Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Template Synthesis of 1,4,7-Triphosphacyclononanes

View Author Information
Contribution from the School of Chemistry, Cardiff University, Main Building, Cardiff CF10 3AT, United Kingdom
Cite this: J. Am. Chem. Soc. 2006, 128, 11, 3818–3830
Publication Date (Web):February 18, 2006
https://doi.org/10.1021/ja0578956
Copyright © 2006 American Chemical Society

    Article Views

    963

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Iron(II) templates based on a [(η5-CpR)Fe]+ core have been employed for the successful synthesis of 1,4,7-triphosphacyclononane derivatives (9-aneP3R‘3) from a range of appropriately functionalized coordinated diphosphines and monophosphines. 1,2-Diphosphinoethane (1,2-dpe) or (2-phosphinoethyl)phenylphosphine (Phdpe) undergo a base-catalyzed Michael-type addition to trivinylphosphine, divinyl(benzyl)phosphine, or divinyl(phenyl)phosphine in [(η5-CpR)Fe(diphosphine)(monophosphine)]+ complexes (2aj) to give [(η5-CpR)Fe(9aneP3R‘3)]+ derivatives (4aj) containing coordinated triphosphacyclononanes bearing one (with Phdpe) or two (with 1,2-dpe) secondary phosphine donors. The rates of macrocyclization show a dependence on the nature of the substituent(s) R on the cyclopentadienyl ligand with increased rates being observed along the series R = H5 < (Me3Si)H4 < 1,3-(Me3Si)2H3 ≈ Me5. For coupling reactions with trivinylphosphine, a pendant vinyl function remains in the macrocyclic product (4ag) which is readily hydrogenated to the corresponding ethyl derivatives (5ag). Further functionalization of coordinated secondary phosphines in the initially formed macrocycles (5ag) is achieved by proton abstraction followed by addition of the appropriate alkyl halide electrophile and gives rise to tritertiary-triphospha-cyclononanes (7ag, 7l, 7m). All new complexes have been fully characterized by spectroscopic and analytical methods in addition to the structural determination by single-crystal X-ray techniques of [{η5-(Me3Si)2C5H3)Fe(9-aneP3H2C2H3)]PF6, 4c, and [(η5-Me3SiC5H4)Fe(9-aneP3Et3)]BF4, 7b. 1,4,7-Triethyl-1,4,7-triphosphacyclononane is released from its metal template (7a, 7b) by treatment with either H2O2 or Br2/H2O to give the trioxide 9-aneP3(O)3Et3 (8). Attempts to recover the trivalent phosphorus species, 1,4,7-triethyl-1,4,7-triphosphacyclononane, from the trioxide by reduction proved unsuccessful.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Crystallographic data (CIF) are available. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 42 publications.

    1. Verena Tegethoff, Tobias Lübbering, Christian Schulte to Brinke, Birgitta Schirmer, Johannes Neugebauer, F. Ekkehardt Hahn. Synthesis of Ruthenium(II) Complexes Bearing Macrocyclic [11]ane-P2CNHC Ligands by a Template-Controlled Domino Reaction. Organometallics 2021, 40 (5) , 606-617. https://doi.org/10.1021/acs.organomet.0c00812
    2. Kosuke Katagiri, Masahiro Ohara, Masahiro Ikehara, Ikkei Higashimura, Koshiro Isono. Oxaphosphacyclophanes Constructed from a Bis(triphenylphosphine oxide) Moiety Linked by Dioxyalkyl Chains: Synthesis and Crystal Structures. ACS Omega 2020, 5 (37) , 23621-23630. https://doi.org/10.1021/acsomega.0c02177
    3. Peter G. Edwards, Benson M. Kariuki, Paul D. Newman, and Wenjian Zhang . Peripheral Methyl Activation in η4-1,2,3,4-Tetramethylcyclobutadienylcobalt Complexes: Template Synthesis and Subsequent Reactivity of Triphosphamacrocycles. Organometallics 2014, 33 (19) , 5440-5447. https://doi.org/10.1021/om500734b
    4. Daniel J. Lowry and Monte L. Helm. Synthesis of 1,4,7-Triphenyl-1,4,7-triphosphacyclononane: The First Metal-Free Synthesis of a [9]-aneP3R3 Ring. Inorganic Chemistry 2010, 49 (11) , 4732-4734. https://doi.org/10.1021/ic100274m
    5. Paraskevi O. Lagaditis, Alexandre A. Mikhailine, Alan J. Lough and Robert H. Morris. Template Synthesis of Iron(II) Complexes Containing Tridentate P−N−S, P−N−P, P−N−N, and Tetradentate P−N−N−P Ligands. Inorganic Chemistry 2010, 49 (3) , 1094-1102. https://doi.org/10.1021/ic901945c
    6. Aarón Flores-Figueroa, Oliver Kaufhold, Alexander Hepp, Roland Fröhlich and F. Ekkehardt Hahn . Synthesis of a Ruthenium(II) Complex Containing an [11]ane-P2CNHC (NHC = Imidazolidin-2-ylidene) Macrocycle. Organometallics 2009, 28 (21) , 6362-6369. https://doi.org/10.1021/om900703q
    7. Andrew D. Burrows, Ross W. Harrington, Andrew S. Kirk, Mary F. Mahon, Frank Marken, John E. Warren and Michael K. Whittlesey . Synthesis, Characterization, and Electrochemistry of a Series of Iron(II) Complexes Containing Self-Assembled 1,5-Diaza-3,7-diphosphabicyclo[3.3.1]nonane Ligands. Inorganic Chemistry 2009, 48 (20) , 9924-9935. https://doi.org/10.1021/ic900874f
    8. Oliver Kaufhold, Andreas Stasch, Tania Pape, Alexander Hepp, Peter G. Edwards, Paul D. Newman and F. Ekkehardt Hahn . Metal Template Controlled Formation of [11]ane-P2CNHC Macrocycles. Journal of the American Chemical Society 2009, 131 (1) , 306-317. https://doi.org/10.1021/ja807333f
    9. Alexandre A. Mikhailine, Eunice Kim, Carsten Dingels, Alan J. Lough and Robert H. Morris. Template Syntheses of Iron(II) Complexes Containing Chiral P−N−N−P and P−N−N Ligands. Inorganic Chemistry 2008, 47 (15) , 6587-6589. https://doi.org/10.1021/ic800884c
    10. Tsutomu Mizuta, Tomoyuki Aotani, Yuki Imamura, Kazuyuki Kubo and Katsuhiko Miyoshi. Structure and Properties of the Macrocyclic Tridentate Ferrocenylphosphine Ligand (−PhPC5H4FeC5H4−)3. Organometallics 2008, 27 (11) , 2457-2463. https://doi.org/10.1021/om800057w
    11. Andrew R. Battle,, Peter G. Edwards,, Robert Haigh,, David E. Hibbs,, Dongmei Li,, Sam M. Liddiard, and, Paul D. Newman. Synthesis and Characterization of Iron(II) Complexes of 10- and 11-Membered Triphosphamacrocycles. Organometallics 2007, 26 (2) , 377-386. https://doi.org/10.1021/om060798g
    12. Marta Feliz, Francisco Estevan. Chiral-at-iron compounds with phosphanes. Coordination Chemistry Reviews 2024, 502 , 215614. https://doi.org/10.1016/j.ccr.2023.215614
    13. Qingqing Fang, Yan Xu, Xiaosheng Yan, Tao Jiang, Yunbao Jiang. Synthetic approaches to metal-coordination-directed macrocyclic complexes. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.1078432
    14. Wenjian Zhang, William Levason, Gillian Reid. Synthesis and properties of a new nine-membered triphospha-macrocyclic complex via a manganese(I) tricarbonyl template. Journal of Molecular Structure 2022, 1264 , 133268. https://doi.org/10.1016/j.molstruc.2022.133268
    15. Meixia He, Jean‐Marie Lehn. Metal Cation‐Driven Dynamic Covalent Formation of Imine and Hydrazone Ligands Displaying Synergistic Co‐catalysis and Auxiliary Amine Effects. Chemistry – A European Journal 2021, 27 (27) , 7516-7524. https://doi.org/10.1002/chem.202100662
    16. Lenali V. Wickramatunga, Thusith K. Pothupitiya, Edith Chevalier, Benson M. Kariuki, Sudantha S. Liyanage, Paul D. Newman, Peter G. Edwards. Halide and substituent dependent structural variation in copper( i ) halide complexes of 1,5,9-triphosphacyclododecanes. Dalton Transactions 2018, 47 (45) , 16126-16131. https://doi.org/10.1039/C8DT03072C
    17. Lawrence R. Gahan. Cyclononanes: The extensive chemistry of fundamentally simple ligands. Coordination Chemistry Reviews 2016, 311 , 168-223. https://doi.org/10.1016/j.ccr.2015.11.011
    18. Mikko M. Hänninen, Matthew T. Zamora, Connor S. MacNeil, Jackson P. Knott, Paul G. Hayes. Elucidation of the resting state of a rhodium NNN-pincer hydrogenation catalyst that features a remarkably upfield hydride 1 H NMR chemical shift. Chemical Communications 2016, 52 (3) , 586-589. https://doi.org/10.1039/C5CC08348F
    19. Katrina Cox, Benson M. Kariuki, Alexander Smyth, Paul D. Newman. N 2 S 2 and N 4 S 4 precursors to PS 2 macrocycles and cyclic amidinium salts. Dalton Transactions 2016, 45 (20) , 8485-8493. https://doi.org/10.1039/C6DT00806B
    20. James T. Fleming, Lee J. Higham. Primary phosphine chemistry. Coordination Chemistry Reviews 2015, 297-298 , 127-145. https://doi.org/10.1016/j.ccr.2015.03.002
    21. Yue Sun, Meng-Qi Yan, Yan Liu, Ze-Yu Lian, Tong Meng, Sheng-Hua Liu, Jian Chen, Guang-Ao Yu. Phenylphosphinacalix[3]trifuran: synthesis, coordination and application in the Suzuki–Miyaura cross-coupling reaction in water. RSC Advances 2015, 5 (87) , 71437-71440. https://doi.org/10.1039/C5RA11778J
    22. Peter G. Edwards, Mary F. Mahon, Paul D. Newman, Elisenda Reixach, Wenjian Zhang. Manganese( i ) templates for the construction of benzannulated triphosphamacrocycles. Dalton Trans. 2014, 43 (41) , 15646-15655. https://doi.org/10.1039/C4DT02203C
    23. Peter G. Edwards, Benson M. Kariuki, Paul D. Newman, Huw A. Tallis, Craig Williams. Aspects of the coordination chemistry of rac-trans-1,2-diphosphinocyclohexane and the preparation of reinforced 9aneP 3 and 9anePN 2 macrocycles. Dalton Trans. 2014, 43 (41) , 15532-15545. https://doi.org/10.1039/C4DT02239D
    24. Christian Hering, Axel Schulz, Alexander Villinger. Diatomic PN – trapped in a cyclo-tetraphosphazene. Chemical Science 2014, 5 (3) , 1064. https://doi.org/10.1039/c3sc52322e
    25. I R Knyazeva, Alexander R Burilov, Michael A Pudovik, Wolf D Habicher. Phosphorus-containing macrocyclic compounds: synthesis and properties. Russian Chemical Reviews 2013, 82 (2) , 150-186. https://doi.org/10.1070/RC2013v082n02ABEH004296
    26. S.L. Benjamin, W. Levason, G. Reid. Macrocyclic Phosphine and Arsine Ligands. 2013https://doi.org/10.1016/B978-0-12-409547-2.00978-1
    27. Charles D. Swor, David R. Tyler. Synthesis and coordination chemistry of macrocyclic phosphine ligands. Coordination Chemistry Reviews 2011, 255 (23-24) , 2860-2881. https://doi.org/10.1016/j.ccr.2011.06.002
    28. Verena Blase, Tania Pape, F. Ekkehardt Hahn. Template synthesis of a macrocycle with a mixed NHC/phosphine donor set. Journal of Organometallic Chemistry 2011, 696 (21) , 3337-3342. https://doi.org/10.1016/j.jorganchem.2011.07.010
    29. Jonathon E. Beves, Barry A. Blight, Christopher J. Campbell, David A. Leigh, Roy T. McBurney. Strategien und Taktiken für die metallgesteuerte Synthese von Rotaxanen, Knoten, Catenanen und Verschlingungen höherer Ordnung. Angewandte Chemie 2011, 123 (40) , 9428-9499. https://doi.org/10.1002/ange.201007963
    30. Jonathon E. Beves, Barry A. Blight, Christopher J. Campbell, David A. Leigh, Roy T. McBurney. Strategies and Tactics for the Metal‐Directed Synthesis of Rotaxanes, Knots, Catenanes, and Higher Order Links. Angewandte Chemie International Edition 2011, 50 (40) , 9260-9327. https://doi.org/10.1002/anie.201007963
    31. Andrey A. Karasik, Oleg G. Sinyashin. Phosphorus Based Macrocyclic Ligands: Synthesis and Applications. 2011, 375-444. https://doi.org/10.1007/978-90-481-3817-3_12
    32. Thomas Albers, Julia Baker (neé Johnstone), Simon J. Coles, Peter G. Edwards, Benson Kariuki, Paul D. Newman. Iron(ii) template synthesis of benzannulated triphospha- and triarsamacrocycles. Dalton Transactions 2011, 40 (37) , 9525. https://doi.org/10.1039/c0dt01724h
    33. Peter G. Edwards, F. Ekkehardt Hahn. Synthesis and coordination chemistry of macrocyclic ligands featuring NHC donor groups. Dalton Transactions 2011, 40 (40) , 10278. https://doi.org/10.1039/c1dt10864f
    34. Marco Hartmann, Abdishakur Haji-Abdi, Kai Abersfelder, Peter R. Haycock, Andrew J. P. White, David Scheschkewitz. Synthesis, characterisation and complexation of phosphino disilenes. Dalton Transactions 2010, 39 (39) , 9288. https://doi.org/10.1039/c0dt00180e
    35. A. A. Karasik, D. V. Kulikov, A. S. Balueva, S. N. Ignat'eva, O. N. Kataeva, P. Lönnecke, A. V. Kozlov, S. K. Latypov, E. Hey-Hawkins, O. G. Sinyashin. P,N-Containing cyclophanes with large helical hydrophobic cavities: prospective precursors for the design of a molecular reactor. Dalton Trans. 2009, 42 (3) , 490-494. https://doi.org/10.1039/B812508B
    36. Peter G. Edwards, F. Ekkehardt Hahn, Matthieu Limon, Paul D. Newman, Benson M. Kariuki, Andreas Stasch. Manganese complexes of phosphino-μ-phosphido ligands. Dalton Transactions 2009, 26 (26) , 5115. https://doi.org/10.1039/b822870a
    37. Huw A. Tallis, Paul D. Newman, Peter G. Edwards, Liling Ooi, Andreas Stasch. 1-Trimethylsilylphosphirane as a ligand and as a stable masked reagent for phosphirane. Dalton Trans. 2008, 89 (1) , 47-53. https://doi.org/10.1039/B715327A
    38. Rebekka Loschen, Christoph Loschen, Walter Frank, Christian Ganter. Synthesis, Structure and Reactivity of Trimethylsilyl‐Substituted Phosphametallocenes. European Journal of Inorganic Chemistry 2007, 2007 (4) , 553-561. https://doi.org/10.1002/ejic.200600914
    39. Thomas Albers, Peter G. Edwards. Template synthesis of benzannulated triphosphacyclononanes—a new class of phosphacrowns via template assisted nucleophilic P–C bond formation. Chem. Commun. 2007, 99 (8) , 858-860. https://doi.org/10.1039/B613672A
    40. Jason M. Lynam. Nitrogen, phosphorus, arsenic, antimony and bismuth. Annual Reports Section "A" (Inorganic Chemistry) 2007, 103 , 104. https://doi.org/10.1039/b612608c
    41. Stephen J. Archibald. Macrocyclic coordination chemistry. Annual Reports Section "A" (Inorganic Chemistry) 2007, 103 , 264. https://doi.org/10.1039/b612865n
    42. Oliver Kaufhold, Andreas Stasch, Peter G. Edwards, F. Ekkehardt Hahn. Template controlled synthesis of a coordinated [11]ane-P2CNHC macrocycle. Chemical Communications 2007, 35 (18) , 1822. https://doi.org/10.1039/b617033a