ACS Publications. Most Trusted. Most Cited. Most Read
Chemical CO2 Fixation:  Cr(III) Salen Complexes as Highly Efficient Catalysts for the Coupling of CO2 and Epoxides
My Activity

Figure 1Loading Img
    Communication

    Chemical CO2 Fixation:  Cr(III) Salen Complexes as Highly Efficient Catalysts for the Coupling of CO2 and Epoxides
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Institute for Environmental Catalysis, Northwestern University 2145 Sheridan Road, Evanston, Illinois 60208-3113
    Other Access OptionsSupporting Information (2)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2001, 123, 46, 11498–11499
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja0164677
    Published October 30, 2001
    Copyright © 2001 American Chemical Society
    Copyright © 2001 American Chemical Society

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    Click to copy section linkSection link copied!

    Experimental procedures are available (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 618 publications.

    1. Rupak Chatterjee, Sudip Bhattacharjee, Asim Bhaumik. CO2–Philic Fluorinated Porous Organic Polyaminal in Photocatalytic Thiol–Ene Chemistry: Decoding the Effect of F-Atoms. ACS Applied Polymer Materials 2024, 6 (14) , 8514-8522. https://doi.org/10.1021/acsapm.4c01446
    2. Daniela Fonseca-López, David Ezenarro-Salcedo, Fabiane M. Nachtigall, Leonardo S. Santos, Mario A. Macías, René S. Rojas, John J. Hurtado. Air-Stable Cobalt(III) and Chromium(III) Complexes as Single-Component Catalysts for the Activation of Carbon Dioxide and Epoxides. Inorganic Chemistry 2024, 63 (20) , 9066-9077. https://doi.org/10.1021/acs.inorgchem.4c00151
    3. Srinivasan Natarajan, Krishna Manna. Bifunctional MOFs in Heterogeneous Catalysis. ACS Organic & Inorganic Au 2024, 4 (1) , 59-90. https://doi.org/10.1021/acsorginorgau.3c00033
    4. Tohid Nouri, Mojtaba Khorasani. Nickel Supported on Mesoporous Organosilica Nanoparticles Incorporating Pyridine-Based SNS Ligand as an Efficient Recoverable Catalyst for Chemical Fixation of CO2. The Journal of Physical Chemistry C 2024, 128 (1) , 166-176. https://doi.org/10.1021/acs.jpcc.3c07764
    5. Ander Centeno-Pedrazo, Jonatan Perez-Arce, Zoraida Freixa, Pablo Ortiz, Eduardo J. Garcia-Suarez. Catalytic Systems for the Effective Fixation of CO2 into Epoxidized Vegetable Oils and Derivates to Obtain Biobased Cyclic Carbonates as Precursors for Greener Polymers. Industrial & Engineering Chemistry Research 2023, 62 (8) , 3428-3443. https://doi.org/10.1021/acs.iecr.2c03747
    6. Nitumani Das, Ratul Paul, Sohag Biswas, Risov Das, Rupak Chatterjee, Asim Bhaumik, Sebastian C. Peter, Bryan M. Wong, John Mondal. Photo-Responsive Signatures in a Porous Organic Polymer Enable Visible Light-Driven CO2 Photofixation. ACS Sustainable Chemistry & Engineering 2023, 11 (6) , 2066-2078. https://doi.org/10.1021/acssuschemeng.2c04428
    7. Malay Dolai, Surajit Biswas, Eufemio Moreno-Pineda, Wolfgang Wernsdorfer, Mahammad Ali, Razan A. Alshgari, Saikh Md. Wabaidur, Ashutosh Ghosh. CO2 Fixation by Dimeric Tb(III) Complexes: Synthesis, Structure, and Magnetism. Crystal Growth & Design 2023, 23 (2) , 801-810. https://doi.org/10.1021/acs.cgd.2c01026
    8. Renxi Jin, Hui Xu, Justin Easa, Alejandro Chapero-Planell, Casey P. O’Brien. Cycloaddition of CO2 to Epichlorohydrin over Pyridine, Vinylpyridine, and Poly(vinylpyridine): The Influence of Steric Crowding on the Reaction Mechanism. The Journal of Physical Chemistry C 2023, 127 (3) , 1441-1454. https://doi.org/10.1021/acs.jpcc.2c08516
    9. Sreenath Pappuru, Dina Shpasser, Raanan Carmieli, Pini Shekhter, Friederike C. Jentoft, Oz M. Gazit. Atmospheric-Pressure Conversion of CO2 to Cyclic Carbonates over Constrained Dinuclear Iron Catalysts. ACS Omega 2022, 7 (28) , 24656-24661. https://doi.org/10.1021/acsomega.2c02488
    10. Jasimuddin Ahmed, Swadhin K. Mandal. Phenalenyl Radical: Smallest Polycyclic Odd Alternant Hydrocarbon Present in the Graphene Sheet. Chemical Reviews 2022, 122 (13) , 11369-11431. https://doi.org/10.1021/acs.chemrev.1c00963
    11. Wei Gong, Zhijie Chen, Jinqiao Dong, Yan Liu, Yong Cui. Chiral Metal–Organic Frameworks. Chemical Reviews 2022, 122 (9) , 9078-9144. https://doi.org/10.1021/acs.chemrev.1c00740
    12. Junwu Chen, Xianmin Wu, Huining Ding, Ning Liu, Binyuan Liu, Lirong He. Tolerant Bimetallic Macrocyclic [OSSO]-Type Zinc Complexes for Efficient CO2 Fixation into Cyclic Carbonates. ACS Sustainable Chemistry & Engineering 2021, 9 (48) , 16210-16219. https://doi.org/10.1021/acssuschemeng.1c05469
    13. Bo Song, Xiangyi Li, Anjun Qin, Ben Zhong Tang. Direct Conversion from Carbon Dioxide to Luminescent Poly(β-alkoxyacrylate)s via Multicomponent Tandem Polymerization-Induced Emission. Macromolecules 2021, 54 (19) , 9019-9026. https://doi.org/10.1021/acs.macromol.1c01070
    14. Jiraya Kiriratnikom, Nattiya Laiwattanapaisarn, Kunnigar Vongnam, Nopparat Thavornsin, Pornpen Sae-ung, Sophon Kaeothip, Anucha Euapermkiati, Supawadee Namuangruk, Khamphee Phomphrai. Highly Active Chromium Complexes Supported by Constrained Schiff-Base Ligands for Cycloaddition of Carbon Dioxide to Epoxides. Inorganic Chemistry 2021, 60 (9) , 6147-6151. https://doi.org/10.1021/acs.inorgchem.0c03732
    15. Kenson Ambrose, Jennifer N. Murphy, Christopher M. Kozak. Chromium Diamino-bis(phenolate) Complexes as Catalysts for the Ring-Opening Copolymerization of Cyclohexene Oxide and Carbon Dioxide. Inorganic Chemistry 2020, 59 (20) , 15375-15383. https://doi.org/10.1021/acs.inorgchem.0c02348
    16. Wen-Yue Song, Qiuli Liu, Qingqing Bu, Donghui Wei, Bin Dai, Ning Liu. Rational Design of Cobalt Complexes Based on the trans Effect of Hybrid Ligands and Evaluation of their Catalytic Activity in the Cycloaddition of Carbon Dioxide with Epoxide. Organometallics 2020, 39 (19) , 3546-3561. https://doi.org/10.1021/acs.organomet.0c00525
    17. Xiu Xin, Haiwen Shan, Tian Tian, Yaorong Wang, Dan Yuan, Hongpeng You, Yingming Yao. Conversion of CO2 into Cyclic Carbonates under Ambient Conditions Catalyzed by Rare-Earth Metal Complexes Bearing Poly(phenolato) Ligand. ACS Sustainable Chemistry & Engineering 2020, 8 (35) , 13185-13194. https://doi.org/10.1021/acssuschemeng.0c01736
    18. Niloufar Nokhodiyan Isfahani, Mehrnaz Bahadori, Afsaneh Marandi, Shahram Tangestaninejad, Majid Moghadam, Valiollah Mirkhani, Masoud Beheshti, Niloufar Afzali. Ionic Liquid Modification of Hierarchical ZSM-5 for Solvent-Free Insertion of CO2 to Epoxides. Industrial & Engineering Chemistry Research 2020, 59 (26) , 11970-11978. https://doi.org/10.1021/acs.iecr.0c01173
    19. Dylan J. Walsh, Michael G. Hyatt, Susannah A. Miller, Damien Guironnet. Recent Trends in Catalytic Polymerizations. ACS Catalysis 2019, 9 (12) , 11153-11188. https://doi.org/10.1021/acscatal.9b03226
    20. Fataneh Norouzi, Hamid Reza Khavasi. Diversity-Oriented Metal Decoration on UiO-Type Metal–Organic Frameworks: an Efficient Approach to Increase CO2 Uptake and Catalytic Conversion to Cyclic Carbonates. ACS Omega 2019, 4 (21) , 19037-19045. https://doi.org/10.1021/acsomega.9b02035
    21. Santanu Chand, Shyam Chand Pal, Manas Mondal, Subrata Hota, Arun Pal, Rupam Sahoo, Madhab C. Das. Three-Dimensional Co(II)-Metal–Organic Frameworks with Varying Porosities and Open Metal Sites toward Multipurpose Heterogeneous Catalysis under Mild Conditions. Crystal Growth & Design 2019, 19 (9) , 5343-5353. https://doi.org/10.1021/acs.cgd.9b00823
    22. Bo Song, Tianwen Bai, Xiaotian Xu, Xu Chen, Dongming Liu, Jiali Guo, Anjun Qin, Jun Ling, Ben Zhong Tang. Multifunctional Linear and Hyperbranched Five-Membered Cyclic Carbonate-Based Polymers Directly Generated from CO2 and Alkyne-Based Three-Component Polymerization. Macromolecules 2019, 52 (15) , 5546-5554. https://doi.org/10.1021/acs.macromol.9b00898
    23. Hongbing Song, Yongjie Wang, Meng Xiao, Lei Liu, Yule Liu, Xiaofeng Liu, Hengjun Gai. Design of Novel Poly(ionic liquids) for the Conversion of CO2 to Cyclic Carbonates under Mild Conditions without Solvent. ACS Sustainable Chemistry & Engineering 2019, 7 (10) , 9489-9497. https://doi.org/10.1021/acssuschemeng.9b00865
    24. Ahmad Shaabani, Reza Mohammadian, Hassan Farhid, Masoumeh Karimi Alavijeh, Mostafa M. Amini. Multitask Guanidinium Bromide Functionalized Metal–Organic Framework in Chemical Fixation of CO2 at Low Pressure and Temperature. Industrial & Engineering Chemistry Research 2019, 58 (8) , 2784-2791. https://doi.org/10.1021/acs.iecr.8b05846
    25. Ho Ryu, Jiyong Park, Hong Ki Kim, Ji Young Park, Seoung-Tae Kim, Mu-Hyun Baik. Pitfalls in Computational Modeling of Chemical Reactions and How To Avoid Them. Organometallics 2018, 37 (19) , 3228-3239. https://doi.org/10.1021/acs.organomet.8b00456
    26. Kuan Huang, Jia-Yin Zhang, Fujian Liu, Sheng Dai. Synthesis of Porous Polymeric Catalysts for the Conversion of Carbon Dioxide. ACS Catalysis 2018, 8 (10) , 9079-9102. https://doi.org/10.1021/acscatal.8b02151
    27. Mannkyu Hong, Yoseph Kim, Hyejin Kim, Hee Jin Cho, Mu-Hyun Baik, Youngjo Kim. Scorpionate Catalysts for Coupling CO2 and Epoxides to Cyclic Carbonates: A Rational Design Approach for Organocatalysts. The Journal of Organic Chemistry 2018, 83 (16) , 9370-9380. https://doi.org/10.1021/acs.joc.8b00722
    28. Kaijie Ni, Valentine Paniez-Grave, Christopher M. Kozak. Effect of Azide and Chloride Binding to Diamino-bis(phenolate) Chromium Complexes on CO2/Cyclohexene Oxide Copolymerization. Organometallics 2018, 37 (15) , 2507-2518. https://doi.org/10.1021/acs.organomet.8b00298
    29. Francesco Della Monica, Bholanath Maity, Thomas Pehl, Antonio Buonerba, Assunta De Nisi, Magda Monari, Alfonso Grassi, Bernhard Rieger, Luigi Cavallo, Carmine Capacchione. [OSSO]-Type Iron(III) Complexes for the Low-Pressure Reaction of Carbon Dioxide with Epoxides: Catalytic Activity, Reaction Kinetics, and Computational Study. ACS Catalysis 2018, 8 (8) , 6882-6893. https://doi.org/10.1021/acscatal.8b01695
    30. Pankaj Kumar Prajapati, Anurag Kumar, Suman Lata Jain. First Photocatalytic Synthesis of Cyclic Carbonates from CO2 and Epoxides Using CoPc/TiO2 Hybrid under Mild Conditions. ACS Sustainable Chemistry & Engineering 2018, 6 (6) , 7799-7809. https://doi.org/10.1021/acssuschemeng.8b00755
    31. Saravanan Subramanian, Joonho Park, Jeehye Byun, Yousung Jung, Cafer T. Yavuz. Highly Efficient Catalytic Cyclic Carbonate Formation by Pyridyl Salicylimines. ACS Applied Materials & Interfaces 2018, 10 (11) , 9478-9484. https://doi.org/10.1021/acsami.8b00485
    32. Kaijie Ni, Christopher M. Kozak. Kinetic Studies of Copolymerization of Cyclohexene Oxide with CO2 by a Diamino-bis(phenolate) Chromium(III) Complex. Inorganic Chemistry 2018, 57 (6) , 3097-3106. https://doi.org/10.1021/acs.inorgchem.7b02952
    33. Dan Zhao, Xiao-Hui Liu, Jin-Han Guo, Hua-Jin Xu, Yue Zhao, Yi Lu, Wei-Yin Sun. Porous Metal–Organic Frameworks with Chelating Multiamine Sites for Selective Adsorption and Chemical Conversion of Carbon Dioxide. Inorganic Chemistry 2018, 57 (5) , 2695-2704. https://doi.org/10.1021/acs.inorgchem.7b03099
    34. Kai Xu, Adhitya Mangala Putra Moeljadi, Binh Khanh Mai, and Hajime Hirao . How Does CO2 React with Styrene Oxide in Co-MOF-74 and Mg-MOF-74? Catalytic Mechanisms Proposed by QM/MM Calculations. The Journal of Physical Chemistry C 2018, 122 (1) , 503-514. https://doi.org/10.1021/acs.jpcc.7b09790
    35. Rafik Rajjak Shaikh, Suriyaporn Pornpraprom, and Valerio D’Elia . Catalytic Strategies for the Cycloaddition of Pure, Diluted, and Waste CO2 to Epoxides under Ambient Conditions. ACS Catalysis 2018, 8 (1) , 419-450. https://doi.org/10.1021/acscatal.7b03580
    36. Louis Hollande Florent Allais . Ferulic Acid- and Sinapic Acid-Based Bisphenols: Promising Renewable and Safer Alternatives to Bisphenol A for the Production of Bio-Based Polymers and Resins. 2018, 221-251. https://doi.org/10.1021/bk-2018-1310.ch015
    37. Marine Janvier, Paul-Henri Ducrot, and Florent Allais . Isocyanate-Free Synthesis and Characterization of Renewable Poly(hydroxy)urethanes from Syringaresinol. ACS Sustainable Chemistry & Engineering 2017, 5 (10) , 8648-8656. https://doi.org/10.1021/acssuschemeng.7b01271
    38. Lisa Roy, Boyli Ghosh, and Ankan Paul . Lewis Acid Promoted Hydrogenation of CO2 and HCOO– by Amine Boranes: Mechanistic Insight from a Computational Approach. The Journal of Physical Chemistry A 2017, 121 (27) , 5204-5216. https://doi.org/10.1021/acs.jpca.7b03843
    39. Wenlong Wang, Yuqing Wang, Cunyao Li, Li Yan, Miao Jiang, and Yunjie Ding . State-of-the-Art Multifunctional Heterogeneous POP Catalyst for Cooperative Transformation of CO2 to Cyclic Carbonates. ACS Sustainable Chemistry & Engineering 2017, 5 (6) , 4523-4528. https://doi.org/10.1021/acssuschemeng.7b00947
    40. Hai-Hua Wang, Lei Hou, Yong-Zhi Li, Chen-Yu Jiang, Yao-Yu Wang, and Zhonghua Zhu . Porous MOF with Highly Efficient Selectivity and Chemical Conversion for CO2. ACS Applied Materials & Interfaces 2017, 9 (21) , 17969-17976. https://doi.org/10.1021/acsami.7b03835
    41. Claudia Miceli, Jeroen Rintjema, Eddy Martin, Eduardo C. Escudero-Adán, Cristiano Zonta, Giulia Licini, and Arjan W. Kleij . Vanadium(V) Catalysts with High Activity for the Coupling of Epoxides and CO2: Characterization of a Putative Catalytic Intermediate. ACS Catalysis 2017, 7 (4) , 2367-2373. https://doi.org/10.1021/acscatal.7b00109
    42. Raphaël Ménard, Sylvain Caillol, and Florent Allais . Chemo-Enzymatic Synthesis and Characterization of Renewable Thermoplastic and Thermoset Isocyanate-Free Poly(hydroxy)urethanes from Ferulic Acid Derivatives. ACS Sustainable Chemistry & Engineering 2017, 5 (2) , 1446-1456. https://doi.org/10.1021/acssuschemeng.6b02022
    43. Robin Babu, Roshith Roshan, Amal Cherian Kathalikkattil, Dong Woo Kim, and Dae-Won Park . Rapid, Microwave-Assisted Synthesis of Cubic, Three-Dimensional, Highly Porous MOF-205 for Room Temperature CO2 Fixation via Cyclic Carbonate Synthesis. ACS Applied Materials & Interfaces 2016, 8 (49) , 33723-33731. https://doi.org/10.1021/acsami.6b12458
    44. Wenlong Wang, Cunyao Li, Li Yan, Yuqing Wang, Miao Jiang, and Yunjie Ding . Ionic Liquid/Zn-PPh3 Integrated Porous Organic Polymers Featuring Multifunctional Sites: Highly Active Heterogeneous Catalyst for Cooperative Conversion of CO2 to Cyclic Carbonates. ACS Catalysis 2016, 6 (9) , 6091-6100. https://doi.org/10.1021/acscatal.6b01142
    45. Martine R. Tiddens, Robertus J. M. Klein Gebbink, and Matthias Otte . The B(C6F5)3-Catalyzed Tandem Meinwald Rearrangement–Reductive Amination. Organic Letters 2016, 18 (15) , 3714-3717. https://doi.org/10.1021/acs.orglett.6b01744
    46. José A. Castro-Osma, Katie J. Lamb, and Michael North . Cr(salophen) Complex Catalyzed Cyclic Carbonate Synthesis at Ambient Temperature And Pressure. ACS Catalysis 2016, 6 (8) , 5012-5025. https://doi.org/10.1021/acscatal.6b01386
    47. L. Poussard, J. Mariage, B. Grignard, C. Detrembleur, C. Jérôme, C. Calberg, B. Heinrichs, J. De Winter, P. Gerbaux, J.-M. Raquez, L. Bonnaud, and Ph. Dubois . Non-Isocyanate Polyurethanes from Carbonated Soybean Oil Using Monomeric or Oligomeric Diamines To Achieve Thermosets or Thermoplastics. Macromolecules 2016, 49 (6) , 2162-2171. https://doi.org/10.1021/acs.macromol.5b02467
    48. Hui Zhou, Guo-Xu Wang, Wen-Zhen Zhang, and Xiao-Bing Lu . CO2 Adducts of Phosphorus Ylides: Highly Active Organocatalysts for Carbon Dioxide Transformation. ACS Catalysis 2015, 5 (11) , 6773-6779. https://doi.org/10.1021/acscatal.5b01409
    49. Brandon A. Vara, Thomas J. Struble, Weiwei Wang, Mark C. Dobish, and Jeffrey N. Johnston . Enantioselective Small Molecule Synthesis by Carbon Dioxide Fixation using a Dual Brønsted Acid/Base Organocatalyst. Journal of the American Chemical Society 2015, 137 (23) , 7302-7305. https://doi.org/10.1021/jacs.5b04425
    50. Chaorong Qi Huanfeng Jiang . CO2 Chemistry in SCUT Group: New Methods for Conversion of Carbon Dioxide into Organic Compounds. 2015, 71-108. https://doi.org/10.1021/bk-2015-1194.ch003
    51. Adegboyega Isaac Adeleye, Dipesh Patel, Debdarsan Niyogi, and Basudeb Saha . Efficient and Greener Synthesis of Propylene Carbonate from Carbon Dioxide and Propylene Oxide. Industrial & Engineering Chemistry Research 2014, 53 (49) , 18647-18657. https://doi.org/10.1021/ie500345z
    52. Wei-Min Ren, Ye Liu, and Xiao-Bing Lu . Bifunctional Aluminum Catalyst for CO2 Fixation: Regioselective Ring Opening of Three-Membered Heterocyclic Compounds. The Journal of Organic Chemistry 2014, 79 (20) , 9771-9777. https://doi.org/10.1021/jo501926p
    53. Elham Hosseini Nejad, Anita Paoniasari, Carlo G. W. van Melis, Cor E. Koning, and Rob Duchateau . Catalytic Ring-Opening Copolymerization of Limonene Oxide and Phthalic Anhydride: Toward Partially Renewable Polyesters. Macromolecules 2013, 46 (3) , 631-637. https://doi.org/10.1021/ma301904y
    54. Christopher J. Whiteoak, Nicola Kielland, Victor Laserna, Eduardo C. Escudero-Adán, Eddy Martin, and Arjan W. Kleij . A Powerful Aluminum Catalyst for the Synthesis of Highly Functional Organic Carbonates. Journal of the American Chemical Society 2013, 135 (4) , 1228-1231. https://doi.org/10.1021/ja311053h
    55. Rebecca K. Dean, Louise N. Dawe, and Christopher M. Kozak . Copolymerization of Cyclohexene Oxide and CO2 with a Chromium Diamine-bis(phenolate) Catalyst. Inorganic Chemistry 2012, 51 (16) , 9095-9103. https://doi.org/10.1021/ic301402z
    56. Morad M. El-Hendawy, Niall J. English, and Damian A. Mooney . Mechanism of Atmospheric CO2 Fixation in the Cavities of a Dinuclear Cryptate. Inorganic Chemistry 2012, 51 (9) , 5282-5288. https://doi.org/10.1021/ic300224w
    57. Elham Hosseini Nejad, Carlo G. W. van Melis, Tim J. Vermeer, Cor E. Koning, and Rob Duchateau . Alternating Ring-Opening Polymerization of Cyclohexene Oxide and Anhydrides: Effect of Catalyst, Cocatalyst, and Anhydride Structure. Macromolecules 2012, 45 (4) , 1770-1776. https://doi.org/10.1021/ma2025804
    58. Bret R. Van Ausdall, Nils F. Poth, Virginia A. Kincaid, Atta M. Arif, and Janis Louie . Imidazolidene Carboxylate Bound MBPh4 Complexes (M = Li, Na) and Their Relevance in Transcarboxylation Reactions. The Journal of Organic Chemistry 2011, 76 (20) , 8413-8420. https://doi.org/10.1021/jo201647b
    59. Jing Guan, Yihu Song, Yu Lin, Xianze Yin, Min Zuo, Yuhua Zhao, Xiaole Tao, and Qiang Zheng . Progress in Study of Non-Isocyanate Polyurethane. Industrial & Engineering Chemistry Research 2011, 50 (11) , 6517-6527. https://doi.org/10.1021/ie101995j
    60. Chandrani Chatterjee and Malcolm H. Chisholm . The Influence of the Metal (Al, Cr, and Co) and the Substituents of the Porphyrin in Controlling the Reactions Involved in the Copolymerization of Propylene Oxide and Carbon Dioxide by Porphyrin Metal(III) Complexes. 1. Aluminum Chemistry. Inorganic Chemistry 2011, 50 (10) , 4481-4492. https://doi.org/10.1021/ic200142f
    61. Alexander Dauth and Jennifer A. Love . Reactivity by Design—Metallaoxetanes as Centerpieces in Reaction Development. Chemical Reviews 2011, 111 (3) , 2010-2047. https://doi.org/10.1021/cr100388p
    62. Saskia Huijser, Elham HosseiniNejad, Rafaël Sablong, Chris de Jong, Cor E. Koning, and Rob Duchateau . Ring-Opening Co- and Terpolymerization of an Alicyclic Oxirane with Carboxylic Acid Anhydrides and CO2 in the Presence of Chromium Porphyrinato and Salen Catalysts. Macromolecules 2011, 44 (5) , 1132-1139. https://doi.org/10.1021/ma102238u
    63. Maria J. Climent, Avelino Corma, and Sara Iborra. Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews 2011, 111 (2) , 1072-1133. https://doi.org/10.1021/cr1002084
    64. Piotr Kowalczyk, Sylwester Furmaniak, Piotr A. Gauden, and Artur P. Terzyk . Optimal Single-Walled Carbon Nanotube Vessels for Short-Term Reversible Storage of Carbon Dioxide at Ambient Temperatures. The Journal of Physical Chemistry C 2010, 114 (49) , 21465-21473. https://doi.org/10.1021/jp106547j
    65. Donald J. Darensbourg. Chemistry of Carbon Dioxide Relevant to Its Utilization: A Personal Perspective. Inorganic Chemistry 2010, 49 (23) , 10765-10780. https://doi.org/10.1021/ic101800d
    66. Cong Liu, Lloyd Munjanja, Thomas R. Cundari and Angela K. Wilson. Theoretical Studies on the Catalysis of the Reverse Water−Gas Shift Reaction Using First-Row Transition Metal β-Diketiminato Complexes. The Journal of Physical Chemistry A 2010, 114 (21) , 6207-6216. https://doi.org/10.1021/jp911616y
    67. Cai-Hong Guo, Jiang-Yu Song, Jian-Feng Jia, Xian-Ming Zhang and Hai-Shun Wu . A DFT Study on the Mechanism of the Coupling Reaction between Chloromethyloxirane and Carbon Dioxide Catalyzed by Re(CO)5Br. Organometallics 2010, 29 (9) , 2069-2079. https://doi.org/10.1021/om100020s
    68. Michael R. Kember, Andrew J. P. White and Charlotte K. Williams. Highly Active Di- and Trimetallic Cobalt Catalysts for the Copolymerization of CHO and CO2 at Atmospheric Pressure. Macromolecules 2010, 43 (5) , 2291-2298. https://doi.org/10.1021/ma902582m
    69. Michael R. Kember, Andrew J. P. White and Charlotte K. Williams. Di- and Tri-Zinc Catalysts for the Low-Pressure Copolymerization of CO2 and Cyclohexene Oxide. Inorganic Chemistry 2009, 48 (19) , 9535-9542. https://doi.org/10.1021/ic901109e
    70. Donald J. Darensbourg and Adriana I. Moncada. (Salen)Co(II)/n-Bu4NX Catalysts for the Coupling of CO2 and Oxetane: Selectivity for Cyclic Carbonate Formation in the Production of Poly-(trimethylene carbonate). Macromolecules 2009, 42 (12) , 4063-4070. https://doi.org/10.1021/ma9002006
    71. Cai-Hong Guo, Hai-Shun Wu, Xian-Ming Zhang, Jiang-Yu Song and Xiang Zhang. A Comprehensive Theoretical Study on the Coupling Reaction Mechanism of Propylene Oxide with Carbon Dioxide Catalyzed by Copper(I) Cyanomethyl. The Journal of Physical Chemistry A 2009, 113 (24) , 6710-6723. https://doi.org/10.1021/jp809471s
    72. Dun-Yan Rao, Bo Li, Rong Zhang, Hui Wang and Xiao-Bing Lu. Binding of 4-(N,N-dimethylamino)pyridine to Salen- and Salan-Cr(III) Cations: A Mechanistic Understanding on the Difference in Their Catalytic Activity for CO2/Epoxide Copolymerization. Inorganic Chemistry 2009, 48 (7) , 2830-2836. https://doi.org/10.1021/ic802384x
    73. Bungo Ochiai, Yugo Hatano and Takeshi Endo . Fixing Carbon Dioxide Concurrently with Radical Polymerization for Utilizing Carbon Dioxide by Low-Energy Cost. Macromolecules 2008, 41 (24) , 9937-9939. https://doi.org/10.1021/ma801960q
    74. Paul D. Knight, Andrew J. P. White and Charlotte K. Williams. Dinuclear Zinc Complexes Using Pentadentate Phenolate Ligands. Inorganic Chemistry 2008, 47 (24) , 11711-11719. https://doi.org/10.1021/ic8014173
    75. Jing-Yu Wu, Zhi-Bin Luo, Li-Xin Dai and Xue-Long Hou. Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate. The Journal of Organic Chemistry 2008, 73 (22) , 9137-9139. https://doi.org/10.1021/jo801703h
    76. Hui Zhou, Wen-Zhen Zhang, Cui-Hua Liu, Jing-Ping Qu and Xiao-Bing Lu. CO2 Adducts of N-Heterocyclic Carbenes: Thermal Stability and Catalytic Activity toward the Coupling of CO2 with Epoxides. The Journal of Organic Chemistry 2008, 73 (20) , 8039-8044. https://doi.org/10.1021/jo801457r
    77. Donald J. Darensbourg,, Paolo Bottarelli, and, Jeremy R. Andreatta. Inquiry into the Formation of Cyclic Carbonates during the (Salen)CrX Catalyzed CO2/Cyclohexene Oxide Copolymerization Process in the Presence of Ionic Initiators. Macromolecules 2007, 40 (21) , 7727-7729. https://doi.org/10.1021/ma071206o
    78. José M. Concellón and, Virginia del Solar, , Santiago García-Granda and, M. Rosario Díaz. Totally Selective Reaction of CO2 with Enantiopure Amino Epoxides under Mild Reaction Conditions. Synthesis and Synthetic Applications of Enantiopure (4R,1‘S)- or (4S,1‘S)-4-(1-Aminoalkyl)-2-oxo-1,3-dioxolanes. The Journal of Organic Chemistry 2007, 72 (20) , 7567-7573. https://doi.org/10.1021/jo070829x
    79. George E. Greco,, Brittany L. Gleason,, Tiffany A. Lowery,, Matthew J. Kier,, Lisa B. Hollander,, Shoshanah A. Gibbs, and, Amanda D. Worthy. Palladium-Catalyzed [3+2] Cycloaddition of Carbon Dioxide and Trimethylenemethane under Mild Conditions. Organic Letters 2007, 9 (19) , 3817-3820. https://doi.org/10.1021/ol7017246
    80. Hui Sun and, Dongju Zhang. Density Functional Theory Study on the Cycloaddition of Carbon Dioxide with Propylene Oxide Catalyzed by Alkylmethylimidazolium Chlorine Ionic Liquids. The Journal of Physical Chemistry A 2007, 111 (32) , 8036-8043. https://doi.org/10.1021/jp073873p
    81. Robbert Duchateau,, Wouter J. van Meerendonk,, Saskia Huijser,, Bastiaan B. P. Staal,, Marcus A. van Schilt,, Gijsbert Gerritsen,, Auke Meetsma,, Cor E. Koning,, Maartje F. Kemmere, and, Jos T. F. Keurentjes. Silica-Grafted Diethylzinc and a Silsesquioxane-Based Zinc Alkyl Complex as Catalysts for the Alternating Oxirane−Carbon Dioxide Copolymerization. Organometallics 2007, 26 (17) , 4204-4211. https://doi.org/10.1021/om700367x
    82. Toshiyasu Sakakura,, Jun-Chul Choi, and, Hiroyuki Yasuda. Transformation of Carbon Dioxide. Chemical Reviews 2007, 107 (6) , 2365-2387. https://doi.org/10.1021/cr068357u
    83. Donald J. Darensbourg. Making Plastics from Carbon Dioxide:  Salen Metal Complexes as Catalysts for the Production of Polycarbonates from Epoxides and CO2. Chemical Reviews 2007, 107 (6) , 2388-2410. https://doi.org/10.1021/cr068363q
    84. Yoshihito Kayaki,, Masafumi Yamamoto, and, Takao Ikariya. Stereoselective Formation of α-Alkylidene Cyclic Carbonates via Carboxylative Cyclization of Propargyl Alcohols in Supercritical Carbon Dioxide. The Journal of Organic Chemistry 2007, 72 (2) , 647-649. https://doi.org/10.1021/jo062094m
    85. Robbert Duchateau,, Wouter J. van Meerendonk,, Latifa Yajjou,, Bastiaan B. P. Staal,, Cor E. Koning, and, Gert-Jan M. Gruter. Ester-Functionalized Polycarbonates Obtained by Copolymerization of Ester-Substituted Oxiranes and Carbon Dioxide:  A MALDI-ToF-MS Analysis Study. Macromolecules 2006, 39 (23) , 7900-7908. https://doi.org/10.1021/ma0610313
    86. Carlos Baleizão and, Hermenegildo Garcia. Chiral Salen Complexes:  An Overview to Recoverable and Reusable Homogeneous and Heterogeneous Catalysts. Chemical Reviews 2006, 106 (9) , 3987-4043. https://doi.org/10.1021/cr050973n
    87. Wing Nga Sit,, Siu Man Ng,, Kar Yan Kwong, and, Chak Po Lau. Coupling Reactions of CO2 with Neat Epoxides Catalyzed by PPN Salts To Yield Cyclic Carbonates. The Journal of Organic Chemistry 2005, 70 (21) , 8583-8586. https://doi.org/10.1021/jo051077e
    88. Yong Jin Kim and, Rajender S. Varma. Tetrahaloindate(III)-Based Ionic Liquids in the Coupling Reaction of Carbon Dioxide and Epoxides To Generate Cyclic Carbonates:  H-Bonding and Mechanistic Studies. The Journal of Organic Chemistry 2005, 70 (20) , 7882-7891. https://doi.org/10.1021/jo050699x
    89. Wouter J. van Meerendonk,, Robbert Duchateau,, Cor E. Koning, and, Gert-Jan M. Gruter. Unexpected Side Reactions and Chain Transfer for Zinc-Catalyzed Copolymerization of Cyclohexene Oxide and Carbon Dioxide. Macromolecules 2005, 38 (17) , 7306-7313. https://doi.org/10.1021/ma050797k
    90. Robert L. Paddock and, SonBinh T. Nguyen. Alternating Copolymerization of CO2 and Propylene Oxide Catalyzed by CoIII(salen)/Lewis Base. Macromolecules 2005, 38 (15) , 6251-6253. https://doi.org/10.1021/ma047551k
    91. Donald J. Darensbourg and, Andrea L. Phelps. Effective, Selective Coupling of Propylene Oxide and Carbon Dioxide to Poly(Propylene Carbonate) Using (Salen)CrN3 Catalysts. Inorganic Chemistry 2005, 44 (13) , 4622-4629. https://doi.org/10.1021/ic050443+
    92. Peter Chen,, Malcolm H. Chisholm,, Judith C. Gallucci,, Xiangyang Zhang, and, Zhiping Zhou. Binding of Propylene Oxide to Porphyrin− and Salen−M(III) Cations, Where M = Al, Ga, Cr, and Co. Inorganic Chemistry 2005, 44 (8) , 2588-2595. https://doi.org/10.1021/ic048597x
    93. Donald J. Darensbourg and, Damon R. Billodeaux. Aluminum Salen Complexes and Tetrabutylammonium Salts:  A Binary Catalytic System for Production of Polycarbonates from CO2 and Cyclohexene Oxide. Inorganic Chemistry 2005, 44 (5) , 1433-1442. https://doi.org/10.1021/ic048508g
    94. Eric J. Doskocil. Effect of Water and Alkali Modifications on ETS-10 for the Cycloaddition of CO2 to Propylene Oxide. The Journal of Physical Chemistry B 2005, 109 (6) , 2315-2320. https://doi.org/10.1021/jp048870g
    95. Yongjun Tang,, W. Scott Kassel,, Lev N. Zakharov,, Arnold L. Rheingold, and, Richard A. Kemp. Insertion Reactions of Carbon Dioxide into Zn−N Bonds:  Syntheses and Structures of Tetrameric and Dimeric Alkylzinc Carbamato Complexes. Inorganic Chemistry 2005, 44 (2) , 359-364. https://doi.org/10.1021/ic048830r
    96. Jia-Li Jiang,, Feixue Gao,, Ruimao Hua, and, Xianqing Qiu. Re(CO)5Br-Catalyzed Coupling of Epoxides with CO2 Affording Cyclic Carbonates under Solvent-Free Conditions. The Journal of Organic Chemistry 2005, 70 (1) , 381-383. https://doi.org/10.1021/jo0485785
    97. Donald J. Darensbourg,, Ryan M. Mackiewicz,, Andrea L. Phelps, and, Damon R. Billodeaux. Copolymerization of CO2 and Epoxides Catalyzed by Metal Salen Complexes. Accounts of Chemical Research 2004, 37 (11) , 836-844. https://doi.org/10.1021/ar030240u
    98. Eva Schön,, Xiangyang Zhang,, Zhiping Zhou,, Malcolm H. Chisholm, and, Peter Chen. Gas-Phase and Solution-Phase Polymerization of Epoxides by Cr(salen) Complexes:  Evidence for a Dinuclear Cationic Mechanism. Inorganic Chemistry 2004, 43 (23) , 7278-7280. https://doi.org/10.1021/ic049120o
    99. Huanwang Jing,, Smita K. Edulji,, Julianne M. Gibbs,, Charlotte L. Stern,, Hongying Zhou, and, SonBinh T. Nguyen. (Salen)Tin Complexes:  Syntheses, Characterization, Crystal Structures, and Catalytic Activity in the Formation of Propylene Carbonate from CO2 and Propylene Oxide. Inorganic Chemistry 2004, 43 (14) , 4315-4327. https://doi.org/10.1021/ic034855z
    100. Aaron W. Miller and, SonBinh T. Nguyen. (Salen)chromium(III)/DMAP:  An Efficient Catalyst System for the Selective Synthesis of 5-Substituted Oxazolidinones from Carbon Dioxide and Aziridines. Organic Letters 2004, 6 (14) , 2301-2304. https://doi.org/10.1021/ol049689t
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2001, 123, 46, 11498–11499
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja0164677
    Published October 30, 2001
    Copyright © 2001 American Chemical Society

    Article Views

    8571

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.