ACS Publications. Most Trusted. Most Cited. Most Read
Effect of Metal Ions on Photoluminescence, Charge Transport, Magnetic and Catalytic Properties of All-Inorganic Colloidal Nanocrystals and Nanocrystal Solids
My Activity

Figure 1Loading Img
    Article

    Effect of Metal Ions on Photoluminescence, Charge Transport, Magnetic and Catalytic Properties of All-Inorganic Colloidal Nanocrystals and Nanocrystal Solids
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and James Frank Institute, University of Chicago, Illinois 60637, United States
    Center for Nanoscale Materials, §Chemical Sciences and Engineering, and Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 33, 13604–13615
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja301285x
    Published July 20, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Colloidal semiconductor nanocrystals (NCs) provide convenient “building blocks” for solution-processed solar cells, light-emitting devices, photocatalytic systems, etc. The use of inorganic ligands for colloidal NCs dramatically improved inter-NC charge transport, enabling fast progress in NC-based devices. Typical inorganic ligands (e.g., Sn2S64–, S2–) are represented by negatively charged ions that bind covalently to electrophilic metal surface sites. The binding of inorganic charged species to the NC surface provides electrostatic stabilization of NC colloids in polar solvents without introducing insulating barriers between NCs. In this work we show that cationic species needed for electrostatic balance of NC surface charges can also be employed for engineering almost every property of all-inorganic NCs and NC solids, including photoluminescence efficiency, electron mobility, doping, magnetic susceptibility, and electrocatalytic performance. We used a suite of experimental techniques to elucidate the impact of various metal ions on the characteristics of all-inorganic NCs and developed strategies for engineering and optimizing NC-based materials.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional experimental details, figures, and tables. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 155 publications.

    1. Yufeng Qin, Xiang Chen, Zhuo Zhao, Chaodan Pu. Assembled Quantum Dot Porous Clusters for Enhanced Photocatalytic Reduction of Quinone to Hydroquinone. ACS Catalysis 2024, 14 (3) , 1243-1251. https://doi.org/10.1021/acscatal.3c04492
    2. Yunmo Sung, Hyun Beom Kim, Ji Heon Kim, Yoona Noh, Jaesang Yu, Jaesung Yang, Tae Hyun Kim, Juwon Oh. Facile Ligand Exchange of Ionic Ligand-Capped Amphiphilic Ag2S Nanocrystals for High Conductive Thin Films. ACS Applied Materials & Interfaces 2024, 16 (3) , 3853-3861. https://doi.org/10.1021/acsami.3c15472
    3. Keaton V. Prather, Jonathan T. Stoffel, Emily Y. Tsui. Redox Reactions at Colloidal Semiconductor Nanocrystal Surfaces. Chemistry of Materials 2023, 35 (9) , 3386-3403. https://doi.org/10.1021/acs.chemmater.3c00481
    4. Hongxing Hao, Jingwen Ai, Chenxiao Shi, Dexia Zhou, Lingbo Meng, Hongtao Bian, Yu Fang. Structural Dynamics of Short Ligands on the Surface of ZnSe Semiconductor Nanocrystals. The Journal of Physical Chemistry Letters 2022, 13 (14) , 3158-3164. https://doi.org/10.1021/acs.jpclett.2c00849
    5. Allison M. Green, Charles K. Ofosu, Jiho Kang, Eric V. Anslyn, Thomas M. Truskett, Delia J. Milliron. Assembling Inorganic Nanocrystal Gels. Nano Letters 2022, 22 (4) , 1457-1466. https://doi.org/10.1021/acs.nanolett.1c04707
    6. Wenran Wang, Meng Zhang, Zhenxiao Pan, Gill M. Biesold, Shuang Liang, Huashang Rao, Zhiqun Lin, Xinhua Zhong. Colloidal Inorganic Ligand-Capped Nanocrystals: Fundamentals, Status, and Insights into Advanced Functional Nanodevices. Chemical Reviews 2022, 122 (3) , 4091-4162. https://doi.org/10.1021/acs.chemrev.1c00478
    7. Shangxin Lin, Xiaogang Peng. Current Status and Challenges of Solar Cells Based on Semiconductor Nanocrystals. Energy & Fuels 2021, 35 (23) , 18928-18941. https://doi.org/10.1021/acs.energyfuels.1c02423
    8. Yunfeng Shi, Sung Jun Lim, Liang Ma, Ning Duan, Xin Yan, Xiaole Tang, Wenyan Yang, Shu Yang, Jiaxin Hu, Andrew M. Smith, Xinyuan Zhu. Inorganic-Ligand Quantum Dots Meet Inorganic-Ligand Semiconductor Nanoplatelets: A Promising Fusion to Construct All-Inorganic Assembly. Inorganic Chemistry 2021, 60 (10) , 6994-6998. https://doi.org/10.1021/acs.inorgchem.1c00880
    9. Meeree Kim, G. Hwan Park, Sohyeon Seo, Viet Quoc Bui, Yunhee Cho, Yeseul Hong, Yoshiyuki Kawazoe, Hyoyoung Lee. Uncovering the Role of Countercations in Ligand Exchange of WSe2: Tuning the d-Band Center toward Improved Hydrogen Desorption. ACS Applied Materials & Interfaces 2021, 13 (9) , 11403-11413. https://doi.org/10.1021/acsami.0c19865
    10. Paris Papagiorgis, Demetra Tsokkou, Kushagra Gahlot, Loredana Protesescu, Andreas Manoli, Felix Hermerschmidt, Constantinos Christodoulou, Stelios A. Choulis, Maksym V. Kovalenko, Andreas Othonos, Grigorios Itskos. Exciton–Ligand Interactions in PbS Quantum Dots Capped with Metal Chalcogenides. The Journal of Physical Chemistry C 2020, 124 (50) , 27848-27857. https://doi.org/10.1021/acs.jpcc.0c09790
    11. Da Hwi Gu, Jungsoo Lee, Hyeong Woo Ban, Gibok Lee, Minju Song, Wooyong Choi, Seongheon Baek, Hyewon Jeong, Song Yeul Lee, Yonghoon Choi, Jongnam Park, Yong Il Park, Jae Sung Son. Colloidal Suprastructures Self-Organized from Oppositely Charged All-Inorganic Nanoparticles. Chemistry of Materials 2020, 32 (19) , 8662-8671. https://doi.org/10.1021/acs.chemmater.0c03091
    12. Doris Cadavid, Silvia Ortega, Sergio Illera, Yu Liu, Maria Ibáñez, Alexey Shavel, Yu Zhang, Mengyao Li, Antonio M. López, Germán Noriega, Oscar Juan Durá, M. A. López de la Torre, Joan Daniel Prades, Andreu Cabot. Influence of the Ligand Stripping on the Transport Properties of Nanoparticle-Based PbSe Nanomaterials. ACS Applied Energy Materials 2020, 3 (3) , 2120-2129. https://doi.org/10.1021/acsaem.9b02137
    13. Wenran Wang, Zhenxiao Pan, Huashang Rao, Guizhi Zhang, Han Song, Zhengyan Zhang, Xinhua Zhong. Proton Initiated Ligand Exchange Reactions for Colloidal Nanocrystals Functionalized by Inorganic Ligands with Extremely Weak Coordination Ability. Chemistry of Materials 2020, 32 (1) , 630-637. https://doi.org/10.1021/acs.chemmater.9b04707
    14. Wei Zhong, Xinhe Wu, Ping Wang, Jiajie Fan, Huogen Yu. Homojunction CdS Photocatalysts with a Massive S2–-Adsorbed Surface Phase: One-Step Facile Synthesis and High H2-Evolution Performance. ACS Sustainable Chemistry & Engineering 2020, 8 (1) , 543-551. https://doi.org/10.1021/acssuschemeng.9b06046
    15. Yuanyuan Wang, Jia-Ahn Pan, Haoqi Wu, Dmitri V. Talapin. Direct Wavelength-Selective Optical and Electron-Beam Lithography of Functional Inorganic Nanomaterials. ACS Nano 2019, 13 (12) , 13917-13931. https://doi.org/10.1021/acsnano.9b05491
    16. Yadong Zhang, Xiuwen Zhang, Xiaoqing Gao. Detecting Semiconductor Nanoplatelets with Distinctive Crystal Structures and Thickness by Magnetic Circular Dichroism. The Journal of Physical Chemistry C 2019, 123 (48) , 29331-29336. https://doi.org/10.1021/acs.jpcc.9b09108
    17. B. Vercelli, T. Virgili, M. Pasini, A. Berlin, G. Zotti. Multilayers of Carbodithioate and Sulfide-Linked CdSe Nanocrystals: Progressive Increase of Exciton Delocalization. The Journal of Physical Chemistry C 2019, 123 (37) , 23159-23166. https://doi.org/10.1021/acs.jpcc.9b04276
    18. Abigail R. Freyer, Peter C. Sercel, Zhentao Hou, Benjamin H. Savitzky, Lena F. Kourkoutis, Alexander L. Efros, Todd D. Krauss. Explaining the Unusual Photoluminescence of Semiconductor Nanocrystals Doped via Cation Exchange. Nano Letters 2019, 19 (7) , 4797-4803. https://doi.org/10.1021/acs.nanolett.9b02284
    19. Lixia Ren, Min Wang, Shuanhu Wang, Hong Yan, Zhan Zhang, Ming Li, Zhaoting Zhang, Kexin Jin. Doped Manipulation of Photoluminescence and Carrier Lifetime from CH3NH3PbI3 Perovskite Thin Films. ACS Applied Materials & Interfaces 2019, 11 (17) , 16174-16180. https://doi.org/10.1021/acsami.9b01506
    20. Seung-Wook Lee, Hyungmok Joh, Mingi Seong, Woo Seok Lee, Ji-Hyuk Choi, Soong Ju Oh. Transition States of Nanocrystal Thin Films during Ligand-Exchange Processes for Potential Applications in Wearable Sensors. ACS Applied Materials & Interfaces 2018, 10 (30) , 25502-25510. https://doi.org/10.1021/acsami.8b06754
    21. Feng Zhu, Noreen E. Gentry, Long Men, Miles A. White, Javier Vela. Aliovalent Doping of Lead Halide Perovskites: Exploring the CH3NH3PbI3–(CH3NH3)3Sb2I9 Nanocrystalline Phase Space. The Journal of Physical Chemistry C 2018, 122 (25) , 14082-14090. https://doi.org/10.1021/acs.jpcc.8b01191
    22. Shinya Kano, Yasuhiro Tada, Satoshi Matsuda, Minoru Fujii. Solution Processing of Hydrogen-Terminated Silicon Nanocrystal for Flexible Electronic Device. ACS Applied Materials & Interfaces 2018, 10 (24) , 20672-20678. https://doi.org/10.1021/acsami.8b04072
    23. Kyle J. Schnitzenbaumer, Gordana Dukovic. Comparison of Phonon Damping Behavior in Quantum Dots Capped with Organic and Inorganic Ligands. Nano Letters 2018, 18 (6) , 3667-3674. https://doi.org/10.1021/acs.nanolett.8b00800
    24. Wenhui Hu, John Ludwig, Brian Pattengale, Sizhuo Yang, Cunming Liu, Xiaobing Zuo, Xiaoyi Zhang, and Jier Huang . Unravelling the Correlation of Electronic Structure and Carrier Dynamics in CuInS2 Nanoparticles. The Journal of Physical Chemistry C 2018, 122 (1) , 974-980. https://doi.org/10.1021/acs.jpcc.7b11369
    25. Ping Wang, Minmin Wang, Jie Zhang, Chuanping Li, Xiaolong Xu, and Yongdong Jin . Shell Thickness Engineering Significantly Boosts the Photocatalytic H2 Evolution Efficiency of CdS/CdSe Core/Shell Quantum Dots. ACS Applied Materials & Interfaces 2017, 9 (41) , 35712-35720. https://doi.org/10.1021/acsami.7b07211
    26. Maria Ibáñez, Roger Hasler, Yu Liu, Oleksandr Dobrozhan, Olga Nazarenko, Doris Cadavid, Andreu Cabot, Maksym V. Kovalenko. Tuning p-Type Transport in Bottom-Up-Engineered Nanocrystalline Pb Chalcogenides Using Alkali Metal Chalcogenides as Capping Ligands. Chemistry of Materials 2017, 29 (17) , 7093-7097. https://doi.org/10.1021/acs.chemmater.7b02967
    27. Zhenwei Ren, Juan Yu, Zhenxiao Pan, Jizheng Wang, and Xinhua Zhong . Inorganic Ligand Thiosulfate-Capped Quantum Dots for Efficient Quantum Dot Sensitized Solar Cells. ACS Applied Materials & Interfaces 2017, 9 (22) , 18936-18944. https://doi.org/10.1021/acsami.7b03715
    28. Qianglu Lin, Hyeong Jin Yun, Wenyong Liu, Hyung-Jun Song, Nikolay S. Makarov, Oleksandr Isaienko, Tom Nakotte, Gen Chen, Hongmei Luo, Victor I. Klimov, and Jeffrey M. Pietryga . Phase-Transfer Ligand Exchange of Lead Chalcogenide Quantum Dots for Direct Deposition of Thick, Highly Conductive Films. Journal of the American Chemical Society 2017, 139 (19) , 6644-6653. https://doi.org/10.1021/jacs.7b01327
    29. Vladimir Sayevich, Chris Guhrenz, Volodymyr M. Dzhagan, Maria Sin, Matthias Werheid, Bin Cai, Lars Borchardt, Johannes Widmer, Dietrich R.T. Zahn, Eike Brunner, Vladimir Lesnyak, Nikolai Gaponik, and Alexander Eychmüller . Hybrid N-Butylamine-Based Ligands for Switching the Colloidal Solubility and Regimentation of Inorganic-Capped Nanocrystals. ACS Nano 2017, 11 (2) , 1559-1571. https://doi.org/10.1021/acsnano.6b06996
    30. Juhee Lee, Jeehye Yang, Chanil Park, Jung Hyun Kim, and Moon Sung Kang . Electronic Properties of Cu2–xSe Nanocrystal Thin Films Treated with Short Ligand (S2–, SCN–, and Cl–) Solutions. The Journal of Physical Chemistry C 2016, 120 (27) , 14899-14905. https://doi.org/10.1021/acs.jpcc.6b03214
    31. Hyeong Jin Yun, Taejong Paik, Benjamin Diroll, Michael E. Edley, Jason B. Baxter, and Christopher B. Murray . Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System. ACS Applied Materials & Interfaces 2016, 8 (23) , 14692-14700. https://doi.org/10.1021/acsami.6b05552
    32. Zhuolei Zhang, Beibei Xu, Lin Zhang, and Shenqiang Ren . Hybrid Chalcopyrite–Polymer Magnetoconducting Materials. ACS Applied Materials & Interfaces 2016, 8 (18) , 11215-11220. https://doi.org/10.1021/acsami.6b03362
    33. Simon C. Boehme, Daniël Vanmaekelbergh, Wiel H. Evers, Laurens D. A. Siebbeles, and Arjan J. Houtepen . In Situ Spectroelectrochemical Determination of Energy Levels and Energy Level Offsets in Quantum-Dot Heterojunctions. The Journal of Physical Chemistry C 2016, 120 (9) , 5164-5173. https://doi.org/10.1021/acs.jpcc.5b12016
    34. Ryan W. Crisp, Rebecca Callahan, Obadiah G. Reid, Dmitriy S. Dolzhnikov, Dmitri V. Talapin, Garry Rumbles, Joseph M. Luther, and Nikos Kopidakis . Photoconductivity of CdTe Nanocrystal-Based Thin Films: Te2– Ligands Lead To Charge Carrier Diffusion Lengths Over 2 μm. The Journal of Physical Chemistry Letters 2015, 6 (23) , 4815-4821. https://doi.org/10.1021/acs.jpclett.5b02252
    35. Yuming Dong, Ruixian Wu, Pingping Jiang, Guangli Wang, Yanmei Chen, Xiuming Wu, and Chi Zhang . Efficient Photoelectrochemical Hydrogen Generation from Water Using a Robust Photocathode Formed by CdTe QDs and Nickel Ion. ACS Sustainable Chemistry & Engineering 2015, 3 (10) , 2429-2434. https://doi.org/10.1021/acssuschemeng.5b00450
    36. Ashley R. Marshall, Matthew R. Young, Arthur J. Nozik, Matthew C. Beard, and Joseph M. Luther . Exploration of Metal Chloride Uptake for Improved Performance Characteristics of PbSe Quantum Dot Solar Cells. The Journal of Physical Chemistry Letters 2015, 6 (15) , 2892-2899. https://doi.org/10.1021/acs.jpclett.5b01214
    37. Vladimir Sayevich, Nikolai Gaponik, Matthias Plötner, Marta Kruszynska, Thomas Gemming, Volodymyr M. Dzhagan, Shahab Akhavan, Dietrich R. T. Zahn, Hilmi Volkan Demir, and Alexander Eychmüller . Stable Dispersion of Iodide-Capped PbSe Quantum Dots for High-Performance Low-Temperature Processed Electronics and Optoelectronics. Chemistry of Materials 2015, 27 (12) , 4328-4337. https://doi.org/10.1021/acs.chemmater.5b00793
    38. Michaela Meyns, Svenja Willing, Hauke Lehmann, and Christian Klinke . Metal Domain Size Dependent Electrical Transport in Pt-CdSe Hybrid Nanoparticle Monolayers. ACS Nano 2015, 9 (6) , 6077-6087. https://doi.org/10.1021/acsnano.5b01221
    39. Kyle J. Schnitzenbaumer, Tais Labrador, and Gordana Dukovic . Impact of Chalcogenide Ligands on Excited State Dynamics in CdSe Quantum Dots. The Journal of Physical Chemistry C 2015, 119 (23) , 13314-13324. https://doi.org/10.1021/acs.jpcc.5b02880
    40. Taishi Nishihara, Hirokazu Tahara, Makoto Okano, Masashi Ono, and Yoshihiko Kanemitsu . Fast Dissociation and Reduced Auger Recombination of Multiple Excitons in Closely Packed PbS Nanocrystal Thin Films. The Journal of Physical Chemistry Letters 2015, 6 (8) , 1327-1332. https://doi.org/10.1021/acs.jpclett.5b00293
    41. Maksym V. Kovalenko, Liberato Manna, Andreu Cabot, Zeger Hens, Dmitri V. Talapin, Cherie R. Kagan, Victor I. Klimov, Andrey L. Rogach, Peter Reiss, Delia J. Milliron, Philippe Guyot-Sionnnest, Gerasimos Konstantatos, Wolfgang J. Parak, Taeghwan Hyeon, Brian A. Korgel, Christopher B. Murray, and Wolfgang Heiss . Prospects of Nanoscience with Nanocrystals. ACS Nano 2015, 9 (2) , 1012-1057. https://doi.org/10.1021/nn506223h
    42. Riya Bose, Ghada H. Ahmed, Erkki Alarousu, Manas R. Parida, Ahmed L. Abdelhady, Osman M. Bakr, and Omar F. Mohammed . Direct Femtosecond Observation of Charge Carrier Recombination in Ternary Semiconductor Nanocrystals: The Effect of Composition and Shelling. The Journal of Physical Chemistry C 2015, 119 (6) , 3439-3446. https://doi.org/10.1021/acs.jpcc.5b00204
    43. Loredana Protesescu, Maarten Nachtegaal, Oleksandr Voznyy, Olga Borovinskaya, Aaron J. Rossini, Lyndon Emsley, Christophe Copéret, Detlef Günther, Edward H. Sargent, and Maksym V. Kovalenko . Atomistic Description of Thiostannate-Capped CdSe Nanocrystals: Retention of Four-Coordinate SnS4 Motif and Preservation of Cd-Rich Stoichiometry. Journal of the American Chemical Society 2015, 137 (5) , 1862-1874. https://doi.org/10.1021/ja510862c
    44. G. Shiva Shanker, Bharat Tandon, Tomohiro Shibata, Soma Chattopadhyay, and Angshuman Nag . Doping Controls Plasmonics, Electrical Conductivity, and Carrier-Mediated Magnetic Coupling in Fe and Sn Codoped In2O3 Nanocrystals: Local Structure Is the Key. Chemistry of Materials 2015, 27 (3) , 892-900. https://doi.org/10.1021/cm5040936
    45. Emmanuel Lhuillier, Silvia Pedetti, Sandrine Ithurria, Brice Nadal, Hadrien Heuclin, and Benoit Dubertret . Two-Dimensional Colloidal Metal Chalcogenides Semiconductors: Synthesis, Spectroscopy, and Applications. Accounts of Chemical Research 2015, 48 (1) , 22-30. https://doi.org/10.1021/ar500326c
    46. Sergii Yakunin, Dmitry N. Dirin, Loredana Protesescu, Mykhailo Sytnyk, Sajjad Tollabimazraehno, Markus Humer, Florian Hackl, Thomas Fromherz, Maryna I. Bodnarchuk, Maksym V. Kovalenko, and Wolfgang Heiss . High Infrared Photoconductivity in Films of Arsenic-Sulfide-Encapsulated Lead-Sulfide Nanocrystals. ACS Nano 2014, 8 (12) , 12883-12894. https://doi.org/10.1021/nn5067478
    47. Kyle J. Schnitzenbaumer and Gordana Dukovic . Chalcogenide-Ligand Passivated CdTe Quantum Dots Can Be Treated as Core/Shell Semiconductor Nanostructures. The Journal of Physical Chemistry C 2014, 118 (48) , 28170-28178. https://doi.org/10.1021/jp509224n
    48. Sukyung Choi, Ho Jin, and Sungjee Kim . SnS44– Metal Chalcogenide Ligand, S2– Metal Free Ligand, and Organic Surface Ligand Toward Efficient CdSe Quantum Dot- Sensitized Solar Cells. The Journal of Physical Chemistry C 2014, 118 (30) , 17019-17027. https://doi.org/10.1021/jp5005242
    49. Pavel Moroz, Geethika Liyanage, Natalia N. Kholmicheva, Sergii Yakunin, Upendra Rijal, Prakash Uprety, Ebin Bastola, Bryan Mellott, Kamal Subedi, Liangfeng Sun, Maksym V. Kovalenko, and Mikhail Zamkov . Infrared Emitting PbS Nanocrystal Solids through Matrix Encapsulation. Chemistry of Materials 2014, 26 (14) , 4256-4264. https://doi.org/10.1021/cm501739h
    50. Hao Zhang, Jaeyoung Jang, Wenyong Liu, and Dmitri V. Talapin . Colloidal Nanocrystals with Inorganic Halide, Pseudohalide, and Halometallate Ligands. ACS Nano 2014, 8 (7) , 7359-7369. https://doi.org/10.1021/nn502470v
    51. G. Krishnamurthy Grandhi, K. Swathi, K. S. Narayan, and Ranjani Viswanatha . Cu Doping in Ligand Free CdS Nanocrystals: Conductivity and Electronic Structure Study. The Journal of Physical Chemistry Letters 2014, 5 (13) , 2382-2389. https://doi.org/10.1021/jz5009664
    52. Zhi-Jun Li, Xiang-Bing Fan, Xu-Bing Li, Jia-Xin Li, Chen Ye, Jiu-Ju Wang, Shan Yu, Cheng-Bo Li, Yu-Ji Gao, Qing-Yuan Meng, Chen-Ho Tung, and Li-Zhu Wu . Visible Light Catalysis-Assisted Assembly of Nih-QD Hollow Nanospheres in Situ via Hydrogen Bubbles. Journal of the American Chemical Society 2014, 136 (23) , 8261-8268. https://doi.org/10.1021/ja5047236
    53. Evelyn L. Rosen, April M. Sawvel, Delia J. Milliron, and Brett A. Helms . Influence of Surface Composition on Electronic Transport through Naked Nanocrystal Networks. Chemistry of Materials 2014, 26 (7) , 2214-2217. https://doi.org/10.1021/cm404149u
    54. Hyeong Jin Yun, Taejong Paik, Michael E. Edley, Jason B. Baxter, and Christopher B. Murray . Enhanced Charge Transfer Kinetics of CdSe Quantum Dot-Sensitized Solar Cell by Inorganic Ligand Exchange Treatments. ACS Applied Materials & Interfaces 2014, 6 (5) , 3721-3728. https://doi.org/10.1021/am500026a
    55. Jaeyoung Jang, Wenyong Liu, Jae Sung Son, and Dmitri V. Talapin . Temperature-Dependent Hall and Field-Effect Mobility in Strongly Coupled All-Inorganic Nanocrystal Arrays. Nano Letters 2014, 14 (2) , 653-662. https://doi.org/10.1021/nl403889u
    56. Matthew G. Panthani, J. Matthew Kurley, Ryan W. Crisp, Travis C. Dietz, Taha Ezzyat, Joseph M. Luther, and Dmitri V. Talapin . High Efficiency Solution Processed Sintered CdTe Nanocrystal Solar Cells: The Role of Interfaces. Nano Letters 2014, 14 (2) , 670-675. https://doi.org/10.1021/nl403912w
    57. Jesse H. Engel and A. Paul Alivisatos . Postsynthetic Doping Control of Nanocrystal Thin Films: Balancing Space Charge to Improve Photovoltaic Efficiency. Chemistry of Materials 2014, 26 (1) , 153-162. https://doi.org/10.1021/cm402383r
    58. Ji-Young Kim and Nicholas A. Kotov . Charge Transport Dilemma of Solution-Processed Nanomaterials. Chemistry of Materials 2014, 26 (1) , 134-152. https://doi.org/10.1021/cm402675k
    59. Illan J. Kramer and Edward H. Sargent . The Architecture of Colloidal Quantum Dot Solar Cells: Materials to Devices. Chemical Reviews 2014, 114 (1) , 863-882. https://doi.org/10.1021/cr400299t
    60. M. Jagadeeswara Rao, Tomohiro Shibata, Soma Chattopadhyay, and Angshuman Nag . Origin of Photoluminescence and XAFS Study of (ZnS)1–x(AgInS2)x Nanocrystals. The Journal of Physical Chemistry Letters 2014, 5 (1) , 167-173. https://doi.org/10.1021/jz402443y
    61. Nicholas C. Anderson, Mark P. Hendricks, Joshua J. Choi, and Jonathan S. Owen . Ligand Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate Displacement and Binding. Journal of the American Chemical Society 2013, 135 (49) , 18536-18548. https://doi.org/10.1021/ja4086758
    62. Hao Zhang, Jae Sung Son, Jaeyoung Jang, Jong-Soo Lee, Wee-Liat Ong, Jonathan A. Malen, and Dmitri V. Talapin . Bi1–xSbx Alloy Nanocrystals: Colloidal Synthesis, Charge Transport, and Thermoelectric Properties. ACS Nano 2013, 7 (11) , 10296-10306. https://doi.org/10.1021/nn404692s
    63. Saikat Debnath, Roby Cherian, and Priya Mahadevan . The Role of Passivants on the Stoichiometry of CdSe and GaAs Nanocrystals. The Journal of Physical Chemistry C 2013, 117 (42) , 21981-21987. https://doi.org/10.1021/jp401798y
    64. David K. Kim, Aaron T. Fafarman, Benjamin T. Diroll, Silvia H. Chan, Thomas R. Gordon, Christopher B. Murray, and Cherie R. Kagan . Solution-Based Stoichiometric Control over Charge Transport in Nanocrystalline CdSe Devices. ACS Nano 2013, 7 (10) , 8760-8770. https://doi.org/10.1021/nn403132x
    65. Ryan W. Crisp, Joel N. Schrauben, Matthew C. Beard, Joseph M. Luther, and Justin C. Johnson . Coherent Exciton Delocalization in Strongly Coupled Quantum Dot Arrays. Nano Letters 2013, 13 (10) , 4862-4869. https://doi.org/10.1021/nl402725m
    66. David Zhitomirsky, Oleksandr Voznyy, Sjoerd Hoogland, and Edward H. Sargent . Measuring Charge Carrier Diffusion in Coupled Colloidal Quantum Dot Solids. ACS Nano 2013, 7 (6) , 5282-5290. https://doi.org/10.1021/nn402197a
    67. Joseph M. Luther and Jeffrey M. Pietryga . Stoichiometry Control in Quantum Dots: A Viable Analog to Impurity Doping of Bulk Materials. ACS Nano 2013, 7 (3) , 1845-1849. https://doi.org/10.1021/nn401100n
    68. O. Voznyy, S. M. Thon, A. H. Ip, and E. H. Sargent . Dynamic Trap Formation and Elimination in Colloidal Quantum Dots. The Journal of Physical Chemistry Letters 2013, 4 (6) , 987-992. https://doi.org/10.1021/jz400125r
    69. Oleksandr Voznyy, David Zhitomirsky, Philipp Stadler, Zhijun Ning, Sjoerd Hoogland, and Edward H. Sargent . A Charge-Orbital Balance Picture of Doping in Colloidal Quantum Dot Solids. ACS Nano 2012, 6 (9) , 8448-8455. https://doi.org/10.1021/nn303364d
    70. Raktim Baruah, Krishan Kumar, Jan Dellith, Maria Wächtler. Tuning high-order multiexciton properties of colloidal CdSe quantum dots via size and surface modification. Physical Chemistry Chemical Physics 2025, 27 (21) , 11066-11078. https://doi.org/10.1039/D5CP00608B
    71. Tianxu Zhang, Xuan Yang, Bin Xie, Xiaobing Luo. Inorganic ligand capped quantum dot light-emitting diodes: status and perspective. Nanotechnology 2025, 36 (10) , 102001. https://doi.org/10.1088/1361-6528/ada2f1
    72. Jungwook Choi, Byung Hyo Kim. Ligands of Nanoparticles and Their Influence on the Morphologies of Nanoparticle-Based Films. Nanomaterials 2024, 14 (20) , 1685. https://doi.org/10.3390/nano14201685
    73. Tanveer Ahmed, Hao‐Chung Kuo, Der‐Hsien Lien. Tailoring Electronic Properties of Colloidal Quantum Dots for Efficient Optoelectronics. Advanced Photonics Research 2024, 5 (4) https://doi.org/10.1002/adpr.202300216
    74. S. Deepthi, Y.S. Vidya, H.C. Manjunatha, K.N. Sridhar, S. Manjunatha, R. Munirathnam, T. Ganesh. Comparison of cytotoxic and photoluminescence properties between Fe 2 O 3 and Fe 3 O 4 . Inorganic Chemistry Communications 2023, 156 , 111101. https://doi.org/10.1016/j.inoche.2023.111101
    75. Yijiang Chen, Shan Yu, Xiang-Bing Fan, Li-Zhu Wu, Ying Zhou. Mechanistic insights into the influence of surface ligands on quantum dots for photocatalysis. Journal of Materials Chemistry A 2023, 11 (16) , 8497-8514. https://doi.org/10.1039/D2TA09293J
    76. Yuanyuan Tian, Hongqiang Luo, Mengyu Chen, Cheng Li, Stephen V. Kershaw, Rong Zhang, Andrey L. Rogach. Mercury chalcogenide colloidal quantum dots for infrared photodetection: from synthesis to device applications. Nanoscale 2023, 15 (14) , 6476-6504. https://doi.org/10.1039/D2NR07309A
    77. Hui-Li Wu, Ming-Yu Qi, Zi-Rong Tang, Yi-Jun Xu. Semiconductor quantum dots: a versatile platform for photoredox organic transformation. Journal of Materials Chemistry A 2023, 11 (7) , 3262-3280. https://doi.org/10.1039/D2TA09423A
    78. Jiho Kang, Zachary M. Sherman, Hannah S. N. Crory, Diana L. Conrad, Marina W. Berry, Benjamin J. Roman, Eric V. Anslyn, Thomas M. Truskett, Delia J. Milliron. Modular mixing in plasmonic metal oxide nanocrystal gels with thermoreversible links. The Journal of Chemical Physics 2023, 158 (2) https://doi.org/10.1063/5.0130817
    79. Junjun Ge, Jing Liang, Xufeng Chen, Yalei Deng, Pengwei Xiao, Jun-Jie Zhu, Yuanyuan Wang. Designing inorganically functionalized magic-size II–VI clusters and unraveling their surface states. Chemical Science 2022, 13 (40) , 11755-11763. https://doi.org/10.1039/D2SC03868D
    80. Lei Yang, Xiaoqi Zhou, Yuzhong Chen, Yufeng Qin, Xueqian Kong, Haiming Zhu, Chaodan Pu, Xiaogang Peng. Efficient quasi-stationary charge transfer from quantum dots to acceptors physically-adsorbed in the ligand monolayer. Nano Research 2022, 15 (1) , 617-626. https://doi.org/10.1007/s12274-021-3528-3
    81. Jianrong Guo, Hua Tian, Jianzheng Yang, Junhui He. Self-assembly of mercury-ion recognizing CuS nanocrystals into 3D sponge-like aerogel towards superior mercury capturer with outstanding selectivity and efficiency. Chemical Engineering Journal 2021, 426 , 130868. https://doi.org/10.1016/j.cej.2021.130868
    82. Ruiyun Guo, Ke Zhang, Shangdong Ji, Yangzi Zheng, Mingshang Jin. Recent advances in nonmetallic atom-doped metal nanocrystals: Synthesis and catalytic applications. Chinese Chemical Letters 2021, 32 (9) , 2679-2692. https://doi.org/10.1016/j.cclet.2021.03.041
    83. Angélique Gillet, Sébastien Cher, Marine Tassé, Thomas Blon, Sandra Alves, Guillaume Izzet, Bruno Chaudret, Anna Proust, Phillipe Demont, Florence Volatron, Simon Tricard. Polarizability is a key parameter for molecular electronics. Nanoscale Horizons 2021, 6 (3) , 271-276. https://doi.org/10.1039/D0NH00583E
    84. Xiao Liu, Donglian Wen, Zheng Liu, Jun Wei, Donglei Bu, Shaoming Huang. Thiocyanate-capped CdSe@Zn1-XCdXS gradient alloyed quantum dots for efficient photocatalytic hydrogen evolution. Chemical Engineering Journal 2020, 402 , 126178. https://doi.org/10.1016/j.cej.2020.126178
    85. Nagaraj Nandihalli, Chia-Jyi Liu, Takao Mori. Polymer based thermoelectric nanocomposite materials and devices: Fabrication and characteristics. Nano Energy 2020, 78 , 105186. https://doi.org/10.1016/j.nanoen.2020.105186
    86. Shan Yu, Fan Wu, Pengkun Zou, Xiang-Bing Fan, Chao Duan, Meng Dan, Zhanghui Xie, Qian Zhang, Fengying Zhang, Heng Zheng, Ying Zhou. Highly value-added utilization of H 2 S in Na 2 SO 3 solution over Ca–CdS nanocrystal photocatalysts. Chemical Communications 2020, 56 (91) , 14227-14230. https://doi.org/10.1039/D0CC05894G
    87. Gui-Lin Hu, Rong Hu, Zhi-Hong Liu, Kai Wang, Xiang-Yang Yan, Hong-Yan Wang. Tri-functional molecular relay to fabricate size-controlled CoO x nanoparticles and WO 3 photoanode for an efficient photoelectrochemical water oxidation. Catalysis Science & Technology 2020, 10 (16) , 5677-5687. https://doi.org/10.1039/D0CY00483A
    88. Wei Zhong, Ying Huang, Xuefei Wang, Jiajie Fan, Huogen Yu. Colloidal CdS and CdZnS nanocrystal photocatalysts with massive S 2− -adsorption: one-step facile synthesis and highly efficient H 2 -evolution performance. Chemical Communications 2020, 56 (65) , 9316-9319. https://doi.org/10.1039/D0CC01191F
    89. Shan Yu, Zhanghui Xie, Maoxia Ran, Fan Wu, Yunqian Zhong, Meng Dan, Ying Zhou. Zinc ions modified InP quantum dots for enhanced photocatalytic hydrogen evolution from hydrogen sulfide. Journal of Colloid and Interface Science 2020, 573 , 71-77. https://doi.org/10.1016/j.jcis.2020.03.110
    90. Jie Ye, Guoping Ren, Li Kang, Yiyun Zhang, Xing Liu, Shungui Zhou, Zhen He. Efficient Photoelectron Capture by Ni Decoration in Methanosarcina barkeri-CdS Biohybrids for Enhanced Photocatalytic CO2-to-CH4 Conversion. iScience 2020, 23 (7) , 101287. https://doi.org/10.1016/j.isci.2020.101287
    91. Tatiana V. Avramenko, Yuri N Shkryl, Galina N Veremeichik, Victor P Bulgakov. Biomanufacturing of nanocrystals using protein biocatalysts. Journal of Nanoparticle Research 2020, 22 (5) https://doi.org/10.1007/s11051-020-04841-7
    92. Suhail Usmani, Mirko Mikolasek, Angélique Gillet, José Sanchez Costa, Mathilde Rigoulet, Bruno Chaudret, Azzedine Bousseksou, Benedikt Lassalle-Kaiser, Phillipe Demont, Gábor Molnár, Lionel Salmon, Julian Carrey, Simon Tricard. Spin crossover in Fe(triazole)–Pt nanoparticle self-assembly structured at the sub-5 nm scale. Nanoscale 2020, 12 (15) , 8180-8187. https://doi.org/10.1039/D0NR02154G
    93. Sunao Shimizu, Keiichiro Matsuki, Kazumoto Miwa, Daniele Braga, Shimpei Ono. Giant Photo‐Induced Current Enhancement in a Core–Shell‐Type Quantum‐Dot Thin Film. Advanced Electronic Materials 2020, 6 (3) https://doi.org/10.1002/aelm.201901069
    94. Seung Hwae Heo, Seungki Jo, Hyo Seok Kim, Garam Choi, Jae Yong Song, Jun-Yun Kang, No-Jin Park, Hyeong Woo Ban, Fredrick Kim, Hyewon Jeong, Jaemin Jung, Jaeyoung Jang, Won Bo Lee, Hosun Shin, Jae Sung Son. Composition change-driven texturing and doping in solution-processed SnSe thermoelectric thin films. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-08883-x
    95. Zhenjie Xue, Peilong Wang, Aidong Peng, Tie Wang. Architectural Design of Self‐Assembled Hollow Superstructures. Advanced Materials 2019, 31 (38) https://doi.org/10.1002/adma.201801441
    96. Fatemeh Khodam, Ali Reza Amani-Ghadim, Soheil Aber. Mg nanoparticles core-CdS QDs shell heterostructures with ZnS passivation layer for efficient quantum dot sensitized solar cell. Electrochimica Acta 2019, 308 , 25-34. https://doi.org/10.1016/j.electacta.2019.03.228
    97. Xiangxin Xue, Lei Chen, Cuimei Zhao, Hairui Wang, Ping Nie, Limin Chang. Role of surface ligands on CdSe/CdS QDs in affecting the charge separation and photocatalytic behavior in reducing the graphene oxide. Journal of Materials Science: Materials in Electronics 2019, 30 (10) , 9363-9371. https://doi.org/10.1007/s10854-019-01266-4
    98. Aabhash Shrestha, Munkhbayar Batmunkh, Antonio Tricoli, Shi Zhang Qiao, Sheng Dai. Nahinfrarotaktive Bleichalkogenid‐Quantenpunkte: Herstellung, postsynthetischer Ligandenaustausch und Anwendungen in Solarzellen. Angewandte Chemie 2019, 131 (16) , 5256-5279. https://doi.org/10.1002/ange.201804053
    99. Aabhash Shrestha, Munkhbayar Batmunkh, Antonio Tricoli, Shi Zhang Qiao, Sheng Dai. Near‐Infrared Active Lead Chalcogenide Quantum Dots: Preparation, Post‐Synthesis Ligand Exchange, and Applications in Solar Cells. Angewandte Chemie International Edition 2019, 58 (16) , 5202-5224. https://doi.org/10.1002/anie.201804053
    100. Fatemeh Khodam, Ali Reza Amani-Ghadim, Soheil Aber. Preparation of CdS quantum dot sensitized solar cell based on ZnTi-layered double hydroxide photoanode to enhance photovoltaic properties. Solar Energy 2019, 181 , 325-332. https://doi.org/10.1016/j.solener.2019.02.019
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 33, 13604–13615
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja301285x
    Published July 20, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    7573

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.