ACS Publications. Most Trusted. Most Cited. Most Read
P–N/P–P Bond Metathesis for the Synthesis of Complex Polyphosphanes
My Activity

Figure 1Loading Img
    Article

    P–N/P–P Bond Metathesis for the Synthesis of Complex Polyphosphanes
    Click to copy article linkArticle link copied!

    View Author Information
    Institut für Anorganische und Analytische Chemie and Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
    Other Access OptionsSupporting Information (3)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 37, 15443–15456
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja305406x
    Published September 10, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A unique hexaphosphane featuring a 2,2′-bi(1,2,3-triphosphacyclopentane) moiety (19) and an ethylene-bridged bis-isotetraphosphane (27c,m) were both selectively prepared in efficient one-pot syntheses from easily accessible tris(3,5-dimethyl-1-pyrazolyl)phosphane (14) and 1,2-bis(phenylphosphanyl)ethane (18c,m). The formation of 27c,m is an example of a highly efficient P–P bond formation via protolysis. In contrast, the formation of 19 comprises P–N/P–P bond metathesis steps. This constitutes a novel synthetic approach toward the preparation of complex polyphosphanes. Detailed spectroscopic investigations form the basis for a mechanistic understanding of this unprecedented methodology. Furthermore, the preparation of a unique dinuclear iron–carbonyl complex which features hexaphosphane 19 as a bridging ligand illustrates the potential use of complex polyphosphanes such as 19 as ligands in transition metal chemistry.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Crystallographic information files. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 28 publications.

    1. Adam N. Barrett, Callum R. Woof, Christopher A. Goult, Danila Gasperini, Mary F. Mahon, Ruth L. Webster. Hydrogen/Halogen Exchange of Phosphines for the Rapid Formation of Cyclopolyphosphines. Inorganic Chemistry 2021, 60 (21) , 16826-16833. https://doi.org/10.1021/acs.inorgchem.1c02734
    2. Xianya Wang, Chungu Xia, Lipeng Wu. Visible-Light-Promoted Photoredox Dehydrogenative Coupling of Phosphines and Thiophenols. Organic Letters 2020, 22 (18) , 7373-7377. https://doi.org/10.1021/acs.orglett.0c02746
    3. Sebastian Molitor, Julia Becker, and Viktoria H. Gessner . Selective Dehydrocoupling of Phosphines by Lithium Chloride Carbenoids. Journal of the American Chemical Society 2014, 136 (44) , 15517-15520. https://doi.org/10.1021/ja509381w
    4. Chao‐Peng Zhang, Tian‐Zhang Wang, Zhong‐Jiang Yang, Yu‐Feng Liang. Manganese Promoted Reductive Cross‐Coupling of Phosphine Chlorides with Disulfides for the Synthesis of Thiophosphanes. Advanced Synthesis & Catalysis 2025, https://doi.org/10.1002/adsc.202401395
    5. Jannis Fidelius, Kai Schwedtmann, Sebastian Schellhammer, Rongjuan Huang, Felix Hennersdorf, Moritz Fink, Jan Haberstroh, Antonio Bauzá, Antonio Frontera, Sebastian Reineke, Jan J. Weigand. 1,3-Dipolar cycloaddition reactions of triflatophosphanes to afford functionalized azaphospholium salts and azaphospholes. Inorganic Chemistry Frontiers 2025, 2 https://doi.org/10.1039/D5QI00427F
    6. Maximilian Donath, Kai Schwedtmann, Tobias Schneider, Felix Hennersdorf, Antonio Bauzá, Antonio Frontera, Jan J. Weigand. Direct conversion of white phosphorus to versatile phosphorus transfer reagents via oxidative onioation. Nature Chemistry 2022, 14 (4) , 384-391. https://doi.org/10.1038/s41557-022-00913-4
    7. Jan-Erik Siewert, André Schumann, Christian Hering-Junghans. Phosphine-catalysed reductive coupling of dihalophosphanes. Dalton Transactions 2021, 50 (42) , 15111-15117. https://doi.org/10.1039/D1DT03095G
    8. Robin Schoemaker, Kai Schwedtmann, Jan J. Weigand. Pyrazolyl-substituted Phosphorus(III) compounds in synthesis. Coordination Chemistry Reviews 2021, 436 , 213829. https://doi.org/10.1016/j.ccr.2021.213829
    9. Callum Branfoot, Tom A. Young, Duncan F. Wass, Paul G. Pringle. Radical-initiated P,P-metathesis reactions of diphosphanes: evidence from experimental and computational studies. Dalton Transactions 2021, 50 (20) , 7094-7104. https://doi.org/10.1039/D1DT01013A
    10. Mario Cicač-Hudi, Christoph M. Feil, Nicholas Birchall, Martin Nieger, Dietrich Gudat. Proton transfer vs. oligophosphine formation by P–C/P–H σ-bond metathesis: decoding the competing Brønsted and Lewis type reactivities of imidazolio-phosphines. Dalton Transactions 2020, 49 (47) , 17401-17413. https://doi.org/10.1039/D0DT03633A
    11. Aleksandra Ziółkowska, Natalia Szynkiewicz, Jerzy Pikies, Łukasz Ponikiewski. Synthesis of compounds with C–P–P and CP–P bond systems based on the phospha-Wittig reaction. Dalton Transactions 2020, 49 (39) , 13635-13646. https://doi.org/10.1039/D0DT02728F
    12. Robin Schoemaker, Philipp Kossatz, Kai Schwedtmann, Felix Hennersdorf, Jan J. Weigand. Coordination Chemistry and Methylation of Mixed‐Substituted Tetraphosphetanes (RP−P t Bu) 2 (R=Ph, Py). Chemistry – A European Journal 2020, 26 (51) , 11734-11741. https://doi.org/10.1002/chem.202001360
    13. Clemens Taube, Kai Schwedtmann, Medena Noikham, Ekasith Somsook, Felix Hennersdorf, Robert Wolf, Jan J. Weigand. P−P Condensation and P−N/P−P Bond Metathesis: Facile Synthesis of Cationic Tri‐ and Tetraphosphanes. Angewandte Chemie 2020, 132 (9) , 3613-3619. https://doi.org/10.1002/ange.201911483
    14. Clemens Taube, Kai Schwedtmann, Medena Noikham, Ekasith Somsook, Felix Hennersdorf, Robert Wolf, Jan J. Weigand. P−P Condensation and P−N/P−P Bond Metathesis: Facile Synthesis of Cationic Tri‐ and Tetraphosphanes. Angewandte Chemie International Edition 2020, 59 (9) , 3585-3591. https://doi.org/10.1002/anie.201911483
    15. Robin Schoemaker, Kai Schwedtmann, Antonio Franconetti, Antonio Frontera, Felix Hennersdorf, Jan J. Weigand. Controlled scrambling reactions to polyphosphanes via bond metathesis reactions. Chemical Science 2019, 10 (48) , 11054-11063. https://doi.org/10.1039/C9SC04501E
    16. Lipeng Wu, Vincent T. Annibale, Haijun Jiao, Adam Brookfield, David Collison, Ian Manners. Homo- and heterodehydrocoupling of phosphines mediated by alkali metal catalysts. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-09832-4
    17. Stefan Isenberg, Stefan Weller, Denis Kargin, Srećko Valić, Brigitte Schwederski, Zsolt Kelemen, Clemens Bruhn, Kristijan Krekić, Martin Maurer, Christoph M. Feil, Martin Nieger, Dietrich Gudat, László Nyulászi, Rudolf Pietschnig. Bis‐[3]Ferrocenophanes with Central >E−E’< Bonds (E, E’=P, SiH): Preparation, Properties, and Thermal Activation. ChemistryOpen 2019, 8 (10) , 1235-1243. https://doi.org/10.1002/open.201900182
    18. Peter Coburger, Hansjörg Grützmacher, Evamarie Hey-Hawkins. Molecular doping: accessing the first carborane-substituted 1,2,3-triphospholanide via insertion of P − into a P−P bond. Chemical Communications 2019, 55 (22) , 3187-3190. https://doi.org/10.1039/C9CC00205G
    19. Cornelis G.J. Tazelaar, J. Chris Slootweg, Koop Lammertsma. Coordination chemistry of tris(azolyl)phosphines. Coordination Chemistry Reviews 2018, 356 , 115-126. https://doi.org/10.1016/j.ccr.2017.10.024
    20. René Panzer, Chris Guhrenz, Danny Haubold, René Hübner, Nikolai Gaponik, Alexander Eychmüller, Jan J. Weigand. Versatile Tri(pyrazolyl)phosphanes as Phosphorus Precursors for the Synthesis of Highly Emitting InP/ZnS Quantum Dots. Angewandte Chemie International Edition 2017, 56 (46) , 14737-14742. https://doi.org/10.1002/anie.201705650
    21. Arunabha Thakur, Dipendu Mandal. Neutral tris(azolyl)phosphanes: An intriguing class of molecules in chemistry. Coordination Chemistry Reviews 2016, 329 , 16-52. https://doi.org/10.1016/j.ccr.2016.09.003
    22. Cornelis G. J. Tazelaar, Emmanuel Nicolas, Tom van Dijk, Daniël L. J. Broere, Mitchel Cardol, Martin Lutz, Dietrich Gudat, J. Chris Slootweg, Koop Lammertsma. Tris(pyrazolyl)phosphines with copper( i ): from monomers to polymers. Dalton Trans. 2016, 45 (5) , 2237-2249. https://doi.org/10.1039/C5DT03994K
    23. Roman Dobrovetsky, Katsuhiko Takeuchi, Douglas W. Stephan. Metal-free Lewis acid mediated dehydrocoupling of phosphines and concurrent hydrogenation. Chemical Communications 2015, 51 (12) , 2396-2398. https://doi.org/10.1039/C4CC09526J
    24. Michael H. Holthausen, Rashi R. Hiranandani, Douglas W. Stephan. Electrophilic bis-fluorophosphonium dications: Lewis acid catalysts from diphosphines. Chemical Science 2015, 6 (3) , 2016-2021. https://doi.org/10.1039/C5SC00051C
    25. . Jan J. Weigand. Angewandte Chemie 2014, 5102-5102. https://doi.org/10.1002/ange.201311108
    26. . Jan J. Weigand. Angewandte Chemie International Edition 2014, 5002-5002. https://doi.org/10.1002/anie.201311108
    27. Roland C. Fischer, Jan J. Weigand. Anorganische Chemie 2012. Nachrichten aus der Chemie 2013, 61 (3) , 219-234. https://doi.org/10.1002/nadc.201390083
    28. John D. Protasiewicz. Nitrogen, phosphorus, arsenic, antimony, and bismuth. Annual Reports Section "A" (Inorganic Chemistry) 2013, 109 , 66. https://doi.org/10.1039/c3ic90011h

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 37, 15443–15456
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja305406x
    Published September 10, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    2222

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.