ACS Publications. Most Trusted. Most Cited. Most Read
Manganese Nitride Complexes in Oxidation States III, IV, and V: Synthesis and Electronic Structure
My Activity

Figure 1Loading Img
    Article

    Manganese Nitride Complexes in Oxidation States III, IV, and V: Synthesis and Electronic Structure
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University of Erlangen-Nuremberg, Egerlandstrasse 1, Erlangen, Germany
    Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
    § Max-Planck-Institute for Chemical Energy Conversion (CEC), Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
    Other Access OptionsSupporting Information (6)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 37, 15538–15544
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja306647c
    Published August 25, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The synthesis and characterization of a series of manganese nitrides in a tripodal chelating tris(carbene) ligand framework is described. Photolysis of [(TIMENxyl)Mn(N3)]+ (where TIMENxyl = tris[2-(3-xylylimidazol-2-ylidene)ethyl]amine) yields the isolable molecular MnIV nitride, [(TIMENxyl)Mn(N)]+. Spectroscopic and DFT studies indicate that this MnIV d3 complex has a doublet electronic ground state. The metal-centered one-electron oxidation of this MnIV species results in formation of the pentavalent MnV nitride, [(TIMENxyl)Mn(N)]2+. Unlike previously reported, tetragonal MnV nitrides with a d2, nonmagnetic S = 0 ground state, this trigonal bipyramidal complex has a triplet ground state S = 1. One-electron reduction of [(TIMENxyl)Mn(N)]+ produces the neutral, nonmagnetic trivalent [(TIMENxyl)Mn(N)] species with a d4 low-spin, S = 0, ground state.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Supporting graphics, experimental conditions, synthetic procedures, theoretical calculations, and spectroscopic data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 64 publications.

    1. Masrat Bashir, Aijaz A. Dar, Imtiyaz Yousuf. Syntheses, Structural Characterization, and Cytotoxicity Assessment of Novel Mn(II) and Zn(II) Complexes of Aroyl-Hydrazone Schiff Base Ligand. ACS Omega 2023, 8 (3) , 3026-3042. https://doi.org/10.1021/acsomega.2c05927
    2. Huatian Shi, Runhui Liang, David Lee Phillips, Hung Kay Lee, Wai-Lun Man, Kai-Chung Lau, Shek-Man Yiu, Tai-Chu Lau. Structure and Reactivity of One- and Two-Electron Oxidized Manganese(V) Nitrido Complexes Bearing a Bulky Corrole Ligand. Journal of the American Chemical Society 2022, 144 (17) , 7588-7593. https://doi.org/10.1021/jacs.2c02506
    3. Huatian Shi, Hung Kay Lee, Yi Pan, Kai-Chung Lau, Shek-Man Yiu, William W. Y. Lam, Wai-Lun Man, Tai-Chu Lau. Structure and Reactivity of a Manganese(VI) Nitrido Complex Bearing a Tetraamido Macrocyclic Ligand. Journal of the American Chemical Society 2021, 143 (38) , 15863-15872. https://doi.org/10.1021/jacs.1c08072
    4. Lisa Gravogl, Frank W. Heinemann, Dominik Munz, Karsten Meyer. An Iron Pincer Complex in Four Oxidation States. Inorganic Chemistry 2020, 59 (8) , 5632-5645. https://doi.org/10.1021/acs.inorgchem.0c00355
    5. Zachary Mathe, Dimitrios A. Pantazis, Heui Beom Lee, Richard Gnewkow, Benjamin E. Van Kuiken, Theodor Agapie, Serena DeBeer. Calcium Valence-to-Core X-ray Emission Spectroscopy: A Sensitive Probe of Oxo Protonation in Structural Models of the Oxygen-Evolving Complex. Inorganic Chemistry 2019, 58 (23) , 16292-16301. https://doi.org/10.1021/acs.inorgchem.9b02866
    6. Cooper Citek, Paul H. Oyala, Jonas C. Peters. Mononuclear Fe(I) and Fe(II) Acetylene Adducts and Their Reductive Protonation to Terminal Fe(IV) and Fe(V) Carbynes. Journal of the American Chemical Society 2019, 141 (38) , 15211-15221. https://doi.org/10.1021/jacs.9b06987
    7. Camden Hunt, Madeline Peterson, Cassidy Anderson, Tieyan Chang, Guang Wu, Steve Scheiner, Gabriel Ménard. Switchable Aromaticity in an Isostructural Mn Phthalocyanine Series Isolated in Five Separate Redox States. Journal of the American Chemical Society 2019, 141 (6) , 2604-2613. https://doi.org/10.1021/jacs.8b12899
    8. Jun Cheng, Lijun Wang, Peng Wang, Liang Deng. High-Oxidation-State 3d Metal (Ti–Cu) Complexes with N-Heterocyclic Carbene Ligation. Chemical Reviews 2018, 118 (19) , 9930-9987. https://doi.org/10.1021/acs.chemrev.8b00096
    9. Silvia Amabilino and Robert J. Deeth . DFT Analysis of Spin Crossover in Mn(III) Complexes: Is a Two-Electron S = 2 to S = 0 Spin Transition Feasible?. Inorganic Chemistry 2017, 56 (5) , 2602-2613. https://doi.org/10.1021/acs.inorgchem.6b02793
    10. Ryan M. Clarke and Tim Storr . Tuning Electronic Structure To Control Manganese Nitride Activation. Journal of the American Chemical Society 2016, 138 (47) , 15299-15302. https://doi.org/10.1021/jacs.6b09576
    11. Regina A. Baglia, Courtney M. Krest, Tzuhsiung Yang, Pannee Leeladee, and David P. Goldberg . High-Valent Manganese–Oxo Valence Tautomers and the Influence of Lewis/Brönsted Acids on C–H Bond Cleavage. Inorganic Chemistry 2016, 55 (20) , 10800-10809. https://doi.org/10.1021/acs.inorgchem.6b02109
    12. Richard C. Walroth, James T. Lukens, Samantha N. MacMillan, Kenneth D. Finkelstein, and Kyle M. Lancaster . Spectroscopic Evidence for a 3d10 Ground State Electronic Configuration and Ligand Field Inversion in [Cu(CF3)4]1–. Journal of the American Chemical Society 2016, 138 (6) , 1922-1931. https://doi.org/10.1021/jacs.5b10819
    13. Christopher J. Pollock and Serena DeBeer . Insights into the Geometric and Electronic Structure of Transition Metal Centers from Valence-to-Core X-ray Emission Spectroscopy. Accounts of Chemical Research 2015, 48 (11) , 2967-2975. https://doi.org/10.1021/acs.accounts.5b00309
    14. Malik H. Al-Afyouni, V. Mahesh Krishnan, Hadi D. Arman, and Zachary J. Tonzetich . Synthesis and Reactivity of Manganese(II) Complexes Containing N-Heterocyclic Carbene Ligands. Organometallics 2015, 34 (20) , 5088-5094. https://doi.org/10.1021/acs.organomet.5b00684
    15. Henning Kropp, Andreas Scheurer, Frank W. Heinemann, Jesper Bendix, and Karsten Meyer . Coordination-Induced Spin-State Change in Manganese(V) Complexes: The Electronic Structure of Manganese(V) Nitrides. Inorganic Chemistry 2015, 54 (7) , 3562-3572. https://doi.org/10.1021/acs.inorgchem.5b00112
    16. Samantha N. MacMillan, Richard C. Walroth, Demetra M. Perry, Thorbjørn J. Morsing, and Kyle M. Lancaster . Ligand-Sensitive But Not Ligand-Diagnostic: Evaluating Cr Valence-to-Core X-ray Emission Spectroscopy as a Probe of Inner-Sphere Coordination. Inorganic Chemistry 2015, 54 (1) , 205-214. https://doi.org/10.1021/ic502152r
    17. Eva M. Zolnhofer, Martina Käß, Marat M. Khusniyarov, Frank W. Heinemann, Laurent Maron, Maurice van Gastel, Eckhard Bill, and Karsten Meyer . An Intermediate Cobalt(IV) Nitrido Complex and its N-Migratory Insertion Product. Journal of the American Chemical Society 2014, 136 (42) , 15072-15078. https://doi.org/10.1021/ja508144j
    18. Christopher J. Pollock, Kyle M. Lancaster, Kenneth D. Finkelstein, and Serena DeBeer . Study of Iron Dimers Reveals Angular Dependence of Valence-to-Core X-ray Emission Spectra. Inorganic Chemistry 2014, 53 (19) , 10378-10385. https://doi.org/10.1021/ic501462y
    19. Stéphane Bellemin-Laponnaz and Samuel Dagorne . Group 1 and 2 and Early Transition Metal Complexes Bearing N-Heterocyclic Carbene Ligands: Coordination Chemistry, Reactivity, and Applications. Chemical Reviews 2014, 114 (18) , 8747-8774. https://doi.org/10.1021/cr500227y
    20. Eleanor R. Hall, Christopher J. Pollock, Jesper Bendix, Terrence J. Collins, Pieter Glatzel, and Serena DeBeer . Valence-to-Core-Detected X-ray Absorption Spectroscopy: Targeting Ligand Selectivity. Journal of the American Chemical Society 2014, 136 (28) , 10076-10084. https://doi.org/10.1021/ja504206y
    21. Martina Käß, Johannes Hohenberger, Mario Adelhardt, Eva M. Zolnhofer, Susanne Mossin, Frank W. Heinemann, Jörg Sutter, and Karsten Meyer . Synthesis and Characterization of Divalent Manganese, Iron, and Cobalt Complexes in Tripodal Phenolate/N-Heterocyclic Carbene Ligand Environments. Inorganic Chemistry 2014, 53 (5) , 2460-2470. https://doi.org/10.1021/ic4024053
    22. Justin A. Bogart, Andrew J. Lewis, Scott A. Medling, Nicholas A. Piro, Patrick J. Carroll, Corwin H. Booth, and Eric J. Schelter . Homoleptic Cerium(III) and Cerium(IV) Nitroxide Complexes: Significant Stabilization of the 4+ Oxidation State. Inorganic Chemistry 2013, 52 (19) , 11600-11607. https://doi.org/10.1021/ic401974t
    23. Yann Gloaguen, Lianne M. Jongens, Joost N. H. Reek, Martin Lutz, Bas de Bruin, and Jarl Ivar van der Vlugt . Reductive Elimination at an Ortho-Metalated Iridium(III) Hydride Bearing a Tripodal Tetraphosphorus Ligand. Organometallics 2013, 32 (15) , 4284-4291. https://doi.org/10.1021/om400451y
    24. P. Chandrasekaran, Karen P. Chiang, Dennis Nordlund, Uwe Bergmann, Patrick L. Holland, and Serena DeBeer . Sensitivity of X-ray Core Spectroscopy to Changes in Metal Ligation: A Systematic Study of Low-Coordinate, High-Spin Ferrous Complexes. Inorganic Chemistry 2013, 52 (11) , 6286-6298. https://doi.org/10.1021/ic3021723
    25. Heather M. Bass, S. Alan Cramer, Alexander S. McCullough, Karl J. Bernstein, Christopher R. Murdock, and David M. Jenkins . Employing Dianionic Macrocyclic Tetracarbenes To Synthesize Neutral Divalent Metal Complexes. Organometallics 2013, 32 (7) , 2160-2167. https://doi.org/10.1021/om400043z
    26. Kyle M. Lancaster, Yilin Hu, Uwe Bergmann, Markus W. Ribbe, and Serena DeBeer . X-ray Spectroscopic Observation of an Interstitial Carbide in NifEN-Bound FeMoco Precursor. Journal of the American Chemical Society 2013, 135 (2) , 610-612. https://doi.org/10.1021/ja309254g
    27. Romain Kunert, Diego Martelino, Samyadeb Mahato, Nicholas M. Hein, Jason Pulfer, Christian Philouze, Olivier Jarjayes, Fabrice Thomas, Tim Storr. Investigating the formation of metal nitride complexes employing a tetradentate bis-carbene bis-phenolate ligand. Dalton Transactions 2025, 301 https://doi.org/10.1039/D4DT01765J
    28. Mohamed M. El-bendary, Abdullah Akhdhar, Ehab M. M. Ali, Bambar Davaasuren, Mariusz Jaremko, Bandar A. Babgi. Synthesis, structural characterization and antitumor activities of manganese and cobalt isothiocyanate complexes with 2,2’-bipyridine. Journal of Coordination Chemistry 2024, 77 (5-6) , 563-576. https://doi.org/10.1080/00958972.2024.2339484
    29. Hermann Sicius. Manganese Group: Elements of the Seventh Subgroup. 2024, 633-674. https://doi.org/10.1007/978-3-662-68921-9_12
    30. Ida M. DiMucci, Charles J. Titus, Dennis Nordlund, James R. Bour, Eugene Chong, Dylan P. Grigas, Chi-Herng Hu, Mikhail D. Kosobokov, Caleb D. Martin, Liviu M. Mirica, Noel Nebra, David A. Vicic, Lydia L. Yorks, Sam Yruegas, Samantha N. MacMillan, Jason Shearer, Kyle M. Lancaster. Scrutinizing formally Ni IV centers through the lenses of core spectroscopy, molecular orbital theory, and valence bond theory. Chemical Science 2023, 14 (25) , 6915-6929. https://doi.org/10.1039/D3SC02001K
    31. Giacomo Rigoni, Pamela V. S. Nylund, Martin Albrecht. Manganese( iii ) complexes stabilized with N-heterocyclic carbene ligands for alcohol oxidation catalysis. Dalton Transactions 2023, 52 (23) , 7992-8002. https://doi.org/10.1039/D3DT01013A
    32. Hermann Sicius. Mangangruppe: Elemente der siebten Nebengruppe. 2023, 641-683. https://doi.org/10.1007/978-3-662-65664-8_12
    33. Matthias Dorn, Nathan Roy East, Christoph Förster, Winald Robert Kitzmann, Johannes Moll, Florian Reichenauer, Thomas Reuter, Laura Stein, Katja Heinze. d-d and charge transfer photochemistry of 3d metal complexes. 2023, 707-788. https://doi.org/10.1016/B978-0-12-823144-9.00063-7
    34. Wrya Mohammadi Aframehr, Peter H. Pfromm. Activating dinitrogen for chemical looping ammonia Synthesis: Mn nitride layer growth modeling. Chemical Engineering Science 2022, 252 , 117287. https://doi.org/10.1016/j.ces.2021.117287
    35. Hermann Sicius. Mangangruppe: Elemente der siebten Nebengruppe. 2022, 1-43. https://doi.org/10.1007/978-3-662-55944-4_12-3
    36. Beatriz Royo, Sara Realista, Sofia Friães. N-Heterocyclic and Mesoionic Carbene Complexes of Group 7 Metals. 2022, 264-298. https://doi.org/10.1016/B978-0-12-820206-7.00020-2
    37. Liang Deng, Zhenbo Mo. Organometallic Chemistry of NHCs and Analogues. 2022, 339-372. https://doi.org/10.1016/B978-0-12-820206-7.00027-5
    38. Sofie M.P. Vanden Broeck, Catherine S.J. Cazin. Manganese-N-heterocyclic carbene (NHC) complexes – An overview. Polyhedron 2021, 205 , 115204. https://doi.org/10.1016/j.poly.2021.115204
    39. Hermann Sicius. Mangangruppe: Elemente der siebten Nebengruppe. 2021, 623-662. https://doi.org/10.1007/978-3-662-55939-0_12
    40. Yafei Gao, Jeremy M. Smith. Group 7 and 8 Heterocyclic Carbene Complexes. 2021, 440-526. https://doi.org/10.1016/B978-0-08-102688-5.00058-1
    41. Lucile Chatelain, Elisa Louyriac, Iskander Douair, Erli Lu, Floriana Tuna, Ashley J. Wooles, Benedict M. Gardner, Laurent Maron, Stephen T. Liddle. Terminal uranium(V)-nitride hydrogenations involving direct addition or Frustrated Lewis Pair mechanisms. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-019-14221-y
    42. Anuvab Das, Gerard Pierre Van Trieste, David C. Powers. Crystallography of Reactive Intermediates. Comments on Inorganic Chemistry 2020, 40 (3) , 116-158. https://doi.org/10.1080/02603594.2020.1747054
    43. Joseph F. DeJesus, David M. Jenkins. A Chiral Macrocyclic Tetra‐ N ‐Heterocyclic Carbene Yields an “All Carbene” Iron Alkylidene Complex. Chemistry – A European Journal 2020, 26 (6) , 1429-1435. https://doi.org/10.1002/chem.201905360
    44. Brian J. Cook, Samantha I. Johnson, Geoffrey M. Chambers, Werner Kaminsky, R. Morris Bullock. Triple hydrogen atom abstraction from Mn–NH 3 complexes results in cyclophosphazenium cations. Chemical Communications 2019, 55 (93) , 14058-14061. https://doi.org/10.1039/C9CC06915A
    45. Hermann Sicius. Mangangruppe: Elemente der siebten Nebengruppe. 2019, 1-40. https://doi.org/10.1007/978-3-662-55944-4_12-2
    46. Ryan J. Martinie, Elizabeth J. Blaesi, J. Martin Bollinger, Carsten Krebs, Kenneth D. Finkelstein, Christopher J. Pollock. Two‐Color Valence‐to‐Core X‐ray Emission Spectroscopy Tracks Cofactor Protonation State in a Class I Ribonucleotide Reductase. Angewandte Chemie 2018, 130 (39) , 12936-12940. https://doi.org/10.1002/ange.201807366
    47. Ryan J. Martinie, Elizabeth J. Blaesi, J. Martin Bollinger, Carsten Krebs, Kenneth D. Finkelstein, Christopher J. Pollock. Two‐Color Valence‐to‐Core X‐ray Emission Spectroscopy Tracks Cofactor Protonation State in a Class I Ribonucleotide Reductase. Angewandte Chemie International Edition 2018, 57 (39) , 12754-12758. https://doi.org/10.1002/anie.201807366
    48. Joshua A. Buss, Christine Cheng, Theodor Agapie. A Low‐Valent Molybdenum Nitride Complex: Reduction Promotes Carbonylation Chemistry. Angewandte Chemie 2018, 130 (31) , 9818-9822. https://doi.org/10.1002/ange.201803728
    49. Joshua A. Buss, Christine Cheng, Theodor Agapie. A Low‐Valent Molybdenum Nitride Complex: Reduction Promotes Carbonylation Chemistry. Angewandte Chemie International Edition 2018, 57 (31) , 9670-9674. https://doi.org/10.1002/anie.201803728
    50. Lisa Suntrup, Merlin Kleoff, Biprajit Sarkar. Serendipitous discoveries of new coordination modes of the 1,5-regioisomer of 1,2,3-triazoles enroute to the attempted synthesis of a carbon-anchored tri-mesoionic carbene. Dalton Transactions 2018, 47 (24) , 7992-8002. https://doi.org/10.1039/C8DT01521J
    51. Haiping Li, Yuguo Xia, Tingxia Hu, Quanhua Deng, Na Du, Wanguo Hou. Enhanced charge carrier separation of manganese( ii )-doped graphitic carbon nitride: formation of N–Mn bonds through redox reactions. Journal of Materials Chemistry A 2018, 6 (15) , 6238-6243. https://doi.org/10.1039/C8TA00607E
    52. Suman Kushwaha, Karthikayini M.P., Guanxiong Wang, Sudip Mandal, Preeti. A. Bhobe, Vijay K. Ramani, K.R. Priolkar, Kothandaraman Ramanujam. A non-platinum counter electrode, MnNx/C, for dye-sensitized solar cell applications. Applied Surface Science 2017, 418 , 179-185. https://doi.org/10.1016/j.apsusc.2016.12.140
    53. Valentine Charra, Pierre de Frémont, Pierre Braunstein. Multidentate N-heterocyclic carbene complexes of the 3d metals: Synthesis, structure, reactivity and catalysis. Coordination Chemistry Reviews 2017, 341 , 53-176. https://doi.org/10.1016/j.ccr.2017.03.007
    54. M. P. Karthikayini, Guanxiong Wang, P. A. Bhobe, Anjaiah Sheelam, Vijay K. Ramani, K. R. Priolkar, R. K. Raman. Effect of Protonated Amine Molecules on the Oxygen Reduction Reaction on Metal-Nitrogen-Carbon-Based Catalysts. Electrocatalysis 2017, 8 (1) , 74-85. https://doi.org/10.1007/s12678-016-0341-y
    55. Joanna K. Kowalska, Frederico A. Lima, Christopher J. Pollock, Julian A. Rees, Serena DeBeer. A Practical Guide to High‐resolution X‐ray Spectroscopic Measurements and their Applications in Bioinorganic Chemistry. Israel Journal of Chemistry 2016, 56 (9-10) , 803-815. https://doi.org/10.1002/ijch.201600037
    56. Sean W. Reilly, Charles Edwin Webster, T. Keith Hollis, Henry U. Valle. Transmetallation from CCC-NHC pincer Zr complexes in the synthesis of air-stable CCC-NHC pincer Co( iii ) complexes and initial hydroboration trials. Dalton Transactions 2016, 45 (7) , 2823-2828. https://doi.org/10.1039/C5DT04752H
    57. Mei Ding, George E. Cutsail III, Daniel Aravena, Martín Amoza, Mathieu Rouzières, Pierre Dechambenoit, Yaroslav Losovyj, Maren Pink, Eliseo Ruiz, Rodolphe Clérac, Jeremy M. Smith. A low spin manganese( iv ) nitride single molecule magnet. Chemical Science 2016, 7 (9) , 6132-6140. https://doi.org/10.1039/C6SC01469K
    58. B. Das, M. Behm, G. Lindbergh, M.V. Reddy, B.V.R. Chowdari. High performance metal nitrides, MN (M = Cr, Co) nanoparticles for non-aqueous hybrid supercapacitors. Advanced Powder Technology 2015, 26 (3) , 783-788. https://doi.org/10.1016/j.apt.2015.02.001
    59. Andrea Biffis, Marco Baron, Cristina Tubaro. Poly-NHC Complexes of Transition Metals. 2015, 203-288. https://doi.org/10.1016/bs.adomc.2015.02.002
    60. Richard C. Walroth, Jacob W. H. Uebler, Kyle M. Lancaster. Probing Cu I in homogeneous catalysis using high-energy-resolution fluorescence-detected X-ray absorption spectroscopy. Chemical Communications 2015, 51 (48) , 9864-9867. https://doi.org/10.1039/C5CC01827G
    61. Sheraz Gul, Jia Wei Desmond Ng, Roberto Alonso-Mori, Jan Kern, Dimosthenis Sokaras, Eitan Anzenberg, Benedikt Lassalle-Kaiser, Yelena Gorlin, Tsu-Chien Weng, Petrus H. Zwart, Jin Z. Zhang, Uwe Bergmann, Vittal K. Yachandra, Thomas F. Jaramillo, Junko Yano. Simultaneous detection of electronic structure changes from two elements of a bifunctional catalyst using wavelength-dispersive X-ray emission spectroscopy and in situ electrochemistry. Physical Chemistry Chemical Physics 2015, 17 (14) , 8901-8912. https://doi.org/10.1039/C5CP01023C
    62. Mario Ulises Delgado‐Jaime, Serena DeBeer , Matthias Bauer. Valence‐to‐Core X‐Ray Emission Spectroscopy of Iron–Carbonyl Complexes: Implications for the Examination of Catalytic Intermediates. Chemistry – A European Journal 2013, 19 (47) , 15888-15897. https://doi.org/10.1002/chem.201301913
    63. Robert Wolf, Guido Clever. Koordinationschemie. Nachrichten aus der Chemie 2013, 61 (3) , 235-246. https://doi.org/10.1002/nadc.201390084
    64. B. Das, M. V. Reddy, B. V. R. Chowdari. X-ray absorption spectroscopy and energy storage of Ni-doped cobalt nitride, (Ni0.33Co0.67)N, prepared by a simple synthesis route. Nanoscale 2013, 5 (5) , 1961. https://doi.org/10.1039/c2nr33675h

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 37, 15538–15544
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja306647c
    Published August 25, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    6235

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.