after more than 20 years. Annex I refers to all nations in Annex I of the United Nations Framework Convention on Climate Change. For EPA ( 23) at <$10/ton CO2 equiv, we used their estimates for $200/ton CH4, which is $9.5/ton CO2 equiv using their global warming potential of 21. Percentages are relative to current global anthropogenic emissions, taken as 340 Mton CH4 yr-1.
This article references 42 other publications.
- 1Jacob, D. J.; Logan, J. A.; Murti, P. P. Effect of rising Asian emissions on surface ozone in the United States. Geophys. Res. Lett.1999, 26, 2175−2178.There is no corresponding record for this reference.
- 2Keating, T. J.; West, J. J.; Farrell, A. Prospects for International Management of Intercontinental Air Pollution Transport. In Intercontinental Transport of Air Pollution; Stohl, A., Ed.; Springer: Berlin, 2004; pp 295−320.There is no corresponding record for this reference.
- 3Volz, A.; Kley, D. Evaluation of the Montsouris series of ozone measurements made in the nineteenth century. Nature1988, 332, 240.3https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaL1cXhsFGksL4%253D&md5=f541d15cbdc57af1fc0b94a954c04cf7Evaluation of the Montsouris series of ozone measurements made in the nineteenth centuryVolz, Andreas; Kley, DieterNature (London, United Kingdom) (1988), 332 (6161), 240-2CODEN: NATUAS; ISSN:0028-0836.Reconstruction of the anal. method used (oxidn. of arsenite) in, and anal. of the data from, the measurements of atm. O3 at the Montsouris Observatory (Paris, France) during the 2nd half of the 19th century, indicate conclusively that O3 levels in central Europe 100 yr ago averaged 10 ppb and exhibited a seasonal variation, with a max. during the spring months. Comparisons with modern data show that O3 levels in rural areas more than doubled over the past century and that the tropospheric O3 budget is now strongly influenced by photochem. prodn. due to increased levels of NOx. Interferences in the original analyses and corrections of the data are discussed.
- 4Marenco, A.; Gouget, H.; Nedelec, P.; Pages J.-P. Evidence of a long-term increase in tropospheric ozone from Pic du Midi data series: consequences: positive radiative forcing. J. Geophys. Res.1994, 99, 16617−16632.There is no corresponding record for this reference.
- 5Vingarzan, R. A review of surface ozone background levels and trends. Atmos. Environ.2004, 38, 3431−3442.There is no corresponding record for this reference.
- 6Lelieveld, J.; van Aardenne, J.; Fischer, H.; de Reus, M.; Williams, J.; Winkler, P. Increasing ozone over the Atlantic Ocean. Science2004, 304, 1483−1487.There is no corresponding record for this reference.
- 7Lelieveld, J.; Dentener, F. J. What controls tropospheric ozone? J. Geophys. Res.2000, 105 (D3), 3531−3551.There is no corresponding record for this reference.
- 8Wang, Y.; Jacob, D. J. Anthropogenic forcing on tropospheric ozone and OH since preindustrial times. J. Geophys. Res.1998, 103, 31123−31135.There is no corresponding record for this reference.
- 9Prather, M.; Gauss, M.; Berntsen, T.; Isaksen, I.; Sundet, J.; Bey, I.; Brasseur, G.; Dentener, F.; Derwent, R.; Stevenson, D.; Grenfell, L.; Hauglustaine, D.; Horowitz, L.; Jacob, D.; Mickley, L.; Lawrence, M.; von Kuhlmann, R.; Muller, J.-F.; Pitari, G.; Rogers, H.; Johnson, M.; Pyle, J.; Law, K.; van Weele, M.; Wild, O. Fresh air in the 21st Century? Geophys. Res. Lett.2003, 30 (2), 1100.There is no corresponding record for this reference.
- 10Fiore, A. M.; Jacob, D. J.; Field, B. D.; Streets, D. G.; Fernandes, S. D.; Jang, C. Linking ozone pollution and climate change: the case for controlling methane. Geophys. Res. Lett.2002, 29, 1919.There is no corresponding record for this reference.
- 11Ramaswamy, V.; Boucher, O.; Haigh, J.; Hauglustaine, D.; Haywood, J.; Myrhe, G.; Nakajima, T.; Shi, G. Y.; Solomon, S. Radiative forcing of climate change. In Climate Change 2001: The Scientific Basis; Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., Johnson, C. A., Eds.; Cambridge University Press: Cambridge, U.K., 2001; pp 349−416.There is no corresponding record for this reference.
- 12Reilly, J.; Prinn, R.; Harnisch, J.; Fitzmaurice, J.; Jacoby, H.; Kicklighter, D.; Melillo, J.; Stone, P.; Sokolov, A.; Wang, C. Multi-gas assessment of the Kyoto Protocol. Nature1999, 401, 549−555.There is no corresponding record for this reference.
- 13Hayhoe, K.; Jain, A.; Pitcher, H.; MacCracken, C.; Gibbs, M.; Wuebbles, D.; Harvey, R.; Kruger, D. Costs of multigreenhouse gas reduction targets for the USA. Science1999, 286, 905−906.There is no corresponding record for this reference.
- 14Hansen, J.; Sato, M.; Ruedy, R.; Lacis, A.; Oinas, V. Global warming in the twenty-first century: an alternative scenario. Proc. Natl. Acad. Sci. U.S.A.2000, 97, 9875−9880.There is no corresponding record for this reference.
- 15Crutzen, P. J. A discussion of the chemistry of some minor constitutents in the stratosphere and troposphere. Pure Appl. Geophys.1973, 106−108, 1385−1399.There is no corresponding record for this reference.
- 16Li, Q.; Jacob, D. J.; Logan, J. A.; Bey, I.; Yantosca, R. M.; Liu, H.; Martin, R. V.; Fiore, A. M.; Field, B. D.; Duncan, B. N. Transatlantic transport of pollution and its effects on surface ozone in Europe and the United States. Geophys. Res. Lett.2001, 28, 3235.16https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD3MXmvF2qtLs%253D&md5=f822cd7b22c8f6885e4e3cd1ece79515A tropospheric ozone maximum over the Middle EastLi, Qinbin; Jacob, Daniel J.; Logan, Jennifer A.; Bey, Isabelle; Yantosca, Robert M.; Liu, Hongyu; Martin, Randall V.; Fiore, Arlene M.; Field, Brendan D.; Duncan, Bryan N.; Thouret, ValerieGeophysical Research Letters (2001), 28 (17), 3235-3238CODEN: GPRLAJ; ISSN:0094-8276. (American Geophysical Union)The GEOS-CHEM global 3-D model of tropospheric chem. predicts a summertime O3 max. over the Middle East, with mean mixing ratios in the middle and upper troposphere in excess of 80 ppbv. This model feature is consistent with the few observations from com. aircraft in the region. Its origin in the model reflects a complex interplay of dynamical and chem. factors, and of anthropogenic and natural influences. The anticyclonic circulation in the middle and upper troposphere over the Middle East funnels northern mid-latitude pollution transported in the westerly subtropical jet as well as lightning outflow from the Indian monsoon and pollution from eastern Asia transported in an easterly tropical jet. Large-scale subsidence over the region takes place with continued net prodn. of O3 and little mid-level outflow. Transport from the stratosphere does not contribute significantly to the O3 max. Sensitivity simulations with anthropogenic or lightning emissions shut off indicate decreases of 20-30% and 10-15% resp. in the tropospheric O3 column over the Middle East. More observations in this region are needed to confirm the presence of the O3 max.
- 17Prather, M.; Ehhalt, D.; Dentener, F.; Derwent, R.; Dlugokencky, E.; Holland, E.; Isaksen, I.; Katima, J.; Kirchhoff, V.; Matson, P.; Midgley, P.; Wang, M. Atmospheric chemistry and greenhouse gases. In Climate Change 2001: The Scientific Basis; Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., Johnson, C. A., Eds.; Cambridge University Press: Cambridge, U.K., 2001; pp 239−287.There is no corresponding record for this reference.
- 18Fiore, A. M.; Jacob, D. J.; Liu, H.; Yantosca, R. M.; Fairlie, T. D.; Li, Q. Variability in surface ozone background over the United States: Implications for air quality policy. J. Geophys. Res. 2003, 108, 4787.There is no corresponding record for this reference.
- 19Wang, J. S.; Logan, J. A.; McElroy, M. B.; Duncan, B. N.; Megretskaia, I. A.; Yantosca, R. M. A 3-D model analysis of the slowdown and interannual variability in the methane growth rate from 1988 to 1997. Global Biogeochem. Cycles2004, 18, GB3011.There is no corresponding record for this reference.
- 20Mikaloff Fletcher, S. E.; Tans, P. P.; Bruhwiler, L. M.; Miller, J. B.; Heimann, M. CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 1. Inverse modeling of source processes. Global Biogeochem. Cycles2004, 18, GB4004.There is no corresponding record for this reference.
- 21International Energy Agency Greenhouse Gas R&D Programme. Building the Cost Curves for the Industrial Sources of Non-CO2Greenhouse Gases; Report No. PH4/25; IAE Greenhouse Gas R&D Programme: Cheltenham, UK, 2003.There is no corresponding record for this reference.
- 22U.S. Environmental Protection Agency. US Methane Emissions 1990−2010: Inventories, Projections, and Opportunities for Reductions; EPA Publication 430-R-99-013; U.S. Government Printing Office: Washington, DC, 1999.There is no corresponding record for this reference.
- 23U.S. Environmental Protection Agency. International Analysis of Methane and Nitrous Oxide Abatement Opportunities: Report to the Energy Modeling Forum, Working Group 21; www.epa.gov/methane/pdfs/ methodologych4.pdf (accessed May 2004).There is no corresponding record for this reference.
- 24Delhotal, K. C.; de la Chesnaye, F. C.; Gardiner, A.; Bates, J.; Sankovski, A. Mitigation of methane and nitrous oxide emissions from waste, energy, and industry, Energy J. in press.There is no corresponding record for this reference.
- 25Reilly, J.; Mayer, M.; Harnisch, J. The Kyoto Protocol and non-CO2 greenhouse gases and carbon sinks. Environ. Modell. Assess.2002, 7, 217−229.There is no corresponding record for this reference.
- 26Hyman, R. C.; Reilly, J. M.; Babiker, M. H.; De Masin, A.; Jacoby, H. D. Modeling non-CO2 greenhouse gas abatement. Environ. Modell. Assess.2003, 8, 175−186.There is no corresponding record for this reference.
- 27U.S. Environmental Protection Agency. Economic & Energy Analysis for the Proposed Interstate Air Quality Rulemaking; www.epa.gov/interstateairquality/technical.html (accessed May 2004).There is no corresponding record for this reference.
- 28U.S. Environmental Protection Agency. Benefits of the Proposed Inter-state Air Quality Rule; EPA Publication 452/-03-001; U.S. Government Printing Office: Washington, DC, 2004; www.epa.gov/interstateairquality/technical.html.There is no corresponding record for this reference.
- 29U.S. Environmental Protection Agency. Regulatory Impact Analysis −Control of Emissions from New Motor Vehicles; EPA-420-R-99-023; U.S. Government Printing Office: Washington, DC, 1999.There is no corresponding record for this reference.
- 30U.S. Environmental Protection Agency. The Benefits and Costs of the Clean Air Act 1990 to 2010; 410-R-99-001; U.S. Government Printing Office: Washington, DC, 1999.There is no corresponding record for this reference.
- 31Wang, X.; Mauzerall, D. L. Characterizing distributions of surface ozone and its impact on grain production in China, Japan, and South Korea: 1990 and 2020. Atmos. Environ.2004, 38, 4383−4402.There is no corresponding record for this reference.
- 32Cofala, J.; Heyes, C.; Klimont, Z.; Amann, M.; Pearce, D. W.; Howarth, A. Technical Report on Acidification, Eutrophication, and Tropospheric Ozone in Europe; RIVM report 481505014; RIVM: Bilthoven, Netherlands, 2001.There is no corresponding record for this reference.
- 33Rabl, A.; Eyre, N. An estimate of regional and global O3 damage from precursor NOX and VOC emissions. Environ. Int.1998, 24, 835−850.There is no corresponding record for this reference.
- 34Levy, J. I.; Carruthers, T. J.; Toumisto, J. I.; Hammitt, J. K.; Evans, J. S. Assessing the public health benefits of reduced ozone concentrations. Environ. Health Perspect.2001, 109, 9−20.There is no corresponding record for this reference.
- 35Bell, M. L.; McDermott, A.; Zeger, S. L.; Samet, J. M.; Domenici, F. Ozone and short-term mortality in 95 US urban communities 1987−2000. J. Am. Med. Assoc.2004, 292 (19), 2372−2378.There is no corresponding record for this reference.
- 36Cifuentes, L.; Borja-Aburto, V. H.; Gouveia, N.; Thurston, G.; Davis, D. L. Hidden health benefits of greenhouse gas mitigation. Science2001, 293, 1257−1259.There is no corresponding record for this reference.
- 37Hourcade, J.; Shukla, P.; Cifuentes, L.; Davis, D.; Edmonds, J.; Fisher, B.; Fortin, E.; Golub, A.; Hohmeyer, O.; Krupnick, A.; Kverndokk, S.; Loulou, R.; Richels, R.; Segenovic, H.; Yamaji, K. Global, regional, and national costs and ancillary benefits of mitigation. In Climate Change 2001: Mitigation; Metz, B., Davidson, O., Swart, R., Pan, J., Eds.; Cambridge University Press: Cambridge, U.K., 2001; pp 499−559.There is no corresponding record for this reference.
- 38Felzer, B.; Kicklighter, D.; Melillo, J.; Wang, C.; Zhuang, Q.; Prinn, R. Effects of ozone on net primary production and carbon sequestration in the coterminous United States using a biogeochemistry model. Tellus2004, 56B, 230−248.There is no corresponding record for this reference.
- 39Tromp, T. K.; Shia, R.-L.; Allen, M.; Eiler, J. M.; Yung, Y. L. Potential environmental impact of a hydrogen economy on the stratosphere. Science2003, 300, 1740−1741.There is no corresponding record for this reference.
- 40Fuglestvedt, J. S.; Berntsen, T. K.; Isaksen, I. S. A.; Mao, H.; Liang, X.-Z.; Wang, W.-C. Climatic forcing of nitrogen oxides through changes in tropospheric ozone and methane; global 3D model studies. Atmos. Environ.1999, 33, 961−977.There is no corresponding record for this reference.
- 41Methane to Markets. www.methanetomarkets.org (accessed April 2005).There is no corresponding record for this reference.
- 42Holloway, T.; Fiore, A.; Hastings, M. G. Intercontinental transport of air pollution: will emerging science lead to a new hemispheric treaty? Environ. Sci. Technol.2003, 37, 4535−4542.There is no corresponding record for this reference.
Supporting Information
Supporting Information Available
Click to copy section linkSection link copied!Calculation methods and notes as well as global maps of ozone reductions from methane control. This material is available free of charge via the Internet at http://pubs.acs.orgTerms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.