ACS Publications. Most Trusted. Most Cited. Most Read
Total Structure and Optical Properties of a Phosphine/Thiolate-Protected Au24 Nanocluster
My Activity

Figure 1Loading Img
    Communication

    Total Structure and Optical Properties of a Phosphine/Thiolate-Protected Au24 Nanocluster
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
    Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
    § Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, 444-8585, Japan
    Other Access OptionsSupporting Information (2)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 50, 20286–20289
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja3101566
    Published December 10, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We report the synthesis and total structure determination of a Au24 nanocluster protected by mixed ligands of phosphine and thiolate. Single crystal X-ray crystallography and electrospray ionization mass spectrometry (ESI-MS) unequivocally determined the cluster formula to be [Au24(PPh3)10(SC2H4Ph)5X2]+, where X = Cl and/or Br. The structure consists of two incomplete (i.e., one vertex missing) icosahedral Au12 units joined by five thiolate linkages. This structure shows interesting differences from the previously reported vertex-sharing biicosahedral [Au25(PPh3)10(SC2H4Ph)5X2]2+ nanocluster protected by the same type and number of phosphine and thiolate ligands. The optical absorption spectrum of Au24 nanocluster was theoretically reproduced and interpreted.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Details of the synthesis, X-ray crystallographic analysis, DFT calculations, and supporting Figures S1–S4. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 203 publications.

    1. Zhijie Kong, Xue Zhao, Wu-Chu Li, Jia-Yun Wang, Si Li, Zhijuan Liu, Xi-Yan Dong, Rui Wang, Ren-Wu Huang, Shuang-Quan Zang. Cluster Engineering in Water Catalytic Reactions: Synthesis, Structure–Activity Relationship and Mechanism. ACS Applied Materials & Interfaces 2025, 17 (1) , 67-90. https://doi.org/10.1021/acsami.4c16063
    2. Mengge Bai, Lin Qin, Xiang-Ming Zeng, Minjian Wu, Liao-Yuan Yao, Guo-Yu Yang. Dithiocarbonate-Protected Au25 Nanorods of a Chiral D5 Configuration and NIR-II Phosphorescence. Journal of the American Chemical Society 2024, 146 (18) , 12734-12742. https://doi.org/10.1021/jacs.4c02411
    3. Tatsuya Nakanishi, Hiroshi Yao. Water-Soluble Chiral Ag29 Clusters Protected by Monothiol N-Acetyl-(S)-penicillamine Synthesized in One Pot. The Journal of Physical Chemistry Letters 2023, 14 (45) , 10285-10292. https://doi.org/10.1021/acs.jpclett.3c02780
    4. Youcai Ma, Xiaohui Zhang, Chenglong Ma, Wen Xia, Liangzhen Hu, Xiaoyu Dong, Yan Xiong. Electrochemically Oxidative Phosphating of Aldehydes and Ketones. The Journal of Organic Chemistry 2023, 88 (7) , 4264-4272. https://doi.org/10.1021/acs.joc.2c02826
    5. Yao Li, Xi-Ming Luo, Peng Luo, Qiu-Xu Zang, Zhao-Yang Wang, Shuang-Quan Zang. Cocrystallization of Two Negatively Charged Dimercaptomaleonitrile-Stabilized Silver Nanoclusters. ACS Nano 2023, 17 (6) , 5834-5841. https://doi.org/10.1021/acsnano.2c12473
    6. Hui Shen, Xiongkai Tang, Qingyuan Wu, Yuhao Zhang, Chuxin Ma, Zhen Xu, Boon K. Teo, Nanfeng Zheng. Guiding the High-Yield Synthesis of NHC-Ligated Gold Nanoclusters by 19F NMR Spectroscopy. ACS Nanoscience Au 2022, 2 (6) , 520-526. https://doi.org/10.1021/acsnanoscienceau.2c00026
    7. Xiao Cai, Guangjun Li, Weigang Hu, Yan Zhu. Catalytic Conversion of CO2 over Atomically Precise Gold-Based Cluster Catalysts. ACS Catalysis 2022, 12 (17) , 10638-10653. https://doi.org/10.1021/acscatal.2c02595
    8. Viveka K. Kulkarni, Behnam Nourmohammadi Khiarak, Shinjiro Takano, Sami Malola, Emily L. Albright, Tetyana I. Levchenko, Mark D. Aloisio, Cao-Thang Dinh, Tatsuya Tsukuda, Hannu Häkkinen, Cathleen M. Crudden. N-Heterocyclic Carbene-Stabilized Hydrido Au24 Nanoclusters: Synthesis, Structure, and Electrocatalytic Reduction of CO2. Journal of the American Chemical Society 2022, 144 (20) , 9000-9006. https://doi.org/10.1021/jacs.2c00789
    9. Ze-Hua Gao, Kecheng Wei, Tao Wu, Jia Dong, De-en Jiang, Shouheng Sun, Lai-Sheng Wang. A Heteroleptic Gold Hydride Nanocluster for Efficient and Selective Electrocatalytic Reduction of CO2 to CO. Journal of the American Chemical Society 2022, 144 (12) , 5258-5262. https://doi.org/10.1021/jacs.2c00725
    10. Shao-Yu Kang, Zi-Ang Nan, Quan-Ming Wang. Superatomic Orbital Splitting in Coinage Metal Nanoclusters. The Journal of Physical Chemistry Letters 2022, 13 (1) , 291-295. https://doi.org/10.1021/acs.jpclett.1c03563
    11. Justin B. Patty, Shana Havenridge, Dylan Tietje-Mckinney, Maxime A. Siegler, Kundan K. Singh, Roumina Hajy Hosseini, Mohamed Ghabin, Christine M. Aikens, Anindita Das. Crystal Structure and Optical Properties of a Chiral Mixed Thiolate/Stibine-Protected Au18 Cluster. Journal of the American Chemical Society 2022, 144 (1) , 478-484. https://doi.org/10.1021/jacs.1c10778
    12. Shang-Fu Yuan, Cong-Qiao Xu, Wen-Di Liu, Jing-Xuan Zhang, Jun Li, Quan-Ming Wang. Rod-Shaped Silver Supercluster Unveiling Strong Electron Coupling between Substituent Icosahedral Units. Journal of the American Chemical Society 2021, 143 (31) , 12261-12267. https://doi.org/10.1021/jacs.1c05283
    13. Chunwei Dong, Ren-Wu Huang, Cailing Chen, Jie Chen, Saidkhodzha Nematulloev, Xianrong Guo, Atanu Ghosh, Badriah Alamer, Mohamed Nejib Hedhili, Tayirjan T. Isimjan, Yu Han, Omar F. Mohammed, Osman M. Bakr. [Cu36H10(PET)24(PPh3)6Cl2] Reveals Surface Vacancy Defects in Ligand-Stabilized Metal Nanoclusters. Journal of the American Chemical Society 2021, 143 (29) , 11026-11035. https://doi.org/10.1021/jacs.1c03402
    14. Miao-Miao Zhang, Xi-Yan Dong, Zhao-Yang Wang, Xi-Ming Luo, Jia-Hong Huang, Shuang-Quan Zang, Thomas C. W. Mak. Alkynyl-Stabilized Superatomic Silver Clusters Showing Circularly Polarized Luminescence. Journal of the American Chemical Society 2021, 143 (16) , 6048-6053. https://doi.org/10.1021/jacs.1c02098
    15. Tomoki Matsuyama, Jun Hirayama, Yu Fujiki, Soichi Kikkawa, Wataru Kurashige, Hiroyuki Asakura, Naomi Kawamura, Yuichi Negishi, Naoki Nakatani, Keisuke Hatada, Fukiko Ota, Seiji Yamazoe. Effect of Ligand on the Electronic State of Gold in Ligand-Protected Gold Clusters Elucidated by X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C 2021, 125 (5) , 3143-3149. https://doi.org/10.1021/acs.jpcc.0c09369
    16. Rongchao Jin, Gao Li, Sachil Sharma, Yingwei Li, Xiangsha Du. Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures. Chemical Reviews 2021, 121 (2) , 567-648. https://doi.org/10.1021/acs.chemrev.0c00495
    17. Xiao Cai, Weigang Hu, Shun Xu, Dan Yang, Mingyang Chen, Miao Shu, Rui Si, Weiping Ding, Yan Zhu. Structural Relaxation Enabled by Internal Vacancy Available in a 24-Atom Gold Cluster Reinforces Catalytic Reactivity. Journal of the American Chemical Society 2020, 142 (9) , 4141-4153. https://doi.org/10.1021/jacs.9b07761
    18. Yongbo Song Chuanjun Zhou Rongchao Jin . Intraparticle Construction of Fundamental Building Blocks for Multilevel Metal Nanoclusters Protected by Ligands. 2020, 47-71. https://doi.org/10.1021/bk-2020-1358.ch003
    19. Xi Kang, Manzhou Zhu. Transformation of Atomically Precise Nanoclusters by Ligand-Exchange. Chemistry of Materials 2019, 31 (24) , 9939-9969. https://doi.org/10.1021/acs.chemmater.9b03674
    20. K. L. Dimuthu M. Weerawardene, Pratima Pandeya, Meng Zhou, Yuxiang Chen, Rongchao Jin, Christine M. Aikens. Luminescence and Electron Dynamics in Atomically Precise Nanoclusters with Eight Superatomic Electrons. Journal of the American Chemical Society 2019, 141 (47) , 18715-18726. https://doi.org/10.1021/jacs.9b07626
    21. Shan-Shan Zhang, Fahri Alkan, Hai-Feng Su, Christine M. Aikens, Chen-Ho Tung, Di Sun. [Ag48(C≡CtBu)20(CrO4)7]: An Atomically Precise Silver Nanocluster Co-protected by Inorganic and Organic Ligands. Journal of the American Chemical Society 2019, 141 (10) , 4460-4467. https://doi.org/10.1021/jacs.9b00703
    22. Qijian Zheng, Chang Xu, Xia Wu, Longjiu Cheng. Evidence for the Superatom–Superatom Bonding from Bond Energies. ACS Omega 2018, 3 (10) , 14423-14430. https://doi.org/10.1021/acsomega.8b01841
    23. Tiziano Dainese, Sabrina Antonello, Sara Bogialli, Wenwen Fei, Alfonso Venzo, Flavio Maran. Gold Fusion: From Au25(SR)18 to Au38(SR)24, the Most Unexpected Transformation of a Very Stable Nanocluster. ACS Nano 2018, 12 (7) , 7057-7066. https://doi.org/10.1021/acsnano.8b02780
    24. Shan Jin, Wenjun Du, Shuxin Wang, Xi Kang, Man Chen, Daqiao Hu, Shuang Chen, Xuejuan Zou, Guodong Sun, and Manzhou Zhu . Thiol-Induced Synthesis of Phosphine-Protected Gold Nanoclusters with Atomic Precision and Controlling the Structure by Ligand/Metal Engineering. Inorganic Chemistry 2017, 56 (18) , 11151-11159. https://doi.org/10.1021/acs.inorgchem.7b01458
    25. Indranath Chakraborty and Thalappil Pradeep . Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chemical Reviews 2017, 117 (12) , 8208-8271. https://doi.org/10.1021/acs.chemrev.6b00769
    26. Maha A. Aljuhani, Megalamane S. Bootharaju, Lutfan Sinatra, Jean-Marie Basset, Omar F. Mohammed, and Osman M. Bakr . Synthesis and Optical Properties of a Dithiolate/Phosphine-Protected Au28 Nanocluster. The Journal of Physical Chemistry C 2017, 121 (20) , 10681-10685. https://doi.org/10.1021/acs.jpcc.6b10205
    27. Rosalba Juarez-Mosqueda, Sami Kaappa, Sami Malola, and Hannu Häkkinen . Analysis of the Electronic Structure of Non-Spherical Ligand-Protected Metal Nanoclusters: The Case of a Box-Like Ag67. The Journal of Physical Chemistry C 2017, 121 (20) , 10698-10705. https://doi.org/10.1021/acs.jpcc.6b10618
    28. Sha Yang, Jinsong Chai, Yongbo Song, Jiqiang Fan, Tao Chen, Shuxin Wang, Haizhu Yu, Xiaowu Li, and Manzhou Zhu . In Situ Two-Phase Ligand Exchange: A New Method for the Synthesis of Alloy Nanoclusters with Precise Atomic Structures. Journal of the American Chemical Society 2017, 139 (16) , 5668-5671. https://doi.org/10.1021/jacs.7b00668
    29. Sha Yang, Jinsong Chai, Tao Chen, Bo Rao, Yiting Pan, Haizhu Yu, and Manzhou Zhu . Crystal Structures of Two New Gold–Copper Bimetallic Nanoclusters: CuxAu25–x(PPh3)10(PhC2H4S)5Cl22+ and Cu3Au34(PPh3)13(tBuPhCH2S)6S23+. Inorganic Chemistry 2017, 56 (4) , 1771-1774. https://doi.org/10.1021/acs.inorgchem.6b02016
    30. Mohammad J. Alhilaly, Megalamane S. Bootharaju, Chakra P. Joshi, Tabot M. Besong, Abdul-Hamid Emwas, Rosalba Juarez-Mosqueda, Sami Kaappa, Sami Malola, Karim Adil, Aleksander Shkurenko, Hannu Häkkinen, Mohamed Eddaoudi, and Osman M. Bakr . [Ag67(SPhMe2)32(PPh3)8]3+: Synthesis, Total Structure, and Optical Properties of a Large Box-Shaped Silver Nanocluster. Journal of the American Chemical Society 2016, 138 (44) , 14727-14732. https://doi.org/10.1021/jacs.6b09007
    31. Rongchao Jin, Chenjie Zeng, Meng Zhou, and Yuxiang Chen . Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chemical Reviews 2016, 116 (18) , 10346-10413. https://doi.org/10.1021/acs.chemrev.5b00703
    32. Indranath Chakraborty, Anirban Som, Tuhina Adit Maark, Biswajit Mondal, Depanjan Sarkar, and Thalappil Pradeep . Toward a Janus Cluster: Regiospecific Decarboxylation of Ag44(4-MBA)30@Ag Nanoparticles. The Journal of Physical Chemistry C 2016, 120 (28) , 15471-15479. https://doi.org/10.1021/acs.jpcc.6b04769
    33. Jiu-Lian Zeng, Zong-Jie Guan, Yang Du, Zi-Ang Nan, Yu-Mei Lin, and Quan-Ming Wang . Chloride-Promoted Formation of a Bimetallic Nanocluster Au80Ag30 and the Total Structure Determination. Journal of the American Chemical Society 2016, 138 (25) , 7848-7851. https://doi.org/10.1021/jacs.6b04471
    34. Enrico Cattabriga, Iacopo Ciabatti, Cristina Femoni, Tiziana Funaioli, Maria Carmela Iapalucci, and Stefano Zacchini . Syntheses, Structures, and Electrochemistry of the Defective ccp [Pt33(CO)38]2– and the bcc [Pt40(CO)40]6– Molecular Nanoclusters. Inorganic Chemistry 2016, 55 (12) , 6068-6079. https://doi.org/10.1021/acs.inorgchem.6b00607
    35. Yongbo Song, Shan Jin, Xi Kang, Ji Xiang, Huijuan Deng, Haizhu Yu, and Manzhou Zhu . How a Single Electron Affects the Properties of the “Non-Superatom” Au25 Nanoclusters. Chemistry of Materials 2016, 28 (8) , 2609-2617. https://doi.org/10.1021/acs.chemmater.5b04655
    36. Man-Bo Li, Shi-Kai Tian, Zhikun Wu, and Rongchao Jin . Peeling the Core–Shell Au25 Nanocluster by Reverse Ligand-Exchange. Chemistry of Materials 2016, 28 (4) , 1022-1025. https://doi.org/10.1021/acs.chemmater.5b04907
    37. Rosina Ho-Wu, Sung Hei Yau, and Theodore Goodson, III . Linear and Nonlinear Optical Properties of Monolayer-Protected Gold Nanocluster Films. ACS Nano 2016, 10 (1) , 562-572. https://doi.org/10.1021/acsnano.5b05591
    38. Chunyan Liu, Yong Pei, Hui Sun, and Jing Ma . The Nucleation and Growth Mechanism of Thiolate-Protected Au Nanoclusters. Journal of the American Chemical Society 2015, 137 (50) , 15809-15816. https://doi.org/10.1021/jacs.5b09466
    39. Ganapati Natarajan, Ammu Mathew, Yuichi Negishi, Robert L. Whetten, and Thalappil Pradeep . A Unified Framework for Understanding the Structure and Modifications of Atomically Precise Monolayer Protected Gold Clusters. The Journal of Physical Chemistry C 2015, 119 (49) , 27768-27785. https://doi.org/10.1021/acs.jpcc.5b08193
    40. Aleksandr V. Zhukhovitskiy, Michelle J. MacLeod, and Jeremiah A. Johnson . Carbene Ligands in Surface Chemistry: From Stabilization of Discrete Elemental Allotropes to Modification of Nanoscale and Bulk Substrates. Chemical Reviews 2015, 115 (20) , 11503-11532. https://doi.org/10.1021/acs.chemrev.5b00220
    41. Lu-Yi Jin, Yu-Ming Dong, Xiu-Ming Wu, Gen-Xia Cao, and Guang-Li Wang . Versatile and Amplified Biosensing through Enzymatic Cascade Reaction by Coupling Alkaline Phosphatase in Situ Generation of Photoresponsive Nanozyme. Analytical Chemistry 2015, 87 (20) , 10429-10436. https://doi.org/10.1021/acs.analchem.5b02728
    42. Lina G. AbdulHalim, Megalamane S. Bootharaju, Qing Tang, Silvano Del Gobbo, Rasha G. AbdulHalim, Mohamed Eddaoudi, De-en Jiang, and Osman M. Bakr . Ag29(BDT)12(TPP)4: A Tetravalent Nanocluster. Journal of the American Chemical Society 2015, 137 (37) , 11970-11975. https://doi.org/10.1021/jacs.5b04547
    43. Juanzhu Yan, Haifeng Su, Huayan Yang, Sami Malola, Shuichao Lin, Hannu Häkkinen, and Nanfeng Zheng . Total Structure and Electronic Structure Analysis of Doped Thiolated Silver [MAg24(SR)18]2– (M = Pd, Pt) Clusters. Journal of the American Chemical Society 2015, 137 (37) , 11880-11883. https://doi.org/10.1021/jacs.5b07186
    44. Renxi Jin, Chong Liu, Shuo Zhao, Anindita Das, Hongzhu Xing, Chakicherla Gayathri, Yan Xing, Nathaniel L. Rosi, Roberto R. Gil, and Rongchao Jin . Tri-icosahedral Gold Nanocluster [Au37(PPh3)10(SC2H4Ph)10X2]+: Linear Assembly of Icosahedral Building Blocks. ACS Nano 2015, 9 (8) , 8530-8536. https://doi.org/10.1021/acsnano.5b03524
    45. Francesco Muniz-Miranda, Maria Cristina Menziani, and Alfonso Pedone . DFT and TD-DFT Assessment of the Structural and Optoelectronic Properties of an Organic–Ag14 Nanocluster. The Journal of Physical Chemistry A 2015, 119 (21) , 5088-5098. https://doi.org/10.1021/jp507679f
    46. Xian-Kai Wan, Qing Tang, Shang-Fu Yuan, De-en Jiang, and Quan-Ming Wang . Au19 Nanocluster Featuring a V-Shaped Alkynyl–Gold Motif. Journal of the American Chemical Society 2015, 137 (2) , 652-655. https://doi.org/10.1021/ja512133a
    47. Qingguo Meng . Optical, Electrical, and Catalytic Properties of Metal Nanoclusters Investigated by ab initio Molecular Dynamics Simulation: A Mini Review. 2015, 215-234. https://doi.org/10.1021/bk-2015-1196.ch011
    48. Anindita Das, Chong Liu, Chenjie Zeng, Gao Li, Tao Li, Nathaniel L. Rosi, and Rongchao Jin . Cyclopentanethiolato-Protected Au36(SC5H9)24 Nanocluster: Crystal Structure and Implications for the Steric and Electronic Effects of Ligand. The Journal of Physical Chemistry A 2014, 118 (37) , 8264-8269. https://doi.org/10.1021/jp501073a
    49. Yukatsu Shichibu, Mingzhe Zhang, Yutaro Kamei, and Katsuaki Konishi . [Au7]3+: A Missing Link in the Four-Electron Gold Cluster Family. Journal of the American Chemical Society 2014, 136 (37) , 12892-12895. https://doi.org/10.1021/ja508005x
    50. James J. Spivey, Katla Sai Krishna, Challa S.S.R. Kumar, Kerry M. Dooley, John C. Flake, Louis H. Haber, Ye Xu, Michael J. Janik, Susan B. Sinnott, Yu-Ting Cheng, Tao Liang, David S. Sholl, Thomas A. Manz, Ulrike Diebold, Gareth S. Parkinson, David A. Bruce, and Petra de Jongh . Synthesis, Characterization, and Computation of Catalysts at the Center for Atomic-Level Catalyst Design. The Journal of Physical Chemistry C 2014, 118 (35) , 20043-20069. https://doi.org/10.1021/jp502556u
    51. Marco De Nardi, Sabrina Antonello, De-en Jiang, Fangfang Pan, Kari Rissanen, Marco Ruzzi, Alfonso Venzo, Alfonso Zoleo, and Flavio Maran . Gold Nanowired: A Linear (Au25)n Polymer from Au25 Molecular Clusters. ACS Nano 2014, 8 (8) , 8505-8512. https://doi.org/10.1021/nn5031143
    52. Huayan Yang, Yu Wang, Juanzhu Yan, Xi Chen, Xin Zhang, Hannu Häkkinen, and Nanfeng Zheng . Structural Evolution of Atomically Precise Thiolated Bimetallic [Au12+nCu32(SR)30+n]4– (n = 0, 2, 4, 6) Nanoclusters. Journal of the American Chemical Society 2014, 136 (20) , 7197-7200. https://doi.org/10.1021/ja501811j
    53. Jing Chen, Qian-Fan Zhang, Paul G. Williard, and Lai-Sheng Wang . Synthesis and Structure Determination of a New Au20 Nanocluster Protected by Tripodal Tetraphosphine Ligands. Inorganic Chemistry 2014, 53 (8) , 3932-3934. https://doi.org/10.1021/ic500562r
    54. Francesco Muniz-Miranda, Maria Cristina Menziani, and Alfonso Pedone . Assessment of Exchange-Correlation Functionals in Reproducing the Structure and Optical Gap of Organic-Protected Gold Nanoclusters. The Journal of Physical Chemistry C 2014, 118 (14) , 7532-7544. https://doi.org/10.1021/jp411483x
    55. Young Kwang Lee, Sungi Kim, Jeong-Wook Oh, and Jwa-Min Nam . Massively Parallel and Highly Quantitative Single-Particle Analysis on Interactions between Nanoparticles on Supported Lipid Bilayer. Journal of the American Chemical Society 2014, 136 (10) , 4081-4088. https://doi.org/10.1021/ja501225p
    56. Jing Chen, Qian-Fan Zhang, Timary A. Bonaccorso, Paul G. Williard, and Lai-Sheng Wang . Controlling Gold Nanoclusters by Diphospine Ligands. Journal of the American Chemical Society 2014, 136 (1) , 92-95. https://doi.org/10.1021/ja411061e
    57. Anindita Das, Tao Li, Katsuyuki Nobusada, Chenjie Zeng, Nathaniel L. Rosi, and Rongchao Jin . Nonsuperatomic [Au23(SC6H11)16]− Nanocluster Featuring Bipyramidal Au15 Kernel and Trimeric Au3(SR)4 Motif. Journal of the American Chemical Society 2013, 135 (49) , 18264-18267. https://doi.org/10.1021/ja409177s
    58. Mary Sajini Devadas, Viraj Dhanushka Thanthirige, Semere Bairu, Ekkehard Sinn, and Guda Ramakrishna . Temperature-Dependent Absorption and Ultrafast Luminescence Dynamics of Bi-Icosahedral Au25 Clusters. The Journal of Physical Chemistry C 2013, 117 (44) , 23155-23161. https://doi.org/10.1021/jp408333h
    59. Longhua Zou, Wei Qi, Renliang Huang, Rongxin Su, Mengfan Wang, and Zhimin He . Green Synthesis of a Gold Nanoparticle–Nanocluster Composite Nanostructures Using Trypsin as Linking and Reducing Agents. ACS Sustainable Chemistry & Engineering 2013, 1 (11) , 1398-1404. https://doi.org/10.1021/sc400244u
    60. Jing-Qiang Goh, Sami Malola, Hannu Häkkinen, and Jaakko Akola . Role of the Central Gold Atom in Ligand-Protected Biicosahedral Au24 and Au25 Clusters. The Journal of Physical Chemistry C 2013, 117 (42) , 22079-22086. https://doi.org/10.1021/jp406819f
    61. Chenjie Zeng, Tao Li, Anindita Das, Nathaniel L. Rosi, and Rongchao Jin . Chiral Structure of Thiolate-Protected 28-Gold-Atom Nanocluster Determined by X-ray Crystallography. Journal of the American Chemical Society 2013, 135 (27) , 10011-10013. https://doi.org/10.1021/ja404058q
    62. Yuan Yuan, Longjiu Cheng, and Jinlong Yang . Electronic Stability of Phosphine-Protected Au20 Nanocluster: Superatomic Bonding. The Journal of Physical Chemistry C 2013, 117 (25) , 13276-13282. https://doi.org/10.1021/jp402816b
    63. M. S. Bootharaju and T. Pradeep . Facile and Rapid Synthesis of a Dithiol-Protected Ag7 Quantum Cluster for Selective Adsorption of Cationic Dyes. Langmuir 2013, 29 (25) , 8125-8132. https://doi.org/10.1021/la401180r
    64. T. Udayabhaskararao and T. Pradeep . New Protocols for the Synthesis of Stable Ag and Au Nanocluster Molecules. The Journal of Physical Chemistry Letters 2013, 4 (9) , 1553-1564. https://doi.org/10.1021/jz400332g
    65. Yu-Rong Ni, Michael Nivendran Pillay, Tzu-Hao Chiu, Hao Liang, Samia Kahlal, Jie-Ying Chen, Yuan-Jang Chen, Jean-Yves Saillard, Chen-Wei Liu. Sulfide-mediated growth of NIR Luminescent Pd/Ag atomically precise nanoclusters. Nanoscale 2025, https://doi.org/10.1039/D4NR04136D
    66. Xian-Kai Wan, Xu-Shuang Han, Zong-Jie Guan, Wan-Qi Shi, Jiao-Jiao Li, Quan-Ming Wang. Interplay of kernel shape and surface structure for NIR luminescence in atomically precise gold nanorods. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-51642-w
    67. Chengkai Zhang, Wei-Dan Si, Wei-Dong Tian, Wan-Jun Xiao, Zhi-Yong Gao, Zhi Wang, Chen-Ho Tung, Di Sun. Single-atom “surgery” on chiral all-dialkynyl-protected superatomic silver nanoclusters. Science Bulletin 2024, 142 https://doi.org/10.1016/j.scib.2024.11.002
    68. Yuan Zhong, Zhennan Wu, Xue Bai, Yu Zhang, Jianping Xie. Viewing inorganic metal nanoclusters through the lens of molecular chemistry. Materials Today 2024, 76 , 72-93. https://doi.org/10.1016/j.mattod.2024.04.010
    69. Yao Qiao, Jiafeng Zou, Wenwen Fei, Wentao Fan, Qing You, Yan Zhao, Man‐Bo Li, Zhikun Wu. Building Block Metal Nanocluster‐Based Growth in 1D Direction. Small 2024, 20 (9) https://doi.org/10.1002/smll.202305556
    70. Yuming Gu, Shisi Tang, Xu Liu, Xinyi Liang, Qin Zhu, Hongfeng Wu, Xiao Yang, Weihao Jin, Hongwei Chen, Chunyan Liu, Yan Zhu, Jing Ma. Stability prediction of gold nanoclusters with different ligands and doped metals: deep learning and experimental tests. Journal of Materials Chemistry A 2024, 12 (8) , 4460-4472. https://doi.org/10.1039/D3TA06892G
    71. Changlin Zhou, Meng Wang, Qiaofeng Yao, Yu Zhou, Chuantao Hou, Jianfei Xia, Zonghua Wang, Jishi Chen, Jianping Xie. Ligand‐dependent aggregation‐enhanced photoacoustic of atomically precise metal nanocluster. Aggregate 2024, 5 (1) https://doi.org/10.1002/agt2.401
    72. Qing You, Xue‐Lian Jiang, Wentao Fan, Yun‐Shu Cui, Yan Zhao, Shengli Zhuang, Wanmiao Gu, Lingwen Liao, Cong‐Qiao Xu, Jun Li, Zhikun Wu. Pd 8 Nanocluster with Nonmetal‐to‐Metal‐ Ring Coordination and Promising Photothermal Conversion Efficiency. Angewandte Chemie International Edition 2024, 63 (3) https://doi.org/10.1002/anie.202313491
    73. Qing You, Xue‐Lian Jiang, Wentao Fan, Yun‐Shu Cui, Yan Zhao, Shengli Zhuang, Wanmiao Gu, Lingwen Liao, Cong‐Qiao Xu, Jun Li, Zhikun Wu. Pd 8 Nanocluster with Nonmetal‐to‐Metal‐ Ring Coordination and Promising Photothermal Conversion Efficiency. Angewandte Chemie 2024, 136 (3) https://doi.org/10.1002/ange.202313491
    74. Liang Yang, Shiyao Deng, Yong Pei. Theoretical studies of the N-heterocyclic carbene ligand protected Ag29 clusters. Chemical Physics Letters 2023, 833 , 140960. https://doi.org/10.1016/j.cplett.2023.140960
    75. Sayuri Miyajima, Sakiat Hossain, Ayaka Ikeda, Taiga Kosaka, Tokuhisa Kawawaki, Yoshiki Niihori, Takeshi Iwasa, Tetsuya Taketsugu, Yuichi Negishi. Key factors for connecting silver-based icosahedral superatoms by vertex sharing. Communications Chemistry 2023, 6 (1) https://doi.org/10.1038/s42004-023-00854-0
    76. Meng Wang, Lin Wang, Haoyuan Wu, Jing Sun, Xiaoxuan Xu, Shuo Guo, Yanyuan Jia, Simin Li, Zong-Jie Guan, Hui Shen. PtAg 18 superatoms costabilized by phosphines and halides: synthesis, structure, and catalysis. Nanoscale 2023, 15 (44) , 17818-17824. https://doi.org/10.1039/D3NR02196C
    77. Wei Pei, Jie She, Xueke Yu, Si Zhou, Jijun Zhao. Atomically precise gold nanoclusters for CO oxidation: balancing activity and stability by ligand shedding. Journal of Physics D: Applied Physics 2023, 56 (44) , 445304. https://doi.org/10.1088/1361-6463/acea8c
    78. Ritika Mittal, Nancy Gupta. Towards Green Synthesis of Fluorescent Metal Nanoclusters. Journal of Fluorescence 2023, 33 (6) , 2161-2180. https://doi.org/10.1007/s10895-023-03229-9
    79. Chunwei Dong, Ren‐Wu Huang, Arunachalam Sagadevan, Peng Yuan, Luis Gutiérrez‐Arzaluz, Atanu Ghosh, Saidkhodzha Nematulloev, Badriah Alamer, Omar F. Mohammed, Irshad Hussain, Magnus Rueping, Osman M. Bakr. Isostructural Nanocluster Manipulation Reveals Pivotal Role of One Surface Atom in Click Chemistry. Angewandte Chemie International Edition 2023, 62 (37) https://doi.org/10.1002/anie.202307140
    80. Chunwei Dong, Ren‐Wu Huang, Arunachalam Sagadevan, Peng Yuan, Luis Gutiérrez‐Arzaluz, Atanu Ghosh, Saidkhodzha Nematulloev, Badriah Alamer, Omar F. Mohammed, Irshad Hussain, Magnus Rueping, Osman M. Bakr. Isostructural Nanocluster Manipulation Reveals Pivotal Role of One Surface Atom in Click Chemistry. Angewandte Chemie 2023, 135 (37) https://doi.org/10.1002/ange.202307140
    81. Xuejuan Zou, Xi Kang, Manzhou Zhu. Recent developments in the investigation of driving forces for transforming coinage metal nanoclusters. Chemical Society Reviews 2023, 52 (17) , 5892-5967. https://doi.org/10.1039/D2CS00876A
    82. Yingwei Li, Rongchao Jin. Shape control with atomic precision: anisotropic nanoclusters of noble metals. Nanoscale Horizons 2023, 8 (8) , 991-1013. https://doi.org/10.1039/D3NH00125C
    83. Feng Hu, Rui‐Lin He, Zong‐Jie Guan, Chun‐Yu Liu, Quan‐Ming Wang. Disc‐Like Silver Nanocluster Ag 93 Built with Bicapped Hexagonal Prismatic Ag 15 and Ino Decahedral Ag 13 Units. Angewandte Chemie 2023, 135 (29) https://doi.org/10.1002/ange.202304134
    84. Feng Hu, Rui‐Lin He, Zong‐Jie Guan, Chun‐Yu Liu, Quan‐Ming Wang. Disc‐Like Silver Nanocluster Ag 93 Built with Bicapped Hexagonal Prismatic Ag 15 and Ino Decahedral Ag 13 Units. Angewandte Chemie International Edition 2023, 62 (29) https://doi.org/10.1002/anie.202304134
    85. Jin-Ping Gao, Zhikai Qi, Fu-Qiang Zhang, Xian-Ming Zhang. [MoO 4 ] 2− -templated D 4 h -symmetric sandwich Ag 13 nanocluster coprotected with thiolate and phosphine. Polyoxometalates 2023, 2 (2) , 9140028. https://doi.org/10.26599/POM.2023.9140028
    86. Meegle S. Mathew, Greeshma Krishnan, Amita Aanne Mathews, Kevin Sunil, Leo Mathew, Rodolphe Antoine, Sabu Thomas. Recent Progress on Ligand-Protected Metal Nanoclusters in Photocatalysis. Nanomaterials 2023, 13 (12) , 1874. https://doi.org/10.3390/nano13121874
    87. Yoshiki Niihori, Sayuri Miyajima, Ayaka Ikeda, Taiga Kosaka, Yuichi Negishi. Vertex‐Shared Linear Superatomic Molecules: Stepping Stones to Novel Materials Composed of Noble Metal Clusters. Small Science 2023, 3 (5) https://doi.org/10.1002/smsc.202300024
    88. Yanfei Zhu, Lidan Guo, Jun Guo, Luyang Zhao, Chunyan Li, Xueying Qiu, Yang Qin, Xianrong Gu, Xiangnan Sun, Zhiyong Tang. Room‐Temperature Spin Transport in Metal Nanocluster‐Based Spin Valves. Angewandte Chemie 2023, 135 (4) https://doi.org/10.1002/ange.202213208
    89. Yanfei Zhu, Lidan Guo, Jun Guo, Luyang Zhao, Chunyan Li, Xueying Qiu, Yang Qin, Xianrong Gu, Xiangnan Sun, Zhiyong Tang. Room‐Temperature Spin Transport in Metal Nanocluster‐Based Spin Valves. Angewandte Chemie International Edition 2023, 62 (4) https://doi.org/10.1002/anie.202213208
    90. Xiao Wei, Xi Kang, Manzhou Zhu. Photoluminescence of metal nanoclusters. 2023, 536-561. https://doi.org/10.1016/B978-0-12-822425-0.00043-9
    91. Manzhou Zhu, Haizhu Yu. Mechanism of size conversion and structure evolution of metal nanoclusters. 2023, 79-151. https://doi.org/10.1016/B978-0-323-90474-2.00003-4
    92. Manzhou Zhu, Shuang Chen. Physical-chemical properties of metal nanoclusters. 2023, 153-199. https://doi.org/10.1016/B978-0-323-90474-2.00006-X
    93. Papri Chakraborty, Thalappil Pradeep. Mass spectrometry of atomically precise clusters. 2023, 203-227. https://doi.org/10.1016/B978-0-323-90879-5.00022-6
    94. . Appendix. 2023, 601-637. https://doi.org/10.1016/B978-0-323-90879-5.00026-3
    95. Endong Wang, Junxia Ding, Wenhua Han, Shixia Luan. Structural prediction of anion thiolate protected gold clusters of [Au28+7n(SR)17+3n]− (n = 0–4). The Journal of Chemical Physics 2022, 157 (12) https://doi.org/10.1063/5.0105226
    96. Hongxin Si, Tong Shu, Xin Du, Lei Su, Xueji Zhang. An Overview on Coinage Metal Nanocluster-Based Luminescent Biosensors via Etching Chemistry. Biosensors 2022, 12 (7) , 511. https://doi.org/10.3390/bios12070511
    97. Ya-Ge Wu, Jia-Hong Huang, Chong Zhang, Xiang-Kun Guo, Wei-Na Wu, Xi-Yan Dong, Shuang-Quan Zang. Site-specific sulfur-for-metal replacement in a silver nanocluster. Chemical Communications 2022, 58 (52) , 7321-7324. https://doi.org/10.1039/D2CC00794K
    98. Ling Yang, Xin-Yao Wang, Xiao-Yan Tang, Meng-Yi Wang, Chun-Yan Ni, Hong Yu, Ying-Lin Song, Brendan F. Abrahams, Jian-Ping Lang. Temperature-dependent chloride-mediated access to atom-precise silver thiolate nanoclusters. Science China Chemistry 2022, 65 (6) , 1094-1099. https://doi.org/10.1007/s11426-022-1216-2
    99. Jianyu Han, Junju Mu, Feng Wang. Single‐Metal Alloys. 2022, 145-168. https://doi.org/10.1002/9783527830169.ch4
    100. Zhaoxian Qin, Song Hu, Wenhua Han, Zhiwen Li, Wen Wu Xu, Jingjing Zhang, Gao Li. Tailoring optical and photocatalytic properties by single-Ag-atom exchange in Au13Ag12(PPh3)10Cl8 nanoclusters. Nano Research 2022, 15 (4) , 2971-2976. https://doi.org/10.1007/s12274-021-3928-4
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 50, 20286–20289
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja3101566
    Published December 10, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    5505

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.