ACS Publications. Most Trusted. Most Cited. Most Read
Titanium Disulfide Nanotubes as Hydrogen-Storage Materials
My Activity

Figure 1Loading Img
    Communication

    Titanium Disulfide Nanotubes as Hydrogen-Storage Materials
    Click to copy article linkArticle link copied!

    View Author Information
    Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071, P.R. China, and School of Materials Science & Technology, Hebei University of Technology, Tianjin 300130, P.R. China
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2003, 125, 18, 5284–5285
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja034601c
    Published April 15, 2003
    Copyright © 2003 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    TiS2 nanotubes, which were synthesized through a chemical transport reaction, are very effective in reversible hydrogen absorption and desorption with the capacity of 2.5 wt %.

    Copyright © 2003 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     Institute of New Energy Material Chemistry, Nankai University.

     School of Materials Science & Technology, Hebei University of Technology.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 179 publications.

    1. Edwin J. Miller, Kameron R. Hansen, Luisa Whittaker-Brooks. Charge Transport and Ion Kinetics in 1D TiS2 Structures are Dependent on the Introduction of Selenium Extrinsic Atoms. ACS Nanoscience Au 2024, 4 (2) , 146-157. https://doi.org/10.1021/acsnanoscienceau.3c00059
    2. Xin Gao, Xueli Zheng, Jingyang Wang, Zewen Zhang, Xin Xiao, Jiayu Wan, Yusheng Ye, Lien-Yang Chou, Hiang Kwee Lee, Jiangyan Wang, Rafael A. Vilá, Yufei Yang, Pu Zhang, Lin-Wang Wang, Yi Cui. Incorporating the Nanoscale Encapsulation Concept from Liquid Electrolytes into Solid-State Lithium–Sulfur Batteries. Nano Letters 2020, 20 (7) , 5496-5503. https://doi.org/10.1021/acs.nanolett.0c02033
    3. Peter C. Sherrell, Kanudha Sharda, Chiara Grotta, Jacopo Ranalli, Maria S. Sokolikova, Federico M. Pesci, Pawel Palczynski, Victoria L. Bemmer, Cecilia Mattevi. Thickness-Dependent Characterization of Chemically Exfoliated TiS2 Nanosheets. ACS Omega 2018, 3 (8) , 8655-8662. https://doi.org/10.1021/acsomega.8b00766
    4. Casey G. Hawkins and Luisa Whittaker-Brooks . Controlling Sulfur Vacancies in TiS2–x Cathode Insertion Hosts via the Conversion of TiS3 Nanobelts for Energy-Storage Applications. ACS Applied Nano Materials 2018, 1 (2) , 851-859. https://doi.org/10.1021/acsanm.7b00266
    5. Jun Li, Tian Ma, Li Zhou, Tao Zhang, Qingshan Zhu, and Hongzhong Li . Synthesis of Fullerene-like WS2 Nanoparticles in a Particulately Fluidized Bed: Kinetics and Reaction Phase Diagram. Industrial & Engineering Chemistry Research 2014, 53 (2) , 592-600. https://doi.org/10.1021/ie4026665
    6. Faegheh Hoshyargar, Aswani Yella, Martin Panthöfer, and Wolfgang Tremel . Diffusion-Driven Formation of MoS2 Nanotube Bundles Containing MoS2 Nanopods. Chemistry of Materials 2011, 23 (21) , 4716-4720. https://doi.org/10.1021/cm201460z
    7. David Teich, Tommy Lorenz, Jan-Ole Joswig, and Gotthard Seifert , Dong-Bo Zhang and Traian Dumitrică . Structural and Electronic Properties of Helical TiS2 Nanotubes Studied with Objective Molecular Dynamics. The Journal of Physical Chemistry C 2011, 115 (14) , 6392-6396. https://doi.org/10.1021/jp200399p
    8. Yan Qiao, Yijie Wang, Zhiyi Yang, Yiyang Lin, and Jianbin Huang . Self-Templating of Metal-Driven Supramolecular Self-Assembly: A General Approach toward 1D Inorganic Nanotubes. Chemistry of Materials 2011, 23 (5) , 1182-1187. https://doi.org/10.1021/cm102649y
    9. Haibo Shu, Xiaoshuang Chen, Huxian Zhao, Xiaohao Zhou, and Wei Lu. Structural Stability and Electronic Properties of InAs Nanowires and Nanotubes: Effects of Surface and Size. The Journal of Physical Chemistry C 2010, 114 (41) , 17514-17518. https://doi.org/10.1021/jp105949z
    10. Mashkoor Ahmad, Rafi-ud-Din, Caofeng Pan and Jing Zhu . Investigation of Hydrogen Storage Capabilities of ZnO-Based Nanostructures. The Journal of Physical Chemistry C 2010, 114 (6) , 2560-2565. https://doi.org/10.1021/jp100037u
    11. Soon Chang Lee, Sang Man Lee, Jae Won Lee, Jin Bae Lee, Sang Moon Lee, Sang Sup Han, Hee Cheon Lee and Hae Jin Kim . Spinel Li4Ti5O12 Nanotubes for Energy Storage Materials. The Journal of Physical Chemistry C 2009, 113 (42) , 18420-18423. https://doi.org/10.1021/jp905114c
    12. Juan Xu, Kwonho Jang, Il Gu Jung, Hae Jin Kim, Dong-Hwa Oh, Joung Real Ahn and Seung Uk Son . Cutting Gallium Oxide Nanoribbons into Ultrathin Nanoplates. Chemistry of Materials 2009, 21 (19) , 4347-4349. https://doi.org/10.1021/cm9009157
    13. Jun Chen and Fangyi Cheng. Combination of Lightweight Elements and Nanostructured Materials for Batteries. Accounts of Chemical Research 2009, 42 (6) , 713-723. https://doi.org/10.1021/ar800229g
    14. Sujay Prabakar, Chris W. Bumby and Richard D. Tilley. Liquid-Phase Synthesis of Flower-like and Flake-like Titanium Disulfide Nanostructures. Chemistry of Materials 2009, 21 (8) , 1725-1730. https://doi.org/10.1021/cm900110h
    15. Mahasweta Nandi, Mohona Sarkar, Krishanu Sarkar and Asim Bhaumik. 3D-Hexagonal Mesoporous Silica Having Exceptional H2 Adsorption Capacity. The Journal of Physical Chemistry C 2009, 113 (16) , 6839-6844. https://doi.org/10.1021/jp8114034
    16. Lanlan Li, Bo Peng, Weiqiang Ji and Jun Chen. Studies on the Hydrogen Storage of Magnesium Nanowires by Density Functional Theory. The Journal of Physical Chemistry C 2009, 113 (7) , 3007-3013. https://doi.org/10.1021/jp808385c
    17. Yuliang Zhang,, Jian Zhu,, Xin Song, and, Xinhua Zhong. Controlling the Synthesis of CoO Nanocrystals with Various Morphologies. The Journal of Physical Chemistry C 2008, 112 (14) , 5322-5327. https://doi.org/10.1021/jp709943x
    18. Fangyi Cheng, Jing Liang, Jianzhi Zhao, Zhanliang Tao and Jun Chen. Biomass Waste-Derived Microporous Carbons with Controlled Texture and Enhanced Hydrogen Uptake. Chemistry of Materials 2008, 20 (5) , 1889-1895. https://doi.org/10.1021/cm702816x
    19. Kevin Tibbetts,, Caetano R. Miranda,, Ying S. Meng, and, Gerbrand Ceder. An Ab Initio Study of Lithium Diffusion in Titanium Disulfide Nanotubes. Chemistry of Materials 2007, 19 (22) , 5302-5308. https://doi.org/10.1021/cm0715242
    20. Kang Hyun Park,, Jaewon Choi,, Hae Jin Kim,, Jin Bae Lee, and, Seung Uk Son. Synthesis of Antimony Sulfide Nanotubes with Ultrathin Walls via Gradual Aspect Ratio Control of Nanoribbons. Chemistry of Materials 2007, 19 (16) , 3861-3863. https://doi.org/10.1021/cm0712772
    21. Yifeng Shi,, Ying Wan,, Ruili Liu,, Bo Tu, and, Dongyuan Zhao. Synthesis of Highly Ordered Mesoporous Crystalline WS2 and MoS2 via a High-Temperature Reductive Sulfuration Route. Journal of the American Chemical Society 2007, 129 (30) , 9522-9531. https://doi.org/10.1021/ja072910n
    22. Weiyang Li,, Chunsheng Li,, Hua Ma, and, Jun Chen. Magnesium Nanowires:  Enhanced Kinetics for Hydrogen Absorption and Desorption. Journal of the American Chemical Society 2007, 129 (21) , 6710-6711. https://doi.org/10.1021/ja071323z
    23. Fangyi Cheng,, Hua Ma,, Yueming Li, and, Jun Chen. Ni1-xPtx (x = 0−0.12) Hollow Spheres as Catalysts for Hydrogen Generation from Ammonia Borane. Inorganic Chemistry 2007, 46 (3) , 788-794. https://doi.org/10.1021/ic061712e
    24. Qiang Wang and, Jinghong Li. Facilitated Lithium Storage in MoS2 Overlayers Supported on Coaxial Carbon Nanotubes. The Journal of Physical Chemistry C 2007, 111 (4) , 1675-1682. https://doi.org/10.1021/jp066655p
    25. Shaoyan Zhang,, Weiyang Li,, Chunsheng Li, and, Jun Chen. Synthesis, Characterization, and Electrochemical Properties of Ag2V4O11 and AgVO3 1-D Nano/Microstructures. The Journal of Physical Chemistry B 2006, 110 (49) , 24855-24863. https://doi.org/10.1021/jp065478p
    26. Yun Hang Hu and, Eli Ruckenstein. Ultrafast Reaction between Li3N and LiNH2 To Prepare the Effective Hydrogen Storage Material Li2NH. Industrial & Engineering Chemistry Research 2006, 45 (14) , 4993-4998. https://doi.org/10.1021/ie060380i
    27. Yun Hang Hu and, Eli Ruckenstein. Hydrogen Storage of Li2NH Prepared by Reacting Li with NH3. Industrial & Engineering Chemistry Research 2006, 45 (1) , 182-186. https://doi.org/10.1021/ie050690l
    28. Qiang Wu,, Zheng Hu,, Chun Liu,, Xizhang Wang, and, Yi Chen, , Yinong Lu. Synthesis and Optical Properties of Gallium Phosphide Nanotubes. The Journal of Physical Chemistry B 2005, 109 (42) , 19719-19722. https://doi.org/10.1021/jp053058e
    29. Dmitry V. Bavykin,, Alexei A. Lapkin,, Pawel K. Plucinski,, Jens M. Friedrich, and, Frank C. Walsh. Reversible Storage of Molecular Hydrogen by Sorption into Multilayered TiO2 Nanotubes. The Journal of Physical Chemistry B 2005, 109 (41) , 19422-19427. https://doi.org/10.1021/jp0536394
    30. San Hua Lim,, Jizhong Luo,, Ziyi Zhong,, Wei Ji, and, Jianyi Lin. Room-Temperature Hydrogen Uptake by TiO2 Nanotubes. Inorganic Chemistry 2005, 44 (12) , 4124-4126. https://doi.org/10.1021/ic0501723
    31. Yun Hang Hu,, Nian Ying Yu, and, Eli Ruckenstein. Hydrogen Storage in Li3N:  Deactivation Caused by a High Dehydrogenation Temperature. Industrial & Engineering Chemistry Research 2005, 44 (12) , 4304-4309. https://doi.org/10.1021/ie0501834
    32. Wingkei Ho,, Jimmy C. Yu, and, Jiaguo Yu. Photocatalytic TiO2/Glass Nanoflake Array Films. Langmuir 2005, 21 (8) , 3486-3492. https://doi.org/10.1021/la047308e
    33. Yun Hang Hu and, Eli Ruckenstein. High Reversible Hydrogen Capacity of LiNH2/Li3N Mixtures. Industrial & Engineering Chemistry Research 2005, 44 (5) , 1510-1513. https://doi.org/10.1021/ie0492799
    34. Yun Hang Hu,, Nian Ying Yu, and, Eli Ruckenstein. Effect of the Heat Pretreatment of Li3N on Its H2 Storage Performance. Industrial & Engineering Chemistry Research 2004, 43 (15) , 4174-4177. https://doi.org/10.1021/ie0498394
    35. Yun Hang Hu and, Eli Ruckenstein. Highly Effective Li2O/Li3N with Ultrafast Kinetics for H2 Storage. Industrial & Engineering Chemistry Research 2004, 43 (10) , 2464-2467. https://doi.org/10.1021/ie049947q
    36. Yugang Sun,, Zhanliang Tao,, Jun Chen,, Thurston Herricks, and, Younan Xia. Ag Nanowires Coated with Ag/Pd Alloy Sheaths and Their Use as Substrates for Reversible Absorption and Desorption of Hydrogen. Journal of the American Chemical Society 2004, 126 (19) , 5940-5941. https://doi.org/10.1021/ja0495765
    37. Pu Jin,, Qianwang Chen,, Liqing Hao,, Ruifen Tian,, Lixin Zhang, and, Lin Wang. Synthesis and Catalytic Properties of Nickel−Silica Composite Hollow Nanospheres. The Journal of Physical Chemistry B 2004, 108 (20) , 6311-6314. https://doi.org/10.1021/jp049754g
    38. Shilpa Singh. Hydrogen surface storage. 2025, 91-122. https://doi.org/10.1016/B978-0-443-24071-3.00005-4
    39. Huaidong Liu, Lu Yang, Yanshen Zhao, Shihang Sun, Xingbin Wei. Photoelectric and Magnetic Variation of Transition Metal-Doped Monolayer TiS2: A First-Principles Calculation. Journal of Superconductivity and Novel Magnetism 2024, 37 (3) , 639-655. https://doi.org/10.1007/s10948-024-06707-8
    40. Sowbakkiyavathi Elindjeane Sheela, Ramkumar Sekar, Dheeraj Kumar Maurya, Manidurai Paulraj, Subramania Angaiah. Progress in transition metal chalcogenides-based counter electrode materials for dye-sensitized solar cells. Materials Science in Semiconductor Processing 2023, 156 , 107273. https://doi.org/10.1016/j.mssp.2022.107273
    41. R. M. ARIF KHALIL, MUHAMMAD IQBAL HUSSAIN, SABA ARSHAD, FAYYAZ HUSSAIN, ANWAR MANZOOR RANA, HAFIZ M. ASIF JAVED. FIRST-PRINCIPLES SIMULATION: STUDY OF THE STRUCTURAL, ELECTRONIC, MECHANICAL AND OPTICAL PROPERTIES OF DISULFIDE XS 2 (X=Ta, Ti) COMPOUNDS FOR OPTOELECTRONIC APPLICATIONS. Surface Review and Letters 2022, 29 (06) https://doi.org/10.1142/S0218625X22500834
    42. Dao H. Zhang, D. Chua. Structural properties of chalcogenides nanostructures. Experimental and Theoretical NANOTECHNOLOGY 2022, , 13-19. https://doi.org/10.56053/6.1.13
    43. G. Arora, I. Hiroya. Annealing temperature effect on structural properties of tin oxide nanoparticles. Experimental and Theoretical NANOTECHNOLOGY 2022, , 39-46. https://doi.org/10.56053/6.1.39
    44. Arpit Bhardwaj, Phanish Suryanarayana. Elastic properties of Janus transition metal dichalcogenide nanotubes from first principles. The European Physical Journal B 2022, 95 (1) https://doi.org/10.1140/epjb/s10051-021-00272-y
    45. Jun Jin, Tuo Xiao, You-fang Zhang, Han Zheng, Huanwen Wang, Rui Wang, Yansheng Gong, Beibei He, Xianhu Liu, Kun Zhou. Hierarchical MXene/transition metal chalcogenide heterostructures for electrochemical energy storage and conversion. Nanoscale 2021, 13 (47) , 19740-19770. https://doi.org/10.1039/D1NR05799E
    46. Linjun Li, Tianqi Qi, Wenqiang Xie, Xining Yang, Long Zhou, Shuangcheng Li, Haibin Wu, Yingjie Shen. A passively mode-locked Tm:YAG laser with a titanium disulfide saturable absorber. Infrared Physics & Technology 2021, 119 , 103942. https://doi.org/10.1016/j.infrared.2021.103942
    47. Arpit Bhardwaj, Abhiraj Sharma, Phanish Suryanarayana. Torsional strain engineering of transition metal dichalcogenide nanotubes: an ab initio study. Nanotechnology 2021, 32 (47) , 47LT01. https://doi.org/10.1088/1361-6528/ac1a90
    48. . Inorganic Nanotubes. 2021, 240-356. https://doi.org/10.1039/9781788019637-00240
    49. Arpit Bhardwaj, Abhiraj Sharma, Phanish Suryanarayana. Torsional moduli of transition metal dichalcogenide nanotubes from first principles. Nanotechnology 2021, 32 (28) , 28LT02. https://doi.org/10.1088/1361-6528/abf59c
    50. Tisita Das, Sudip Chakraborty, Rajeev Ahuja, Yoshiyuki Kawazoe, Gour P. Das. Charge transfer driven interaction of CH4, CO2 and NH3 with TiS2 monolayer: Influence of vacancy defect. Catalysis Today 2021, 370 , 189-195. https://doi.org/10.1016/j.cattod.2020.10.014
    51. Johar Zeb, Xuan Zhao, Saif Ullah, Marcos G. Menezes, Wenkai Zhang. Tunable optoelectronic properties in multilayer 1T-TiS2: the effects of strain and an external electric field. Journal of Materials Science 2021, 56 (11) , 6891-6902. https://doi.org/10.1007/s10853-020-05760-7
    52. Xiaohong Chen, Zhiyong Xue, Kai Niu, Xundao Liu, Wei lv, Bao Zhang, Zhongyu Li, Hong Zeng, Yu Ren, Ying Wu, Yongming Zhang. Li–fluorine codoped electrospun carbon nanofibers for enhanced hydrogen storage. RSC Advances 2021, 11 (7) , 4053-4061. https://doi.org/10.1039/D0RA06500E
    53. Mohd. Parvaz, Hasan Abbas, Zishan H. Khan. Synthesis and Photocatalytic Properties of 2D Transition Metal Dichalcogenides. 2021, 1-43. https://doi.org/10.1007/978-981-15-9904-0_1
    54. Nihat Tunç, Murat Rakap. Preparation and characterization of Ni-M (M: Ru, Rh, Pd) nanoclusters as efficient catalysts for hydrogen evolution from ammonia borane methanolysis. Renewable Energy 2020, 155 , 1222-1230. https://doi.org/10.1016/j.renene.2020.04.079
    55. Marcus Schmidt, Johannes Gooth, Michael Binnewies. Preparation and Crystal Growth of Transition Metal Dichalcogenides. Zeitschrift für anorganische und allgemeine Chemie 2020, 646 (14) , 1183-1194. https://doi.org/10.1002/zaac.202000111
    56. Swarnendu Chatterjee, Anton Anikin, Debjit Ghoshal, James L. Hart, Yawei Li, Saad Intikhab, D.A. Chareev, O.S. Volkova, A.N. Vasiliev, Mitra L. Taheri, Nikhil Koratkar, Goran Karapetrov, Joshua Snyder. Nanoporous metals from thermal decomposition of transition metal dichalcogenides. Acta Materialia 2020, 184 , 79-85. https://doi.org/10.1016/j.actamat.2019.11.018
    57. R. A. Evarestov. Chalcogenides. 2020, 631-833. https://doi.org/10.1007/978-3-030-42994-2_8
    58. M Parvaz, Mohd Bilal Khan, Ameer Azam, Zishan H Khan. Synthesis, characterization, and photocatalytic properties of CuO-TiS 2 nanocomposite. Materials Research Express 2019, 6 (12) , 125054. https://doi.org/10.1088/2053-1591/ab582f
    59. Yuan Li, Bin Qiu, Xiuwen Zhao, Guichao Hu, Weiwei Yue, Xiaobo Yuan, Junfeng Ren. Spin polarization properties of two-dimensional MoSeTe induced by transition-metal doping: first-principles calculations. The European Physical Journal B 2019, 92 (12) https://doi.org/10.1140/epjb/e2019-100286-1
    60. Yuan Li, Donghui Xu, Dehang Zhang, Yuanchi Wei, Dianli Qu, Yuxiang Guo. Study on MXene-supported Layered TiS2 as Cathode Materials for Magnesium Batteries. International Journal of Electrochemical Science 2019, 14 (12) , 11102-11109. https://doi.org/10.20964/2019.12.49
    61. Baran Sarac, Yurii P. Ivanov, Tolga Karazehir, Marlene Mühlbacher, Baris Kaynak, A. Lindsay Greer, A. Sezai Sarac, Jürgen Eckert. Ultrahigh hydrogen-sorbing palladium metallic-glass nanostructures. Materials Horizons 2019, 6 (7) , 1481-1487. https://doi.org/10.1039/C9MH00316A
    62. Adrien Stoliaroff, Camille Latouche, Stéphane Jobic. Versatile electrical behavior of 1 T − TiS 2 elucidated from a theoretical study. Physical Review B 2019, 99 (16) https://doi.org/10.1103/PhysRevB.99.165122
    63. Xin Zhong, Miao Zhang, Lili Yang, Xin Qu, Lihua Yang, Jinghai Yang, Hanyu Liu. Novel high-pressure structure and superconductivity of titanium trisulfide. Computational Materials Science 2019, 158 , 192-196. https://doi.org/10.1016/j.commatsci.2018.11.005
    64. Mohammad Talib, Rana Tabassum, S. S. Islam, Prabhash Mishra. Influence of growth temperature on titanium sulphide nanostructures: from trisulphide nanosheets and nanoribbons to disulphide nanodiscs. RSC Advances 2019, 9 (2) , 645-657. https://doi.org/10.1039/C8RA08181F
    65. Yusuf Zuntu Abdullahi, Tiem Leong Yoon, Rania Edrees Adam Mohammad. Selective hydrogen adsorption on a buckled carbon nitride sheet: first-principles calculation. Materials Research Express 2018, 5 (12) , 125605. https://doi.org/10.1088/2053-1591/aae1c1
    66. Jianwei Nai, Yan Lu, Xin-Yao Yu. Formation of Ti–Fe mixed sulfide nanoboxes for enhanced electrocatalytic oxygen evolution. Journal of Materials Chemistry A 2018, 6 (44) , 21891-21895. https://doi.org/10.1039/C8TA02334D
    67. Dan Zhou, Ying Xu, Ligang Bai, Bingjun Shen, Xingye Wang, Yonggang Zou, Jian Tian. Evolution of crystal structures and electronic properties for TiS2 at high pressure. Journal of Alloys and Compounds 2018, 757 , 448-454. https://doi.org/10.1016/j.jallcom.2018.05.065
    68. Mudita Nagpal, Rita Kakkar. An evolving energy solution: Intermediate hydrogen storage. International Journal of Hydrogen Energy 2018, 43 (27) , 12168-12188. https://doi.org/10.1016/j.ijhydene.2018.04.103
    69. M Parvaz, Islamuddin, Zishan H Khan. Optical properties of pure and PbSe doped TiS 2 nanodiscs. Materials Research Express 2018, 5 (6) , 065013. https://doi.org/10.1088/2053-1591/aaa5bb
    70. A. Salimian, S. Ketabi, H. R. Aghabozorg. Hydrogen adsorption capacity of vanadium oxide nanotube from pure and mixture gas environment through molecular simulation. Separation Science and Technology 2018, 53 (1) , 1-12. https://doi.org/10.1080/01496395.2017.1379538
    71. He Zhou, Xinhua Wang, Haizhen Liu, Mi Yan. Enhanced hydrogen storage properties of 2LiBH4-LiAlH4 nanoconfined in resorcinol formaldehyde carbon aerogel. Journal of Alloys and Compounds 2017, 726 , 525-531. https://doi.org/10.1016/j.jallcom.2017.07.080
    72. . Synthesis, Characterization, and Application of One‐Dimensional ( 1D ) Nanostructures. 2017, 147-219. https://doi.org/10.1002/9783527698158.ch3
    73. Muthukumaraswamy Ranagraj Vengatesan, Anish Mathai Varghese, Vikas Mittal. Nanotubes. 2017, 1-24. https://doi.org/10.1002/0471238961.koe00026
    74. Xiaomeng Liu, Xu Zhao, Xu Ma, Ninghua Wu, Qianqian Xin, Tianxing Wang. Effect of strain on electronic and magnetic properties of n-type Cr-doped WSe 2 monolayer. Physica E: Low-dimensional Systems and Nanostructures 2017, 87 , 6-9. https://doi.org/10.1016/j.physe.2016.10.050
    75. Eric Singh, Ki Seok Kim, Geun Young Yeom, Hari Singh Nalwa. Two-dimensional transition metal dichalcogenide-based counter electrodes for dye-sensitized solar cells. RSC Advances 2017, 7 (45) , 28234-28290. https://doi.org/10.1039/C7RA03599C
    76. Yang Liu, Xiaojie She, Xiaoni Zhang, Chenglu Liang, Jingjie Wu, Peng Yu, Yusuke Nakanishi, Banghu Xie, Hui Xu, Pulickel M. Ajayan, Wei Yang. Metallic 1T-TiS 2 nanodots anchored on a 2D graphitic C 3 N 4 nanosheet nanostructure with high electron transfer capability for enhanced photocatalytic performance. RSC Advances 2017, 7 (87) , 55269-55275. https://doi.org/10.1039/C7RA10826E
    77. R. Naresh Muthu, S. Rajashabala, R. Kannan. Synthesis, characterization of hexagonal boron nitride nanoparticles decorated halloysite nanoclay composite and its application as hydrogen storage medium. Renewable Energy 2016, 90 , 554-564. https://doi.org/10.1016/j.renene.2016.01.026
    78. R. Tenne, A.G. Olabi. Inorganic Nanotube Materials. 2016https://doi.org/10.1016/B978-0-12-803581-8.02304-3
    79. Yongchang Liu, Yang Li, Hongyan Kang, Ting Jin, Lifang Jiao. Design, synthesis, and energy-related applications of metal sulfides. Materials Horizons 2016, 3 (5) , 402-421. https://doi.org/10.1039/C6MH00075D
    80. Mingsheng Tan, Zhiyong Wang, Junjun Peng, Xianbo Jin, . Facile Synthesis of Large and Thin TiS 2 Sheets via a Gas/Molten Salt Interface Reaction. Journal of the American Ceramic Society 2015, 98 (5) , 1423-1428. https://doi.org/10.1111/jace.13499
    81. R. A. Evarestov. Sulfides. 2015, 611-651. https://doi.org/10.1007/978-3-662-44581-5_9
    82. Xiaoxin Qian, Sida Shen, Teng Liu, Liang Cheng, Zhuang Liu. Two-dimensional TiS 2 nanosheets for in vivo photoacoustic imaging and photothermal cancer therapy. Nanoscale 2015, 7 (14) , 6380-6387. https://doi.org/10.1039/C5NR00893J
    83. Neha Mahuli, Shaibal K. Sarkar. Atomic layer deposition of titanium sulfide and its application in extremely thin absorber solar cells. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2015, 33 (1) https://doi.org/10.1116/1.4904497
    84. Zhi Wei Seh, Jung Ho Yu, Weiyang Li, Po-Chun Hsu, Haotian Wang, Yongming Sun, Hongbin Yao, Qianfan Zhang, Yi Cui. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nature Communications 2014, 5 (1) https://doi.org/10.1038/ncomms6017
    85. Muhammad Nawaz Tahir, Jugal Kishore Sahoo, Faegheh Hoshyargar, Wolfgang Tremel. Growth Mechanism and Surface Functionalization of Metal Chalcogenides Nanostructures. 2014, 83-121. https://doi.org/10.1002/9781119008934.ch5
    86. Suresh Sarkar, Amit K. Guria, Biplab K. Patra, Narayan Pradhan. Chemical Sealing of Nanotubes: A Case Study on Sb 2 S 3. Angewandte Chemie 2014, 126 (46) , 12774-12778. https://doi.org/10.1002/ange.201405148
    87. Suresh Sarkar, Amit K. Guria, Biplab K. Patra, Narayan Pradhan. Chemical Sealing of Nanotubes: A Case Study on Sb 2 S 3. Angewandte Chemie International Edition 2014, 53 (46) , 12566-12570. https://doi.org/10.1002/anie.201405148
    88. V. Sorkin, H. Pan, H. Shi, S. Y. Quek, Y. W. Zhang. Nanoscale Transition Metal Dichalcogenides: Structures, Properties, and Applications. Critical Reviews in Solid State and Materials Sciences 2014, 39 (5) , 319-367. https://doi.org/10.1080/10408436.2013.863176
    89. Shengjie Peng, Linlin Li, Subodh G. Mhaisalkar, Madhavi Srinivasan, Seeram Ramakrishna, Qingyu Yan. Hollow Nanospheres Constructed by CoS 2 Nanosheets with a Nitrogen‐Doped‐Carbon Coating for Energy‐Storage and Photocatalysis. ChemSusChem 2014, 7 (8) , 2212-2220. https://doi.org/10.1002/cssc.201402161
    90. Jun Li, Li Zhou, Qingshan Zhu, Hongzhong Li. Decoupling reduction–sulfurization synthesis of inorganic fullerene-like WS2 nanoparticles in a particulately fluidized bed. Chemical Engineering Journal 2014, 249 , 54-62. https://doi.org/10.1016/j.cej.2014.03.085
    91. Qiwen Lai, Meganne Christian, Kondo-Francois Aguey-Zinsou. Nanoconfinement of borohydrides in CuS hollow nanospheres: A new strategy compared to carbon nanotubes. International Journal of Hydrogen Energy 2014, 39 (17) , 9339-9349. https://doi.org/10.1016/j.ijhydene.2014.04.002
    92. Hui Pan. Nanotubes for Energy Storage. 2014, 121-198. https://doi.org/10.1039/9781782623380-00121
    93. Andrei V. Bandura, Robert A. Evarestov. TiS 2 and ZrS 2 single- and double-wall nanotubes: First-principles study. Journal of Computational Chemistry 2014, 35 (5) , 395-405. https://doi.org/10.1002/jcc.23508
    94. Sunandan Sarkar, Supriya Saha, Sougata Pal, Pranab Sarkar. Electronic structure and bandgap engineering of CdTe nanotubes and designing the CdTe nanotube–fullerene hybrid nanostructures for photovoltaic applications. RSC Advances 2014, 4 (28) , 14673. https://doi.org/10.1039/c3ra47620k
    95. Elidia Maria Guerra, Marcelo Mulato. Titanium Oxide Nanorods pH Sensors: Comparison between Voltammetry and Extended Gate Field Effect Transistor Measurements. Materials Sciences and Applications 2014, 05 (07) , 459-466. https://doi.org/10.4236/msa.2014.57049
    96. Zhao Zhongyi, Chen Huimiao, Wang Ning, Chai Yujun. Hydrogen Storage Property of Porous/Hollow TiO2 Using Yeast as Template. Rare Metal Materials and Engineering 2013, 42 (12) , 2467-2471. https://doi.org/10.1016/S1875-5372(14)60040-0
    97. Chunshuang Yan, Gang Chen, Rencheng Jin, Xian Zou, Haiming Xu, Chade Lv. Well‐defined Sb 2 S 3 nanostructures: citric acid‐assisted synthesis, electrochemical hydrogen storage properties. Crystal Research and Technology 2013, 48 (8) , 566-573. https://doi.org/10.1002/crat.201300151
    98. X. Feng, Q. Tang, J. Zhou, J. Fang, P. Ding, L. Sun, L. Shi. Novel mixed–solvothermal synthesis of MoS 2 nanosheets with controllable morphologies. Crystal Research and Technology 2013, 48 (6) , 363-368. https://doi.org/10.1002/crat.201300003
    99. Weidong Shi, Xian Zhang, Guangbo Che. Hydrothermal synthesis and electrochemical hydrogen storage performance of porous hollow NiSe nanospheres. International Journal of Hydrogen Energy 2013, 38 (17) , 7037-7045. https://doi.org/10.1016/j.ijhydene.2013.03.145
    100. B. Zamora, A.A. Al-Hajjaj, A.A. Shah, D.V. Bavykin, E. Reguera. Kinetic and thermodynamic studies of hydrogen adsorption on titanate nanotubes decorated with a Prussian blue analogue. International Journal of Hydrogen Energy 2013, 38 (15) , 6406-6416. https://doi.org/10.1016/j.ijhydene.2013.02.031
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2003, 125, 18, 5284–5285
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja034601c
    Published April 15, 2003
    Copyright © 2003 American Chemical Society

    Article Views

    3357

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.