ACS Publications. Most Trusted. Most Cited. Most Read
Efficient Greenish Blue Electrochemiluminescence from Fluorene and Spirobifluorene Derivatives
My Activity

Figure 1Loading Img
    Article

    Efficient Greenish Blue Electrochemiluminescence from Fluorene and Spirobifluorene Derivatives
    Click to copy article linkArticle link copied!

    View Author Information
    Physikalisches Institut, Westfälische Wilhelms-Universität, Heisenbergstrasse 11, D-48149 Münster, Germany
    Istituto di Scienze e Tecnologie Molecolari (ISTM), CNR, Via Golgi 19, I-20133 Milano, Italy
    § Polo Scientifico Tecnologico (PST), CNR, Via Fantoli 16/15, I-20138 Milano, Italy
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 37, 15402–15409
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja3054018
    Published August 9, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The spectroscopic and electrochemical behavior as well as electrogenerated chemiluminescence (ECL) of a series of donor−π–donor derivatives bearing triphenylamine groups as donor connected to a fluorene, 2,7-bis-(4-(N,N-diphenylamino)phen-1-yl)-9,9′-dimethylfluorene (1), or spirobifluorene core, 2,7-bis-(4-(N,N-diphenylamino)phen-1-yl)-9,9′-spirobifluorene (2) and 2,2′,7,7′-tetrakis(4-(N,N-diphenylamino)phen-1-yl)-9,9′-spirobifluorene (3), were investigated. Besides a high photoluminescence (PL) quantum yield in solution (between 81 and 87%), an efficient radical ions annihilation process induces intense greenish blue ECL emission that could be seen with the naked eye. Only the tetrasubstituted spirobifluorene derivative (compound 3) shows weak ECL obtained by a direct annihilation mechanism. Because the energy of the annihilation reaction is higher than the energy required to form the singlet excited state, the S-route could be considered the pathway followed by the ECL process in these molecules. The ECL emissions recorded by direct ion–ion annihilation show two bands compared to the single structureless PL band. The ECL spectra obtained by a coreactant approach using benzoylperoxide as a coreagent show no differences relative to that produced by annihilation, except for an increasing of ECL intensity for all compounds.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Detailed synthetic procedure for all compounds; ECL photocurrent of 2; coreactant ECL emission of 3; and PL spectra of 2 in highly concentrated solution excited at different wavelengths. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 88 publications.

    1. Lei Zhao, Wenrong Cai, Shuyi Yuan, Lewei Wang, Ru Zhang, Junyao Li, Datong Wu, Yong Kong. Optically Pure Co(III) Complex Absorbed by Electrochemiluminescence-Active Covalent Organic Framework as an Enantioselective Recognition Platform to Give Opposite Responses Toward Amino Alcohol Enantiomers. ACS Applied Materials & Interfaces 2024, 16 (42) , 57649-57658. https://doi.org/10.1021/acsami.4c11835
    2. Ru Zhang, Wenrong Cai, Shuyi Yuan, Lei Zhao, Lewei Wang, Junyao Li, Datong Wu, Yong Kong. Ionic Covalent–Organic Frameworks Composed of Anthryl-Extended Viologen as a Kind of Electrochemiluminescence Luminophore. ACS Applied Materials & Interfaces 2024, 16 (41) , 55936-55944. https://doi.org/10.1021/acsami.4c10899
    3. Lilan Tan, Wenrong Cai, Fangqin Wang, Junyao Li, Datong Wu, Yong Kong. Postsynthetic Modification Strategy for Constructing Electrochemiluminescence-Active Chiral Covalent Organic Frameworks Performing Efficient Enantioselective Sensing. Analytical Chemistry 2024, 96 (9) , 3942-3950. https://doi.org/10.1021/acs.analchem.3c05887
    4. Zhengang Han, Miaomiao Chai, Xinyao Yu, Jinlong Wang, Yaqi Zhao, Aijuan Zhao, Xiaoquan Lu. Viscosity-Responsive Electrochemiluminescence of Diphenylbenzofulvene Derivatives. Analytical Chemistry 2023, 95 (17) , 7036-7044. https://doi.org/10.1021/acs.analchem.3c00727
    5. Xinrui Yang, Yingying Xu, Xiaojin Huang, Junmeng Hang, Weiliang Guo, Zhihui Dai. Multicolor Iridium(III) Complexes with Host–Guest Recognition Motifs for Enhanced Electrochemiluminescence and Modular Labeling. Analytical Chemistry 2023, 95 (9) , 4543-4549. https://doi.org/10.1021/acs.analchem.2c05698
    6. Chao Wang, Jie Wu, Hao Huang, Qiqi Xu, Huangxian Ju. Electrochemiluminescence of Polymer Dots Featuring Thermally Activated Delayed Fluorescence for Sensitive DNA Methylation Detection. Analytical Chemistry 2022, 94 (45) , 15695-15702. https://doi.org/10.1021/acs.analchem.2c02934
    7. Jonathan M. Wong, Jie Xu, Ruizhong Zhang, Kenneth Chu, Zhifeng Ding, Lijia Liu. Discovering the Link between Electrochemiluminescence and Energy Transfer Pathways for Mn-Doped CsPbCl3 Quantum Dot Films. The Journal of Physical Chemistry C 2021, 125 (24) , 13696-13705. https://doi.org/10.1021/acs.jpcc.1c04335
    8. Dongni Han, Bertrand Goudeau, Dechen Jiang, Danjun Fang, Neso Sojic. Electrochemiluminescence Microscopy of Cells: Essential Role of Surface Regeneration. Analytical Chemistry 2021, 93 (3) , 1652-1657. https://doi.org/10.1021/acs.analchem.0c05123
    9. Jinping Chen, Qingshan Hao, Shuangqing Wang, Shayu Li, Tianjun Yu, Yi Zeng, Jun Zhao, Shumin Yang, Yanqing Wu, Chaofan Xue, Guoqiang Yang, Yi Li. Molecular Glass Resists Based on 9,9′-Spirobifluorene Derivatives: Pendant Effect and Comprehensive Evaluation in Extreme Ultraviolet Lithography. ACS Applied Polymer Materials 2019, 1 (3) , 526-534. https://doi.org/10.1021/acsapm.8b00235
    10. Guiqiang Pu, Zhaofan Yang, Yali Wu, Ze Wang, Yang Deng, YunJing Gao, Zhen Zhang, Xiaoquan Lu. Investigation into the Oxygen-Involved Electrochemiluminescence of Porphyrins and Its Regulation by Peripheral Substituents/Central Metals. Analytical Chemistry 2019, 91 (3) , 2319-2328. https://doi.org/10.1021/acs.analchem.8b05027
    11. Hao Zhang, Ting-Ting Lu, Wen-Yong Lai, Xin-Wen Zhang, Meng-Ke Zhang, Peng Lv, Cheng-Fang Liu, and Wei Huang . Pyrene-Cored Starburst Oligofluorenes with Diphenylamine End-Cappers: Design, Synthesis, Stabilized Optical Gain, and Lasing Properties. The Journal of Physical Chemistry C 2017, 121 (49) , 27569-27579. https://doi.org/10.1021/acs.jpcc.7b08721
    12. Ko Takase, Keiichi Noguchi, and Koji Nakano . Circularly Polarized Luminescence from Chiral Spiro Molecules: Synthesis and Optical Properties of 10,10′-Spirobi(indeno[1,2-b][1]benzothiophene) Derivatives. Organic Letters 2017, 19 (19) , 5082-5085. https://doi.org/10.1021/acs.orglett.7b02337
    13. Fabio Rizzo, Federico Polo, Gregorio Bottaro, Simona Fantacci, Sabrina Antonello, Lidia Armelao, Silvio Quici, and Flavio Maran . From Blue to Green: Fine-Tuning of Photoluminescence and Electrochemiluminescence in Bifunctional Organic Dyes. Journal of the American Chemical Society 2017, 139 (5) , 2060-2069. https://doi.org/10.1021/jacs.6b12247
    14. Haidong Li, Antoine Wallabregue, Catherine Adam, Geraldine M. Labrador, Johann Bosson, Laurent Bouffier, Jérôme Lacour, and Neso Sojic . Bright Electrochemiluminescence Tunable in the Near-Infrared of Chiral Cationic Helicene Chromophores. The Journal of Physical Chemistry C 2017, 121 (1) , 785-792. https://doi.org/10.1021/acs.jpcc.6b11831
    15. Tarunpreet Singh Virk, Niranjan V. Ilawe, Guoxian Zhang, Craig P. Yu, Bryan M. Wong, and Julian M. W. Chan . Sultam-Based Hetero[5]helicene: Synthesis, Structure, and Crystallization-Induced Emission Enhancement. ACS Omega 2016, 1 (6) , 1336-1342. https://doi.org/10.1021/acsomega.6b00335
    16. Chin-Yiu Chan, Yi-Chun Wong, Mei-Yee Chan, Sin-Hang Cheung, Shu-Kong So, and Vivian Wing-Wah Yam . Bifunctional Heterocyclic Spiro Derivatives for Organic Optoelectronic Devices. ACS Applied Materials & Interfaces 2016, 8 (37) , 24782-24792. https://doi.org/10.1021/acsami.6b09211
    17. Xin Zhang, Xiao Tan, Bin Zhang, Wujian Miao, and Guizheng Zou . Spectrum-Based Electrochemiluminescent Immunoassay with Ternary CdZnSe Nanocrystals as Labels. Analytical Chemistry 2016, 88 (13) , 6947-6953. https://doi.org/10.1021/acs.analchem.6b01821
    18. Yaqiang Feng, Chunhui Dai, Jianping Lei, Huangxian Ju, and Yixiang Cheng . Silole-Containing Polymer Nanodot: An Aqueous Low-Potential Electrochemiluminescence Emitter for Biosensing. Analytical Chemistry 2016, 88 (1) , 845-850. https://doi.org/10.1021/acs.analchem.5b03391
    19. Simonetta Orlandi, Gianluca Pozzi, and Marco Cavazzini , Daniela Minudri, Miguel Gervaldo, Luis Otero, and Fernando Fungo . Synthesis and Properties of an Electropolymer Obtained from a Dimeric Donor/Acceptor System with a 4,4′-Spirobi[cyclopenta[2,1-b:3,4-b′]dithiophene] Core. Macromolecules 2015, 48 (13) , 4364-4372. https://doi.org/10.1021/acs.macromol.5b00845
    20. Xuejun Zhan, Ning Sun, Zhongbin Wu, Jin Tu, Lei Yuan, Xi Tang, Yujun Xie, Qian Peng, Yongqiang Dong, Qianqian Li, Dongge Ma, and Zhen Li . Polyphenylbenzene as a Platform for Deep-Blue OLEDs: Aggregation Enhanced Emission and High External Quantum Efficiency of 3.98%. Chemistry of Materials 2015, 27 (5) , 1847-1854. https://doi.org/10.1021/acs.chemmater.5b00094
    21. Chin-Yiu Chan, Yi-Chun Wong, Mei-Yee Chan, Sin-Hang Cheung, Shu-Kong So, and Vivian Wing-Wah Yam . Hole-Transporting Spirothioxanthene Derivatives as Donor Materials for Efficient Small-Molecule-Based Organic Photovoltaic Devices. Chemistry of Materials 2014, 26 (22) , 6585-6594. https://doi.org/10.1021/cm5033699
    22. Palani Natarajan and Michael Schmittel . Photoluminescence, Redox Properties, and Electrogenerated Chemiluminescence of Twisted 9,9′-Bianthryls. The Journal of Organic Chemistry 2013, 78 (20) , 10383-10394. https://doi.org/10.1021/jo401785c
    23. Gianluca Pozzi, Simonetta Orlandi, Marco Cavazzini, Daniela Minudri, Lorena Macor, Luis Otero, and Fernando Fungo . Synthesis and Photovoltaic Applications of a 4,4′-Spirobi[cyclopenta[2,1-b;3,4-b′]dithiophene]-Bridged Donor/Acceptor Dye. Organic Letters 2013, 15 (18) , 4642-4645. https://doi.org/10.1021/ol402420w
    24. Alexander V. Zabula, Andrey Yu. Rogachev, Ilia A. Guzei, and Robert West . Silicon in a Negatively Charged Shell: Anions of Spirosilabifluorene. Organometallics 2013, 32 (13) , 3760-3768. https://doi.org/10.1021/om400419a
    25. Tim Silies, Nikos L. Doltsinis, Constantin G. Daniliuc, Fabio Rizzo. Fluorene vs. Spirobifluorene: Effect of the π ‐System on TADF Properties. ChemPhotoChem 2024, 8 (12) https://doi.org/10.1002/cptc.202400235
    26. Yifei Zhang, Dexin Gao, Hongye Yang, Wenyue Gao, Chi Wu. A simple and cost-effective strategy for electrochemiluminescence spectral determination. Analytica Chimica Acta 2024, 1324 , 343097. https://doi.org/10.1016/j.aca.2024.343097
    27. Mathavan Sornambigai, Laurent Bouffier, Neso Sojic, Shanmugam Senthil Kumar. Tris(2,2’-bipyridyl)ruthenium (II) complex as a universal reagent for the fabrication of heterogeneous electrochemiluminescence platforms and its recent analytical applications. Analytical and Bioanalytical Chemistry 2023, 415 (24) , 5875-5898. https://doi.org/10.1007/s00216-023-04876-4
    28. Kaiqing Wu, Yongjun Zheng, Ran Chen, Zhixin Zhou, Songqin Liu, Yanfei Shen, Yuanjian Zhang. Advances in electrochemiluminescence luminophores based on small organic molecules for biosensing. Biosensors and Bioelectronics 2023, 223 , 115031. https://doi.org/10.1016/j.bios.2022.115031
    29. Ariadna Gil‐Martínez, Sònia López‐Molina, Cristina Galiana‐Roselló, Andrea Lázaro‐Gómez, Friederike Schlüter, Fabio Rizzo, Jorge González‐García. Modulating the G‐Quadruplex and Duplex DNA Binding by Controlling the Charge of Fluorescent Molecules. Chemistry – A European Journal 2023, 29 (6) https://doi.org/10.1002/chem.202203094
    30. Taweesak Sudyoadsuk, Patteera Funchien, Sujinda Petdee, Thidarat Loythaworn, Pongsakorn Chasing, Wijitra Waengdongbung, Atthapon Saenubol, Sarinya Hadsadee, Siriporn Jungsuttiwong, Vinich Promarak. Benzothiadiazole-based fluorophores as efficient non-doped emitters for solution-processed organic light-emitting diodes. New Journal of Chemistry 2022, 46 (47) , 22650-22662. https://doi.org/10.1039/D2NJ04354H
    31. Andrea Fiorani, Marinella Difonzo, Fabio Rizzo, Giovanni Valenti. Versatile electrochemiluminescent organic emitters. Current Opinion in Electrochemistry 2022, 34 , 100998. https://doi.org/10.1016/j.coelec.2022.100998
    32. Qi Kang, Yuan Huang, Xuemei Ma, Mengmeng Li, Cheng Ma, Dazhong Shen. A simple and sensitive electrochemiluminescence spectrum measurement platform and spectrum-resolved ratiometric sensor for miroRNA-141 determination. Electrochimica Acta 2022, 422 , 140544. https://doi.org/10.1016/j.electacta.2022.140544
    33. Fabio Rizzo. Optical Immunoassays Methods in Protein Analysis: An Overview. Chemosensors 2022, 10 (8) , 326. https://doi.org/10.3390/chemosensors10080326
    34. Kwang-Myeong Kim, Jiwoo Kim, Joohoon Kim, Jong-In Hong. Efficient blue organic electrochemiluminescence luminophore based on a pyrenyl–phenanthroimidazole conjugate. Chemical Communications 2022, 58 (54) , 7542-7545. https://doi.org/10.1039/D2CC01762H
    35. Julie Descamps, Yiran Zhao, Jing Yu, Guobao Xu, Yoan Léger, Gabriel Loget, Neso Sojic. Anti-Stokes photoinduced electrochemiluminescence at a photocathode. Chemical Communications 2022, 58 (47) , 6686-6688. https://doi.org/10.1039/D2CC01804G
    36. Xuemei Ma, Mengmeng Li, Qi Kang, Yuan Huang, Cheng Ma, Dazhong Shen. A simple and sensitive approach to monitor the spectrum change during the electrochemiluminescence process and reveal the mutual promotion between g-C3N4 and co-reactant of S2O82-. Sensors and Actuators B: Chemical 2022, 360 , 131679. https://doi.org/10.1016/j.snb.2022.131679
    37. Chiara Ceriani, Francesca Pallini, Lorenzo Mezzomo, Mauro Sassi, Sara Mattiello, Luca Beverina. Micellar catalysis beyond the hydrophobic effect: Efficient palladium catalyzed Suzuki-Miyaura coupling of water and organic solvent insoluble pigments with food grade surfactants. Journal of Organometallic Chemistry 2022, 962 , 122267. https://doi.org/10.1016/j.jorganchem.2022.122267
    38. Lun Wang, Huixin Zhang, Tingting Zhuang, Jingxu Liu, Neso Sojic, Zonghua Wang. Sensitive electrochemiluminescence biosensing of polynucleotide kinase using the versatility of two-dimensional Ti3C2TX MXene nanomaterials. Analytica Chimica Acta 2022, 1191 , 339346. https://doi.org/10.1016/j.aca.2021.339346
    39. Xuemei Ma, Mengmeng Li, Qi Kang, Yuan Huang, Cheng Ma, Dazhong Shen. A Simple and Sensitive Approach to Monitor the Spectrum Change During the Electrochemiluminescence Process and Reveal the Mutual Promotion between G-C3n4 and Co-Reactant of S2o82-. SSRN Electronic Journal 2022, 108 https://doi.org/10.2139/ssrn.4017130
    40. Qi Kang, Yuan Huang, Xuemei Ma, Mengmeng Li, Cheng Ma, Dazhong Shen. A Simple and Sensitive Electrochemiluminescence Spectrum Measurement Platform and Spectrum-Resolved Ratiometric Sensor for Mirorna-141 Determination. SSRN Electronic Journal 2022, 92 https://doi.org/10.2139/ssrn.4051872
    41. Yongzheng Chang, Hongtao Cao, Quanyou Feng, Ying Wei, Linyi Bian, Haifeng Ling, Dongqing Lin, Linghai Xie, Wei Huang. Organic semiconductors based on complex diarylfluorenes via Friedel-Crafts protocols of fluorenols. Chinese Science Bulletin 2021, 66 (33) , 4268-4283. https://doi.org/10.1360/TB-2021-0163
    42. Dongni Han, Bertrand Goudeau, Dragan Manojlovic, Dechen Jiang, Danjun Fang, Neso Sojic. Electrochemiluminescence Loss in Photobleaching. Angewandte Chemie 2021, 133 (14) , 7764-7768. https://doi.org/10.1002/ange.202015030
    43. Dongni Han, Bertrand Goudeau, Dragan Manojlovic, Dechen Jiang, Danjun Fang, Neso Sojic. Electrochemiluminescence Loss in Photobleaching. Angewandte Chemie International Edition 2021, 60 (14) , 7686-7690. https://doi.org/10.1002/anie.202015030
    44. Haidong Li, Romain Duwald, Simon Pascal, Silvia Voci, Céline Besnard, Johann Bosson, Laurent Bouffier, Jérôme Lacour, Neso Sojic. Near-infrared electrochemiluminescence in water through regioselective sulfonation of diaza [4] and [6]helicene dyes. Chemical Communications 2020, 56 (68) , 9771-9774. https://doi.org/10.1039/D0CC04156D
    45. Silvia Voci, Jean‐Baptiste Verlhac, Federico Polo, Guillaume Clermont, Jonathan Daniel, Frédéric Castet, Mireille Blanchard‐Desce, Neso Sojic. Photophysics, Electrochemistry and Efficient Electrochemiluminescence of Trigonal Truxene‐Core Dyes. Chemistry – A European Journal 2020, 26 (38) , 8407-8416. https://doi.org/10.1002/chem.202000474
    46. Silvia Voci, Romain Duwald, Stéphane Grass, David J. Hayne, Laurent Bouffier, Paul S. Francis, Jérôme Lacour, Neso Sojic. Self-enhanced multicolor electrochemiluminescence by competitive electron-transfer processes. Chemical Science 2020, 11 (17) , 4508-4515. https://doi.org/10.1039/D0SC00853B
    47. Mengyuan Chen, Zhenqiang Ning, Kaiyang Chen, Yuanjian Zhang, Yanfei Shen. Recent Advances of Electrochemiluminescent System in Bioassay. Journal of Analysis and Testing 2020, 4 (2) , 57-75. https://doi.org/10.1007/s41664-020-00136-x
    48. Andrea Fiorani, Irkham, Giovanni Valenti, Yasuaki Einaga, Francesco Paolucci. Diamond Electrodes for Electrogenerated Chemiluminescence. 2020, 285-321. https://doi.org/10.1002/9781119468288.ch9
    49. Chenyu Xia, Cheng Liu, Feng Zhou, Peiyang Gu, Hua Li, Jinghui He, Youyong Li, Qingfeng Xu, Jianmei Lu. Tunable Electronic Memory Performances Based on Poly(Triphenylamine) and Its Metal Complex via a SuFEx Click Reaction. Chemistry – An Asian Journal 2019, 14 (23) , 4296-4302. https://doi.org/10.1002/asia.201901234
    50. Zihua Li, Wei Qin, Jialong Wu, Zhiyong Yang, Zhenguo Chi, Guodong Liang. Bright electrochemiluminescent films of efficient aggregation-induced emission luminogens for sensitive detection of dopamine. Materials Chemistry Frontiers 2019, 3 (10) , 2051-2057. https://doi.org/10.1039/C9QM00401G
    51. Tongmou Geng, Guofeng Chen, Lanzhen Ma, Can Zhang, Weiyong Zhang, Heng Xu. The spirobifluorene-based fluorescent conjugated microporous polymers for reversible adsorbing iodine, fluorescent sensing iodine and nitroaromatic compounds. European Polymer Journal 2019, 115 , 37-44. https://doi.org/10.1016/j.eurpolymj.2019.02.047
    52. Francesco Zinna, Silvia Voci, Lorenzo Arrico, Elodie Brun, Alexandre Homberg, Laurent Bouffier, Tiziana Funaioli, Jérôme Lacour, Neso Sojic, Lorenzo Di Bari. Circularly‐Polarized Electrochemiluminescence from a Chiral Bispyrene Organic Macrocycle. Angewandte Chemie 2019, 131 (21) , 7026-7030. https://doi.org/10.1002/ange.201901303
    53. Francesco Zinna, Silvia Voci, Lorenzo Arrico, Elodie Brun, Alexandre Homberg, Laurent Bouffier, Tiziana Funaioli, Jérôme Lacour, Neso Sojic, Lorenzo Di Bari. Circularly‐Polarized Electrochemiluminescence from a Chiral Bispyrene Organic Macrocycle. Angewandte Chemie International Edition 2019, 58 (21) , 6952-6956. https://doi.org/10.1002/anie.201901303
    54. Shuijian He, Xiang Wang, Guiming Xiang, Kevin Lac, Suning Wang, Zhifeng Ding. Electrogenerated chemiluminescence from the monomer of a tetradentate chelate Pt(II) compound. Electrochimica Acta 2018, 271 , 448-453. https://doi.org/10.1016/j.electacta.2018.03.056
    55. Mou Mandal, Rengarajan Balamurugan. Triflic acid‐Mediated Expedient Synthesis of Benzo[ a ]fluorenes and Fluorescent Benzo[ a ]fluorenones. Advanced Synthesis & Catalysis 2018, 360 (7) , 1453-1465. https://doi.org/10.1002/adsc.201701516
    56. Thanh-Tuân Bui, Fabrice Goubard, Malika Ibrahim-Ouali, Didier Gigmes, Frédéric Dumur. Thermally Activated Delayed Fluorescence Emitters for Deep Blue Organic Light Emitting Diodes: A Review of Recent Advances. Applied Sciences 2018, 8 (4) , 494. https://doi.org/10.3390/app8040494
    57. A. Fiorani, G. Valenti, M. Iurlo, M. Marcaccio, F. Paolucci. Electrogenerated chemiluminescence: A molecular electrochemistry point of view. Current Opinion in Electrochemistry 2018, 8 , 31-38. https://doi.org/10.1016/j.coelec.2017.12.005
    58. M. Nazim, Sadia Ameen, M. Shaheer Akhtar, Hyung Shik Shin. Asymmetric, efficient π-conjugated organic semiconducting chromophore for bulk-heterojunction organic photovoltaics. Dyes and Pigments 2018, 149 , 141-148. https://doi.org/10.1016/j.dyepig.2017.09.048
    59. Zhongying Han, Jingjing Tan, Tingting Wei, Yanzhen Zhang, Haibo Xiao, Lihui Xu, Beilei He. Two novel two-photon fluorescent probes for low pH values and cell imaging based on spirobifluorene motif. Sensors and Actuators B: Chemical 2018, 255 , 2290-2297. https://doi.org/10.1016/j.snb.2017.09.053
    60. Ghodsi Mohammadi Ziarani, Razieh Moradi, Negar Lashgari, Hendrik G. Kruger. The Dyes Based on Several Chromophores. 2018, 223-243. https://doi.org/10.1016/B978-0-12-815647-6.00018-2
    61. Friederike Schlüter, Kristina Riehemann, Nermin Seda Kehr, Silvio Quici, Constantin G. Daniliuc, Fabio Rizzo. A highly fluorescent water soluble spirobifluorene dye with a large Stokes shift: synthesis, characterization and bio-applications. Chemical Communications 2018, 54 (6) , 642-645. https://doi.org/10.1039/C7CC08761F
    62. Junfeng Li, Chenglong Yang, Xuelei Peng, Ying Chen, Qi Qi, Xiaoyan Luo, Wen-Yong Lai, Wei Huang. Stimuli-responsive solid-state emission from o -carborane–tetraphenylethene dyads induced by twisted intramolecular charge transfer in the crystalline state. Journal of Materials Chemistry C 2018, 6 (1) , 19-28. https://doi.org/10.1039/C7TC03780E
    63. Sergej Kudruk, Elena Villani, Federico Polo, Sebastian Lamping, Martin Körsgen, Heinrich F. Arlinghaus, Francesco Paolucci, Bart Jan Ravoo, Giovanni Valenti, Fabio Rizzo. Solid state electrochemiluminescence from homogeneous and patterned monolayers of bifunctional spirobifluorene. Chemical Communications 2018, 54 (39) , 4999-5002. https://doi.org/10.1039/C8CC02066C
    64. Ruizhong Zhang, Feng Tong, Liuqing Yang, Jonathan Ralph Adsetts, Tianhao Yan, Ruiyao Wang, Zhifeng Ding, Hong-Bo Wang. Facile synthesis and efficient electrochemiluminescence of a readily accessible pyridopyrimidine. Chemical Communications 2018, 54 (71) , 9897-9900. https://doi.org/10.1039/C8CC05490H
    65. Andrzej Kapturkiewicz. Electrochemical Generation of Excited Intramolecular Charge‐Transfer States. ChemElectroChem 2017, 4 (7) , 1604-1638. https://doi.org/10.1002/celc.201600865
    66. Haidong Li, Silvia Voci, Antoine Wallabregue, Catherine Adam, Geraldine M. Labrador, Romain Duwald, Irene Hernández Delgado, Simon Pascal, Johann Bosson, Jérôme Lacour, Laurent Bouffier, Neso Sojic. Efficient Annihilation Electrochemiluminescence of Cationic Helicene Luminophores. ChemElectroChem 2017, 4 (7) , 1750-1756. https://doi.org/10.1002/celc.201600906
    67. Haibo Xiao, Yanzhen Zhang, Wu Zhang, Shaozhi Li, Jingjing Tan, Zhongying Han. A spirobifluorene-based two-photon fluorescence probe for mercury ions and its applications in living cells. Materials Chemistry and Physics 2017, 192 , 268-273. https://doi.org/10.1016/j.matchemphys.2017.02.007
    68. Heedong Hwang, Jin Kon Kim, Hong Chul Moon. Improvement of brightness, color purity, and operational stability of electrochemiluminescence devices with diphenylanthracene derivatives. Journal of Materials Chemistry C 2017, 5 (47) , 12513-12519. https://doi.org/10.1039/C7TC03389C
    69. Giovanni Valenti, Andrea Fiorani, Haidong Li, Neso Sojic, Francesco Paolucci. Essential Role of Electrode Materials in Electrochemiluminescence Applications. ChemElectroChem 2016, 3 (12) , 1990-1997. https://doi.org/10.1002/celc.201600602
    70. Haibo Xiao, Yanzhen Zhang, Shaozhi Li, Wu Zhang, Zhongying Han, Jingjing Tan, Shenyao Zhang, Jingyan Du. Spiro-configured fluorescent probe: Synthesis and applications in the determinations of Hg2+ and proton, and two-photon fluorescence imaging. Sensors and Actuators B: Chemical 2016, 236 , 233-240. https://doi.org/10.1016/j.snb.2016.06.010
    71. M. Nazim, Sadia Ameen, M. Shaheer Akhtar, Hyung Shik Shin. Efficient spirobifluorene-core electron-donor material for application in solution-processed organic solar cells. Chemical Physics Letters 2016, 663 , 137-144. https://doi.org/10.1016/j.cplett.2016.09.065
    72. Haidong Li, Jonathan Daniel, Jean‐Baptiste Verlhac, Mireille Blanchard‐Desce, Neso Sojic. Bright Electrogenerated Chemiluminescence of a Bis‐Donor Quadrupolar Spirofluorene Dye and Its Nanoparticles. Chemistry – A European Journal 2016, 22 (36) , 12702-12714. https://doi.org/10.1002/chem.201600413
    73. Xuejun Zhan, Min Yang, Lei Yuan, Yanbin Gong, Yujun Xie, Qian Peng, Shanghui Ye, Qianqian Li, Zhen Li. Prying into the limit of CIE value for TPE-based blue AIEgens in organic light-emitting diodes. Dyes and Pigments 2016, 128 , 60-67. https://doi.org/10.1016/j.dyepig.2016.01.001
    74. Ryoichi Ishimatsu, Tomohiko Edura, Chihaya Adachi, Koji Nakano, Toshihiko Imato. Photophysical Properties and Efficient, Stable, Electrogenerated Chemiluminescence of Donor–Acceptor Molecules Exhibiting Thermal Spin Upconversion. Chemistry – A European Journal 2016, 22 (14) , 4889-4898. https://doi.org/10.1002/chem.201600077
    75. Chin-Yang Yu, Yuan-Ju Hsu. Synthesis, characterization, optical and electrochemical properties of spirobifluorene based polymers containing electron deficient moieties. Polymer 2016, 84 , 65-71. https://doi.org/10.1016/j.polymer.2015.12.046
    76. Frauke Schibilla, Linda Stegemann, Cristian A. Strassert, Fabio Rizzo, Bart Jan Ravoo. Fluorescence quenching in β-cyclodextrin vesicles: membrane confinement and host-guest interactions. Photochemical & Photobiological Sciences 2016, 15 (2) , 235-243. https://doi.org/10.1039/c5pp00226e
    77. Mahdi Hesari, Zhifeng Ding. Review—Electrogenerated Chemiluminescence: Light Years Ahead. Journal of The Electrochemical Society 2016, 163 (4) , H3116-H3131. https://doi.org/10.1149/2.0161604jes
    78. Catherine Adam, Antoine Wallabregue, Haidong Li, Jérôme Gouin, Rémi Vanel, Stéphane Grass, Johann Bosson, Laurent Bouffier, Jérôme Lacour, Neso Sojic. Electrogenerated Chemiluminescence of Cationic Triangulene Dyes: Crucial Influence of the Core Heteroatoms. Chemistry – A European Journal 2015, 21 (52) , 19243-19249. https://doi.org/10.1002/chem.201501738
    79. Ze-Bin Gu, Hai-Xia Lin, Yong-Mei Cui, Min-Jie Li, Zeng-Shuai Hao. Synthesis and characterization of 2′,7′-diarylspiro[cyclopentane-1,9′-fluorene] derivatives. Monatshefte für Chemie - Chemical Monthly 2015, 146 (9) , 1519-1527. https://doi.org/10.1007/s00706-015-1432-9
    80. Liping Wang, Limin Wang, Jianyao Huang, Gui Yu. Synthesis and Characterization of Dibenzo[ a , d ]cyclohepten‐5‐one Derivatives for Light‐Emitting Diodes. Chinese Journal of Chemistry 2015, 33 (8) , 948-954. https://doi.org/10.1002/cjoc.201500322
    81. Hongyao Yin, Haibo Xiao, Lei Ding, Chun Zhang, Aiming Ren, Bo Li. A bistriphenylamine-substituted spirobifluorene derivative exhibiting excellent nonlinearity/transparency/thermal stability trade-off and strong two-photon induced blue fluorescence. Materials Chemistry and Physics 2015, 151 , 181-186. https://doi.org/10.1016/j.matchemphys.2014.11.052
    82. Xing Feng, Jian-Yong Hu, Hirotsugu Tomiyasu, Zhu Tao, Carl Redshaw, Mark R. J. Elsegood, Lynne Horsburgh, Simon J. Teat, Xian-Fu Wei, Takehiko Yamato. Iron( iii ) bromide catalyzed bromination of 2-tert-butylpyrene and corresponding position-dependent aryl-functionalized pyrene derivatives. RSC Advances 2015, 5 (12) , 8835-8848. https://doi.org/10.1039/C4RA12216J
    83. Zhongyuan Liu, Wenjing Qi, Guobao Xu. Recent advances in electrochemiluminescence. Chemical Society Reviews 2015, 44 (10) , 3117-3142. https://doi.org/10.1039/C5CS00086F
    84. Liang Xu, Yongbiao Zhao, Guankui Long, Yue Wang, Jun Zhao, Dongsheng Li, Junbo Li, Rakesh Ganguly, Yongxin Li, Handong Sun, Xiao Wei Sun, Qichun Zhang. Synthesis, structure, physical properties and OLED application of pyrazine–triphenylamine fused conjugated compounds. RSC Advances 2015, 5 (77) , 63080-63086. https://doi.org/10.1039/C5RA12654A
    85. Shao Fu Chen, Yuan Tian, Jinghong Peng, Huarong Zhang, Xin Jiang Feng, Haixia Zhang, Xinjun Xu, Lidong Li, Jianhua Gao. Synthesis and characterization of arylamino end-capped silafluorenes for blue to deep-blue organic light-emitting diodes (OLEDs). Journal of Materials Chemistry C 2015, 3 (26) , 6822-6830. https://doi.org/10.1039/C5TC00382B
    86. Shufeng Liu, Xin Zhang, Yanmin Yu, Guizheng Zou. Bandgap engineered and high monochromatic electrochemiluminescence from dual-stabilizers-capped CdSe nanocrystals with practical application potential. Biosensors and Bioelectronics 2014, 55 , 203-208. https://doi.org/10.1016/j.bios.2013.11.078
    87. Gregorio Bottaro, Fabio Rizzo, Marco Cavazzini, Lidia Armelao, Silvio Quici. Efficient Luminescence from Fluorene‐ and Spirobifluorene‐Based Lanthanide Complexes upon Near‐Visible Irradiation. Chemistry – A European Journal 2014, 20 (16) , 4598-4607. https://doi.org/10.1002/chem.201305029
    88. Alexander V. Zabula, Brian S. Dolinar, Robert West. Transformations of spirogermabifluorene upon reduction with alkali metals. Journal of Organometallic Chemistry 2014, 751 , 458-461. https://doi.org/10.1016/j.jorganchem.2013.07.038

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 37, 15402–15409
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja3054018
    Published August 9, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    4543

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.