P–N/P–P Bond Metathesis for the Synthesis of Complex PolyphosphanesClick to copy article linkArticle link copied!
Abstract

A unique hexaphosphane featuring a 2,2′-bi(1,2,3-triphosphacyclopentane) moiety (19) and an ethylene-bridged bis-isotetraphosphane (27c,m) were both selectively prepared in efficient one-pot syntheses from easily accessible tris(3,5-dimethyl-1-pyrazolyl)phosphane (14) and 1,2-bis(phenylphosphanyl)ethane (18c,m). The formation of 27c,m is an example of a highly efficient P–P bond formation via protolysis. In contrast, the formation of 19 comprises P–N/P–P bond metathesis steps. This constitutes a novel synthetic approach toward the preparation of complex polyphosphanes. Detailed spectroscopic investigations form the basis for a mechanistic understanding of this unprecedented methodology. Furthermore, the preparation of a unique dinuclear iron–carbonyl complex which features hexaphosphane 19 as a bridging ligand illustrates the potential use of complex polyphosphanes such as 19 as ligands in transition metal chemistry.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 28 publications.
- Adam N. Barrett, Callum R. Woof, Christopher A. Goult, Danila Gasperini, Mary F. Mahon, Ruth L. Webster. Hydrogen/Halogen Exchange of Phosphines for the Rapid Formation of Cyclopolyphosphines. Inorganic Chemistry 2021, 60
(21)
, 16826-16833. https://doi.org/10.1021/acs.inorgchem.1c02734
- Xianya Wang, Chungu Xia, Lipeng Wu. Visible-Light-Promoted Photoredox Dehydrogenative Coupling of Phosphines and Thiophenols. Organic Letters 2020, 22
(18)
, 7373-7377. https://doi.org/10.1021/acs.orglett.0c02746
- Sebastian Molitor, Julia Becker, and Viktoria H. Gessner . Selective Dehydrocoupling of Phosphines by Lithium Chloride Carbenoids. Journal of the American Chemical Society 2014, 136
(44)
, 15517-15520. https://doi.org/10.1021/ja509381w
- Chao‐Peng Zhang, Tian‐Zhang Wang, Zhong‐Jiang Yang, Yu‐Feng Liang. Manganese Promoted Reductive Cross‐Coupling of Phosphine Chlorides with Disulfides for the Synthesis of Thiophosphanes. Advanced Synthesis & Catalysis 2025, https://doi.org/10.1002/adsc.202401395
- Jannis Fidelius, Kai Schwedtmann, Sebastian Schellhammer, Rongjuan Huang, Felix Hennersdorf, Moritz Fink, Jan Haberstroh, Antonio Bauzá, Antonio Frontera, Sebastian Reineke, Jan J. Weigand. 1,3-Dipolar cycloaddition reactions of triflatophosphanes to afford functionalized azaphospholium salts and azaphospholes. Inorganic Chemistry Frontiers 2025, 2 https://doi.org/10.1039/D5QI00427F
- Maximilian Donath, Kai Schwedtmann, Tobias Schneider, Felix Hennersdorf, Antonio Bauzá, Antonio Frontera, Jan J. Weigand. Direct conversion of white phosphorus to versatile phosphorus transfer reagents via oxidative onioation. Nature Chemistry 2022, 14
(4)
, 384-391. https://doi.org/10.1038/s41557-022-00913-4
- Jan-Erik Siewert, André Schumann, Christian Hering-Junghans. Phosphine-catalysed reductive coupling of dihalophosphanes. Dalton Transactions 2021, 50
(42)
, 15111-15117. https://doi.org/10.1039/D1DT03095G
- Robin Schoemaker, Kai Schwedtmann, Jan J. Weigand. Pyrazolyl-substituted Phosphorus(III) compounds in synthesis. Coordination Chemistry Reviews 2021, 436 , 213829. https://doi.org/10.1016/j.ccr.2021.213829
- Callum Branfoot, Tom A. Young, Duncan F. Wass, Paul G. Pringle. Radical-initiated P,P-metathesis reactions of diphosphanes: evidence from experimental and computational studies. Dalton Transactions 2021, 50
(20)
, 7094-7104. https://doi.org/10.1039/D1DT01013A
- Mario Cicač-Hudi, Christoph M. Feil, Nicholas Birchall, Martin Nieger, Dietrich Gudat. Proton transfer
vs.
oligophosphine formation by P–C/P–H σ-bond metathesis: decoding the competing Brønsted and Lewis type reactivities of imidazolio-phosphines. Dalton Transactions 2020, 49
(47)
, 17401-17413. https://doi.org/10.1039/D0DT03633A
- Aleksandra Ziółkowska, Natalia Szynkiewicz, Jerzy Pikies, Łukasz Ponikiewski. Synthesis of compounds with C–P–P and CP–P bond systems based on the phospha-Wittig reaction. Dalton Transactions 2020, 49
(39)
, 13635-13646. https://doi.org/10.1039/D0DT02728F
- Robin Schoemaker, Philipp Kossatz, Kai Schwedtmann, Felix Hennersdorf, Jan J. Weigand. Coordination Chemistry and Methylation of Mixed‐Substituted Tetraphosphetanes (RP−P
t
Bu)
2
(R=Ph, Py). Chemistry – A European Journal 2020, 26
(51)
, 11734-11741. https://doi.org/10.1002/chem.202001360
- Clemens Taube, Kai Schwedtmann, Medena Noikham, Ekasith Somsook, Felix Hennersdorf, Robert Wolf, Jan J. Weigand. P−P Condensation and P−N/P−P Bond Metathesis: Facile Synthesis of Cationic Tri‐ and Tetraphosphanes. Angewandte Chemie 2020, 132
(9)
, 3613-3619. https://doi.org/10.1002/ange.201911483
- Clemens Taube, Kai Schwedtmann, Medena Noikham, Ekasith Somsook, Felix Hennersdorf, Robert Wolf, Jan J. Weigand. P−P Condensation and P−N/P−P Bond Metathesis: Facile Synthesis of Cationic Tri‐ and Tetraphosphanes. Angewandte Chemie International Edition 2020, 59
(9)
, 3585-3591. https://doi.org/10.1002/anie.201911483
- Robin Schoemaker, Kai Schwedtmann, Antonio Franconetti, Antonio Frontera, Felix Hennersdorf, Jan J. Weigand. Controlled scrambling reactions to polyphosphanes
via
bond metathesis reactions. Chemical Science 2019, 10
(48)
, 11054-11063. https://doi.org/10.1039/C9SC04501E
- Lipeng Wu, Vincent T. Annibale, Haijun Jiao, Adam Brookfield, David Collison, Ian Manners. Homo- and heterodehydrocoupling of phosphines mediated by alkali metal catalysts. Nature Communications 2019, 10
(1)
https://doi.org/10.1038/s41467-019-09832-4
- Stefan Isenberg, Stefan Weller, Denis Kargin, Srećko Valić, Brigitte Schwederski, Zsolt Kelemen, Clemens Bruhn, Kristijan Krekić, Martin Maurer, Christoph M. Feil, Martin Nieger, Dietrich Gudat, László Nyulászi, Rudolf Pietschnig. Bis‐[3]Ferrocenophanes with Central >E−E’< Bonds (E, E’=P, SiH): Preparation, Properties, and Thermal Activation. ChemistryOpen 2019, 8
(10)
, 1235-1243. https://doi.org/10.1002/open.201900182
- Peter Coburger, Hansjörg Grützmacher, Evamarie Hey-Hawkins. Molecular doping: accessing the first carborane-substituted 1,2,3-triphospholanide
via
insertion of P
−
into a P−P bond. Chemical Communications 2019, 55
(22)
, 3187-3190. https://doi.org/10.1039/C9CC00205G
- Cornelis G.J. Tazelaar, J. Chris Slootweg, Koop Lammertsma. Coordination chemistry of tris(azolyl)phosphines. Coordination Chemistry Reviews 2018, 356 , 115-126. https://doi.org/10.1016/j.ccr.2017.10.024
- René Panzer, Chris Guhrenz, Danny Haubold, René Hübner, Nikolai Gaponik, Alexander Eychmüller, Jan J. Weigand. Versatile Tri(pyrazolyl)phosphanes as Phosphorus Precursors for the Synthesis of Highly Emitting InP/ZnS Quantum Dots. Angewandte Chemie International Edition 2017, 56
(46)
, 14737-14742. https://doi.org/10.1002/anie.201705650
- Arunabha Thakur, Dipendu Mandal. Neutral tris(azolyl)phosphanes: An intriguing class of molecules in chemistry. Coordination Chemistry Reviews 2016, 329 , 16-52. https://doi.org/10.1016/j.ccr.2016.09.003
- Cornelis G. J. Tazelaar, Emmanuel Nicolas, Tom van Dijk, Daniël L. J. Broere, Mitchel Cardol, Martin Lutz, Dietrich Gudat, J. Chris Slootweg, Koop Lammertsma. Tris(pyrazolyl)phosphines with copper(
i
): from monomers to polymers. Dalton Trans. 2016, 45
(5)
, 2237-2249. https://doi.org/10.1039/C5DT03994K
- Roman Dobrovetsky, Katsuhiko Takeuchi, Douglas W. Stephan. Metal-free Lewis acid mediated dehydrocoupling of phosphines and concurrent hydrogenation. Chemical Communications 2015, 51
(12)
, 2396-2398. https://doi.org/10.1039/C4CC09526J
- Michael H. Holthausen, Rashi R. Hiranandani, Douglas W. Stephan. Electrophilic bis-fluorophosphonium dications: Lewis acid catalysts from diphosphines. Chemical Science 2015, 6
(3)
, 2016-2021. https://doi.org/10.1039/C5SC00051C
- . Jan J. Weigand. Angewandte Chemie 2014, 5102-5102. https://doi.org/10.1002/ange.201311108
- . Jan J. Weigand. Angewandte Chemie International Edition 2014, 5002-5002. https://doi.org/10.1002/anie.201311108
- Roland C. Fischer, Jan J. Weigand. Anorganische Chemie 2012. Nachrichten aus der Chemie 2013, 61
(3)
, 219-234. https://doi.org/10.1002/nadc.201390083
- John D. Protasiewicz. Nitrogen, phosphorus, arsenic, antimony, and bismuth. Annual Reports Section "A" (Inorganic Chemistry) 2013, 109 , 66. https://doi.org/10.1039/c3ic90011h
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.