ACS Publications. Most Trusted. Most Cited. Most Read
High Conductivity in Hydrothermally Grown AgCuO2 Single Crystals Verified Using Focused-Ion-Beam-Deposited Nanocontacts
My Activity

Figure 1Loading Img
    Article

    High Conductivity in Hydrothermally Grown AgCuO2 Single Crystals Verified Using Focused-Ion-Beam-Deposited Nanocontacts
    Click to copy article linkArticle link copied!

    View Author Information
    Instituto de Ciencia de Materiales de Barcelona, ICMAB-CSIC, Campus de la UAB, Bellaterra 08193, Spain
    Instituto de Nanociencia de Aragón
    § Departamento de Física de la Materia Condensada, Facultad de Ciencias
    Instituto de Ciencia de Materiales de Aragón, CSIC, Facultad de Ciencias
    Universidad de Zaragoza, Zaragoza 50009, Spain
    Centro de Investigación en Nanociencia y Nanotecnología, CIN2 (CSIC-ICN), Campus de la UAB, Bellaterra 08193, Spain
    # Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
    *To whom correspondence should be addressed. Present address: Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, U.K. Phone: +441233334374. Fax: +441223334375. E-mail: [email protected]
    Other Access Options

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2010, 49, 23, 10977–10983
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic101420c
    Published November 4, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The silver−copper mixed oxide AgCuO2 (also formulated as Ag2Cu2O4) possesses a peculiar electronic structure in which both Ag and Cu are partially oxidized, with the charge being delocalized among the three elements in the oxide. Accordingly, a quasi-metallic behavior should be expected for this oxide, and indeed bulk transport measurements show conductivity values that are orders of magnitude higher than for other members of this novel oxide family. The presence of silver makes thermal sintering an inadequate method to evaluate true conductivity, and thus such measurements were performed on low density pellets, giving an underestimated value for the conductivity. In the present work we present a new synthetic route for AgCuO2 based on mild hydrothermal reactions that has yielded unprecedented large AgCuO2 single-crystals well over 1 μm in size using temperatures as low as 88 °C. We have used a dual beam instrument to apply nanocontacts to those crystals, allowing the in situ measurement of transport properties of AgCuO2 single crystals. The results show a linear relationship between applied current and measured voltage. The conductivity values obtained are 50 to 300 times higher than those obtained for bulk low density AgCuO2 pellets, thus confirming the high conductivity of this oxide and therefore supporting the delocalized charge observed by spectroscopic techniques.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 23 publications.

    1. Hongjun Liu, Ola G. Grendal, Susanne Linn Skjærvø, Antoine R. M. Dalod, Wouter van Beek, Abderrahime Sekkat, Mari-Ann Einarsrud, David Muñoz-Rojas. Reaction Pathway of the Hydrothermal Synthesis of AgCuO2 from In Situ Time-Resolved X-ray Diffraction. Crystal Growth & Design 2020, 20 (7) , 4264-4272. https://doi.org/10.1021/acs.cgd.9b01516
    2. Abel Carreras, Sergio Conejeros, Agustín Camón, Alberto García, Nieves Casañ-Pastor, Pere Alemany, Enric Canadell. Charge Delocalization, Oxidation States, and Silver Mobility in the Mixed Silver–Copper Oxide AgCuO2. Inorganic Chemistry 2019, 58 (10) , 7026-7035. https://doi.org/10.1021/acs.inorgchem.9b00662
    3. Yasuhide Akizuki, Ikuya Yamada, Koji Fujita, Hirofumi Akamatsu, Tetsuo Irifune, and Katsuhisa Tanaka . AgCu3V4O12: a Novel Perovskite Containing Mixed-Valence Silver ions. Inorganic Chemistry 2013, 52 (24) , 13824-13826. https://doi.org/10.1021/ic402579v
    4. A. Elomari, N. Bouri, Y. Salhi, A. Bouich, S. Dassalem, Tesfaye A. Geleta, H. Erramli, M. Makha, N. Fazouan, K. Nouneh. Electrodeposition of AgCuO2 thin films as hole transporter for inverted perovskite solar cell in ammonia-citrate medium. Optical Materials 2025, 159 , 116536. https://doi.org/10.1016/j.optmat.2024.116536
    5. Yunkuan Wei, Defeng Chen, Guanshuo Jiao, Wenhuan Zhu, Hai Liu. Detection of acetylacetone using p-type AgCuO2 nanoparticles at a low operation temperature. Journal of Alloys and Compounds 2025, 1016 , 178999. https://doi.org/10.1016/j.jallcom.2025.178999
    6. Jianfei Xie, Ziyu Wan, Xing Zhou, Hongmei Li, Yu Chen, Yinglong Duan, Min Liu. Visible-light‑sensitive AgCu nanocomposites for sustainable inactivation of virus. Journal of Materials Science & Technology 2024, 195 , 74-79. https://doi.org/10.1016/j.jmst.2023.12.078
    7. Ebtesam E. Ateia, M. M. Arman, Amira T. Mohamed. A facile novel synthesis of AgCuO2 delafossite nanoparticles and evaluation of their antimicrobial activity. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-30255-1
    8. Richard I. Walton. Solvothermal and hydrothermal methods for preparative solid-state chemistry. 2023, 40-110. https://doi.org/10.1016/B978-0-12-823144-9.00068-6
    9. Jiangshan Shi, Bin Li, Qinghong Zhang, Yichuan Rui. Electrodeposited ternary AgCuO2 nanocrystalline films as hole transport layers for inverted perovskite solar cells. Journal of Alloys and Compounds 2022, 890 , 161879. https://doi.org/10.1016/j.jallcom.2021.161879
    10. Dmitry A. Svintsitskiy, Tatyana Yu. Kardash, Elizaveta A. Fedorova, Elena M. Slavinskaya, Andrei I. Boronin. Room temperature CO oxidation over AgCuO2. Applied Surface Science 2020, 525 , 146523. https://doi.org/10.1016/j.apsusc.2020.146523
    11. Zhishan Zhuang, Linlin Qiu, Lika Dong, Yue Chen, Zhudan Chu, Xiangyu Ma, Pingfan Du, Jie Xiong. Preparation of high‐efficiency perovskite solar cells via doping Ag into CuO nanofibers as hole buffer layer. Polymer Composites 2020, 41 (6) , 2145-2153. https://doi.org/10.1002/pc.25527
    12. S.K. Srivastava, P. Magudapathy, P. Gangopadhyay, S. Amirthapandian, Santanu Bera, A. Das. Ag nanoparticles in compound metal oxide semiconductors: Syntheses and characterizations. Thin Solid Films 2019, 681 , 86-92. https://doi.org/10.1016/j.tsf.2019.04.039
    13. Dmitry A. Svintsitskiy, Tatyana Yu. Kardash, Andrei I. Boronin. Surface dynamics of mixed silver-copper oxide AgCuO2 during X-ray photoelectron spectroscopy study. Applied Surface Science 2019, 463 , 300-309. https://doi.org/10.1016/j.apsusc.2018.08.234
    14. Maxim Tchaplyguine, Chaofan Zhang, Tomas Andersson, Olle Björneholm. Ag–Cu oxide nanoparticles with high oxidation states: towards new high T c materials. Dalton Transactions 2018, 47 (46) , 16660-16667. https://doi.org/10.1039/C8DT04118K
    15. Nieves Casañ-Pastor, Jordi Rius, Oriol Vallcorba, Inma Peral, Judith Oró-Solé, Daniel S. Cook, Richard I. Walton, Alberto García, David Muñoz-Rojas. Ag 2 Cu 3 Cr 2 O 8 (OH) 4 : a new bidimensional silver–copper mixed-oxyhydroxide with in-plane ferromagnetic coupling. Dalton Transactions 2017, 46 (4) , 1093-1104. https://doi.org/10.1039/C6DT03986C
    16. Qinyan Lu, Kedan Lu, Lijie Zhang, Jianying Gong, Run Liu. Electrodeposition of AgCuO 2 Nanoplates. Journal of The Electrochemical Society 2017, 164 (4) , D130-D134. https://doi.org/10.1149/2.0261704jes
    17. D.A. Svintsitskiy, E.M. Slavinskaya, T. Yu. Kardash, V.I. Avdeev, B.V. Senkovskiy, S.V. Koscheev, A.I. Boronin. Low-temperature catalytic CO oxidation over mixed silver–copper oxide Ag2Cu2O3. Applied Catalysis A: General 2016, 510 , 64-73. https://doi.org/10.1016/j.apcata.2015.11.011
    18. Rosa Córdoba Castillo. Introduction. 2014, 1-30. https://doi.org/10.1007/978-3-319-02081-5_1
    19. Anna M. Fyhn, Xiaodong Yang, Mohammadreza Nematollahi, John C. Walmsley, Ursula J. Gibson. Anodic electrodeposition of Ag1− x Cu x O microcrystals. Journal of Solid State Electrochemistry 2014, 18 (1) , 13-18. https://doi.org/10.1007/s10008-013-2224-y
    20. Nagarajan Padmavathy, Rajagopalan Vijayaraghavan, Giridhar U. Kulkarni. Solution based rapid synthesis of AgCuO 2 at room temperature. RSC Adv. 2014, 4 (107) , 62746-62750. https://doi.org/10.1039/C4RA11853G
    21. J. M. De Teresa, R. Córdoba, A. Fernández-Pacheco, S. Sangiao, M. R. Ibarra. Nanoscale Electrical Contacts Grown by Focused Ion Beam (FIB)-Induced Deposition. 2013, 95-122. https://doi.org/10.1007/978-3-319-02874-3_5
    22. David Muñoz-Rojas. Silver-copper mixed oxides. Materials Today 2011, 14 (3) , 119. https://doi.org/10.1016/S1369-7021(11)70067-0
    23. David Munoz‐Rojas, Rosa Cordoba, Amalio Fernandez‐Pacheco, Jose Maria De Teresa, Guillaume Sauthier, Jordi Fraxedas, Richard I. Walton, Nieves Casan‐Pastor. ChemInform Abstract: High Conductivity in Hydrothermally Grown AgCuO 2 Single Crystals Verified Using Focused‐Ion‐Beam‐Deposited Nanocontacts.. ChemInform 2011, 42 (6) https://doi.org/10.1002/chin.201106003

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2010, 49, 23, 10977–10983
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic101420c
    Published November 4, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    803

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.