ACS Publications. Most Trusted. Most Cited. Most Read
Allosterically Tunable, DNA-Based Switches Triggered by Heavy Metals
My Activity

Figure 1Loading Img
    Communication

    Allosterically Tunable, DNA-Based Switches Triggered by Heavy Metals
    Click to copy article linkArticle link copied!

    View Author Information
    Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
    Consorzio Interuniversitario Biostrutture e Biosistemi “INBB”, Rome, Italy
    § Laboratory of Biosensors and Nanomachines, Département de Chimie, Université de Montréal, Montreal, Québec, Canada
    ∥ ⊥ Center for Bioengineering & Department of Chemistry and Biochemistry; Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, United States
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2013, 135, 36, 13238–13241
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja404653q
    Published August 23, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Here we demonstrate the rational design of allosterically controllable, metal-ion-triggered molecular switches. Specifically, we designed DNA sequences that adopt two low energy conformations, one of which does not bind to the target ion and the other of which contains mismatch sites serving as specific recognition elements for mercury(II) or silver(I) ions. Both switches contain multiple metal binding sites and thus exhibit homotropic allosteric (cooperative) responses. As heterotropic allosteric effectors we employ single-stranded DNA sequences that either stabilize or destabilize the nonbinding state, enabling dynamic range tuning over several orders of magnitude. The ability to rationally introduce these effects into target-responsive switches could be of value in improving the functionality of DNA-based nanomachines.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Supporting methods, figures. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 104 publications.

    1. Runlian Qu, Zhen Zeng, Yue Wang, Ke Huang, Zeliang Wei, Kai Li, Weigang Gan, Feng Lin, Piaopiao Chen. Ag+-Mediated DNA Nanomachine Cascade Nanomaterial Amplification Enable One-Pot Electrochemical Analysis of Circulating Tumor DNA. Analytical Chemistry 2025, 97 (8) , 4625-4634. https://doi.org/10.1021/acs.analchem.4c06652
    2. Tian Shi, Pengjun Jiang, Wu Peng, Yanming Meng, Binwu Ying, Piaopiao Chen. Nucleic Acid and Nanomaterial Synergistic Amplification Enables Dual Targets of Ultrasensitive Fluorescence Quantification to Improve the Efficacy of Clinical Tuberculosis Diagnosis. ACS Applied Materials & Interfaces 2024, 16 (12) , 14510-14519. https://doi.org/10.1021/acsami.3c18596
    3. Yaqin He, Zixuan Zhan, Li Yan, Chengyong Wu, Yue Wang, Congcong Shen, Ke Huang, Zeliang Wei, Feng Lin, Binwu Ying, Weimin Li, Piaopiao Chen. Single-Cell Liquid Biopsy of Lung Cancer: Ultra-Simplified Efficient Enrichment of Circulating Tumor Cells and Hand-Held Fluorometer Portable Testing. ACS Nano 2024, 18 (6) , 5017-5028. https://doi.org/10.1021/acsnano.3c11147
    4. Dominic Lauzon, Alexis Vallée-Bélisle. Programing Chemical Communication: Allostery vs Multivalent Mechanism. Journal of the American Chemical Society 2023, 145 (34) , 18846-18854. https://doi.org/10.1021/jacs.3c04045
    5. Mengxue Sun, Pan Lu, Chanchan Yu, Feng Feng, Qilong Li, Jinxiu Zhan, Min Xu, Yajing Liu, Li Yao. Force-Coded Strategy for the Simultaneous Detection of Multiple Tumor-Related Proteins. Analytical Chemistry 2022, 94 (25) , 8992-8998. https://doi.org/10.1021/acs.analchem.2c01014
    6. Zhi-Min Chen, Qi Mou, Sheng-Hong Wu, Yu Xie, Kalle Salminen, Jian-Jun Sun. Real-Time Tunable Dynamic Range for Calibration-Free Biomolecular Measurements with a Temperature-Modulated Electrochemical Aptamer-Based Sensor in an Unprocessed Actual Sample. Analytical Chemistry 2022, 94 (2) , 1397-1405. https://doi.org/10.1021/acs.analchem.1c04697
    7. Guobao Zhou, Xing Lu, Mengmeng Yuan, Tuqiang Li, Lei Li. Enzymatic Cycle-Inspired Dynamic Biosensors Affording No False-Positive Identification. Analytical Chemistry 2021, 93 (46) , 15482-15492. https://doi.org/10.1021/acs.analchem.1c03502
    8. Piaopiao Chen, Yue Wang, Yaqin He, Ke Huang, Xiu Wang, Ronghui Zhou, Tangyuheng Liu, Runlian Qu, Juan Zhou, Wu Peng, Mei Li, Yunjin Bai, Jie Chen, Jin Huang, Jia Geng, Yi Xie, Walter Hu, Binwu Ying. Homogeneous Visual and Fluorescence Detection of Circulating Tumor Cells in Clinical Samples via Selective Recognition Reaction and Enzyme-Free Amplification. ACS Nano 2021, 15 (7) , 11634-11643. https://doi.org/10.1021/acsnano.1c02080
    9. Liangliang Liu, Mengmeng Yuan, Yuxia Jin, Guobao Zhou, Tuqiang Li, Lei Li, Huaping Peng, Wei Chen. Tunable Dual-Effector Allostery System for Nucleic Acid Analysis with Enhanced Sensitivity and an Extended Dynamic Range. Analytical Chemistry 2021, 93 (23) , 8170-8177. https://doi.org/10.1021/acs.analchem.1c00055
    10. Yusuke Takezawa, Akira Suzuki, Manabu Nakaya, Kotaro Nishiyama, Mitsuhiko Shionoya. Metal-Dependent DNA Base Pairing of 5-Carboxyuracil with Itself and All Four Canonical Nucleobases. Journal of the American Chemical Society 2020, 142 (52) , 21640-21644. https://doi.org/10.1021/jacs.0c11437
    11. Takahiro Nakama, Yusuke Takezawa, Daisuke Sasaki, Mitsuhiko Shionoya. Allosteric Regulation of DNAzyme Activities through Intrastrand Transformation Induced by Cu(II)-Mediated Artificial Base Pairing. Journal of the American Chemical Society 2020, 142 (22) , 10153-10162. https://doi.org/10.1021/jacs.0c03129
    12. Zane LaCasse, James R. Briscoe, Evgueni E. Nesterov, Irina V. Nesterova. Multidimensional Tunability of Nucleic Acids Enables Sensing over Unknown Backgrounds. Analytical Chemistry 2019, 91 (22) , 14275-14280. https://doi.org/10.1021/acs.analchem.9b02420
    13. Byunghwa Kang, Soyeon V. Park, Hyongsok Tom Soh, Seung Soo Oh. A Dual-Sensing DNA Nanostructure with an Ultrabroad Detection Range. ACS Sensors 2019, 4 (10) , 2802-2808. https://doi.org/10.1021/acssensors.9b01503
    14. Tania Patino, Alessandro Porchetta, Anita Jannasch, Anna Lladó, Tom Stumpp, Erik Schäffer, Francesco Ricci, Samuel Sánchez. Self-Sensing Enzyme-Powered Micromotors Equipped with pH-Responsive DNA Nanoswitches. Nano Letters 2019, 19 (6) , 3440-3447. https://doi.org/10.1021/acs.nanolett.8b04794
    15. Simona Ranallo, Alessandro Porchetta, Francesco Ricci. DNA-Based Scaffolds for Sensing Applications. Analytical Chemistry 2019, 91 (1) , 44-59. https://doi.org/10.1021/acs.analchem.8b05009
    16. Benmei Wei, Juntao Zhang, Xiaowen Ou, Xiaoding Lou, Fan Xia, and Alexis Vallée-Bélisle . Engineering Biosensors with Dual Programmable Dynamic Ranges. Analytical Chemistry 2018, 90 (3) , 1506-1510. https://doi.org/10.1021/acs.analchem.7b04852
    17. Jacob M. Majikes, Lucas C. C. Ferraz, and Thomas H. LaBean . pH-Driven Actuation of DNA Origami via Parallel I-Motif Sequences in Solution and on Surfaces. Bioconjugate Chemistry 2017, 28 (7) , 1821-1825. https://doi.org/10.1021/acs.bioconjchem.7b00288
    18. Yang Zhang, Hong Yang, Zhiguo Zhou, Kai Huang, Shiping Yang, and Gang Han . Recent Advances on Magnetic Relaxation Switching Assay-Based Nanosensors. Bioconjugate Chemistry 2017, 28 (4) , 869-879. https://doi.org/10.1021/acs.bioconjchem.7b00059
    19. Seungyeop Choi, Gyudo Lee, In Soo Park, Myeonggu Son, Woong Kim, Hyungbeen Lee, Sei-Young Lee, Sungsoo Na, Dae Sung Yoon, Rashid Bashir, Jinsung Park, and Sang Woo Lee . Detection of Silver Ions Using Dielectrophoretic Tweezers-Based Force Spectroscopy. Analytical Chemistry 2016, 88 (22) , 10867-10875. https://doi.org/10.1021/acs.analchem.6b00107
    20. Xiaolong Yang, Yanan Tang, Sarah M. Traynor, and Feng Li . Regulation of DNA Strand Displacement Using an Allosteric DNA Toehold. Journal of the American Chemical Society 2016, 138 (42) , 14076-14082. https://doi.org/10.1021/jacs.6b08794
    21. Francesco Ricci, Alexis Vallée-Bélisle, Anna J. Simon, Alessandro Porchetta, and Kevin W. Plaxco . Using Nature’s “Tricks” To Rationally Tune the Binding Properties of Biomolecular Receptors. Accounts of Chemical Research 2016, 49 (9) , 1884-1892. https://doi.org/10.1021/acs.accounts.6b00276
    22. Ping Song, Min Li, Juwen Shen, Hao Pei, Jie Chao, Shao Su, Ali Aldalbahi, Lihua Wang, Jiye Shi, Shiping Song, Lianhui Wang, Chunhai Fan, and Xiaolei Zuo . Dynamic Modulation of DNA Hybridization Using Allosteric DNA Tetrahedral Nanostructures. Analytical Chemistry 2016, 88 (16) , 8043-8049. https://doi.org/10.1021/acs.analchem.6b01373
    23. Irina V. Nesterova, James R. Briscoe, and Evgueni E. Nesterov . Rational Control of Folding Cooperativity in DNA Quadruplexes. Journal of the American Chemical Society 2015, 137 (35) , 11234-11237. https://doi.org/10.1021/jacs.5b06645
    24. Stephanie A. Sander, Alexandra K. Van Hall, and Janet R. Morrow . Zn2+-Selective Switch of Duplex to Hairpin DNA. Inorganic Chemistry 2015, 54 (7) , 3084-3086. https://doi.org/10.1021/ic503074p
    25. Benmei Wei, Nannan Liu, Juntao Zhang, Xiaowen Ou, Ruixue Duan, Zekun Yang, Xiaoding Lou, and Fan Xia . Regulation of DNA Self-Assembly and DNA Hybridization by Chiral Molecules with Corresponding Biosensor Applications. Analytical Chemistry 2015, 87 (4) , 2058-2062. https://doi.org/10.1021/ac504797e
    26. Ruth Nussinov, Chung-Jung Tsai, and Jin Liu . Principles of Allosteric Interactions in Cell Signaling. Journal of the American Chemical Society 2014, 136 (51) , 17692-17701. https://doi.org/10.1021/ja510028c
    27. Rachel E. Armstrong and Geoffrey F. Strouse . Rationally Manipulating Aptamer Binding Affinities in a Stem-Loop Molecular Beacon. Bioconjugate Chemistry 2014, 25 (10) , 1769-1776. https://doi.org/10.1021/bc500286r
    28. Irina V. Nesterova and Evgueni E. Nesterov . Rational Design of Highly Responsive pH Sensors Based on DNA i-Motif. Journal of the American Chemical Society 2014, 136 (25) , 8843-8846. https://doi.org/10.1021/ja501859w
    29. Huan Zhang, Sisi Jia, Min Lv, Jiye Shi, Xiaolei Zuo, Shao Su, Lianhui Wang, Wei Huang, Chunhai Fan, and Qing Huang . Size-Dependent Programming of the Dynamic Range of Graphene Oxide–DNA Interaction-Based Ion Sensors. Analytical Chemistry 2014, 86 (8) , 4047-4051. https://doi.org/10.1021/ac500627r
    30. Junhua Chen, Shungui Zhou, and Junlin Wen . Disposable Strip Biosensor for Visual Detection of Hg2+ Based on Hg2+-Triggered Toehold Binding and Exonuclease III-Assisted Signal Amplification. Analytical Chemistry 2014, 86 (6) , 3108-3114. https://doi.org/10.1021/ac404170j
    31. Fengze Jiang, Cui Zhang, Xiangnan Wang, Yuan Yin, Jieling Hong, Hao Tang, Li-Juan Tang, Zhenkun Wu. “Repair and fold” DNA nanotweezers for measuring DNA alkylation repair mediated by ALKBH. The Analyst 2025, 150 (7) , 1229-1234. https://doi.org/10.1039/D5AN00099H
    32. Yiman Wu, Yue Wang, Li Yan, Ke Huang, Kai Chang, Piaopiao Chen. Filter‐Assisted ICP‐MS Tumor Liquid Biopsy Enabled by Dual‐Target‐Regulated Functional DNA Nanospheres Cascade Amplification. Small Methods 2025, 172 https://doi.org/10.1002/smtd.202500314
    33. Yihao Liu, Zihan Zhao, Yuqi Zeng, Minze He, Yifan Lyu, Quan Yuan. Thermodynamics and Kinetics‐Directed Regulation of Nucleic Acid‐Based Molecular Recognition. Small Methods 2024, 12 https://doi.org/10.1002/smtd.202401102
    34. Weijing Liu, Yue Wang, Pengjun Jiang, Ke Huang, He Zhang, Jie Chen, Piaopiao Chen. DNAzyme and controllable cholesterol stacking DNA machine integrates dual-target recognition CTCs enable homogeneous liquid biopsy of breast cancer. Biosensors and Bioelectronics 2024, 261 , 116493. https://doi.org/10.1016/j.bios.2024.116493
    35. Yaqin He, Xianghu Zeng, Ying Xiong, Congcong Shen, Ke Huang, Piaopiao Chen. Portable Aptasensor Based on Parallel Rolling Circle Amplification for Tumor‐Derived Exosomes Liquid Biopsy. Advanced Science 2024, 11 (32) https://doi.org/10.1002/advs.202403371
    36. Tian Shi, Pengjun Jiang, Yue Wang, Yi Xie, Binwu Ying, Piaopiao Chen. Tetrad metal ion mediated molecular switch aptamer sensor for fluorescence assay of plasma IP-10 in clinical tuberculosis. Sensors and Actuators B: Chemical 2024, 410 , 135699. https://doi.org/10.1016/j.snb.2024.135699
    37. Yue Wang, Congcong Shen, Xianghu Zeng, Ying Xiong, Kai Li, Ke Huang, Piaopiao Chen. Tandem hybridization chain reaction and selective coordination enable fluorescence detection of exosomes in lung cancer. Sensors and Actuators B: Chemical 2024, 410 , 135722. https://doi.org/10.1016/j.snb.2024.135722
    38. Jianyu Hu, Xiaowen Yan, X. Chris Le. Label-free detection of biomolecules using inductively coupled plasma mass spectrometry (ICP-MS). Analytical and Bioanalytical Chemistry 2024, 416 (11) , 2625-2640. https://doi.org/10.1007/s00216-023-05106-7
    39. Martin McCullagh, Tonya N. Zeczycki, Chathuri S. Kariyawasam, Clarissa L. Durie, Konstantine Halkidis, Nicholas C. Fitzkee, Jo M. Holt, Aron W. Fenton. What is allosteric regulation? Exploring the exceptions that prove the rule!. Journal of Biological Chemistry 2024, 300 (3) , 105672. https://doi.org/10.1016/j.jbc.2024.105672
    40. Lingqi Kong, Zeshuai Han, Mao Xia, Shuang Xu, Ying Zhuo, Yaqin Chai, Ruo Yuan. Engineered DNA bonsai system for ultrasensitive wide-field determination and intracellular dynamic imaging of protein with tunable dynamic range and sensitivity. Nano Today 2024, 54 , 102111. https://doi.org/10.1016/j.nantod.2023.102111
    41. Yue Wang, Congcong Shen, Chengyong Wu, Zixuan Zhan, Runlian Qu, Yi Xie, Piaopiao Chen. Self-Assembled DNA Machine and Selective Complexation Recognition Enable Rapid Homogeneous Portable Quantification of Lung Cancer CTCs. Research 2024, 7 https://doi.org/10.34133/research.0352
    42. Li Yan, Yunjin Bai, Juan Zhou, Yaqin He, Congcong Shen, Jin Huang, Piaopiao Chen. Enzyme-free nucleic acid and luminescent material cascade amplifications enable urinary dual miRNAs assay for non-invasive bladder cancer diagnosis. Sensors and Actuators B: Chemical 2023, 396 , 134627. https://doi.org/10.1016/j.snb.2023.134627
    43. Simone Brannetti, Serena Gentile, Alejandro Chamorro‐Garcia, Luca Barbero, Erica Del Grosso, Francesco Ricci. Decorated DNA‐Based Scaffolds as Lateral Flow Biosensors. Angewandte Chemie 2023, 135 (47) https://doi.org/10.1002/ange.202313243
    44. Simone Brannetti, Serena Gentile, Alejandro Chamorro‐Garcia, Luca Barbero, Erica Del Grosso, Francesco Ricci. Decorated DNA‐Based Scaffolds as Lateral Flow Biosensors. Angewandte Chemie International Edition 2023, 62 (47) https://doi.org/10.1002/anie.202313243
    45. Ruslan R. Ramasanoff. Thermodynamic stability of cytosine tetramers mediated by partially reduced silver trimers: QM / MM free energy analysis. International Journal of Quantum Chemistry 2023, 123 (20) https://doi.org/10.1002/qua.27195
    46. Li Yan, Congcong Shen, Pengjun Jiang, Yunjin Bai, Runlian Qu, Wu Peng, Zeliang Wei, Ke Huang, Jing Zhou, Rundong Zhang, Piaopiao Chen. Visualization test strip reading of urine miRNA via cascade selective recognition reactions for non-invasive diagnosis of bladder cancer. Sensors and Actuators B: Chemical 2023, 393 , 134286. https://doi.org/10.1016/j.snb.2023.134286
    47. D. Lauzon, A. Vallée-Bélisle. Functional advantages of building nanosystems using multiple molecular components. Nature Chemistry 2023, 11 https://doi.org/10.1038/s41557-022-01127-4
    48. Fang Zhang, Ganghui Chen, Chenshan Gao, Shuqin Huang, Yishan Mahu, Fang Luo, Lixin Wang, Zhenyu Lin. Updated toolkits for nucleic acid-based biosensors. TrAC Trends in Analytical Chemistry 2023, 159 , 116943. https://doi.org/10.1016/j.trac.2023.116943
    49. Qiu‐Long Zhang, Yang Wang, Liang‐Liang Wang, Fan Xie, Ruo‐Yue Wu, Xu‐Yang Ma, Han Li, Yan Liu, Shunchun Yao, Liang Xu. Programming Non‐Nucleic Acid Molecules into Computational Nucleic Acid Systems. Angewandte Chemie 2023, 135 (2) https://doi.org/10.1002/ange.202214698
    50. Qiu‐Long Zhang, Yang Wang, Liang‐Liang Wang, Fan Xie, Ruo‐Yue Wu, Xu‐Yang Ma, Han Li, Yan Liu, Shunchun Yao, Liang Xu. Programming Non‐Nucleic Acid Molecules into Computational Nucleic Acid Systems. Angewandte Chemie International Edition 2023, 62 (2) https://doi.org/10.1002/anie.202214698
    51. Yunfeng Lin, Qian Li, Lihua Wang, Quanyi Guo, Shuyun Liu, Shihui Zhu, Yu Sun, Yujiang Fan, Yong Sun, Haihang Li, Xudong Tian, Delun Luo, Sirong Shi. Advances in regenerative medicine applications of tetrahedral framework nucleic acid-based nanomaterials: an expert consensus recommendation. International Journal of Oral Science 2022, 14 (1) https://doi.org/10.1038/s41368-022-00199-9
    52. Arnaud Desrosiers, Rabeb Mouna Derbali, Sami Hassine, Jérémie Berdugo, Valérie Long, Dominic Lauzon, Vincent De Guire, Céline Fiset, Luc DesGroseillers, Jeanne Leblond Chain, Alexis Vallée-Bélisle. Programmable self-regulated molecular buffers for precise sustained drug delivery. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-33491-7
    53. Jacob M. Majikes, J. Alexander Liddle. Synthesizing the biochemical and semiconductor worlds: the future of nucleic acid nanotechnology. Nanoscale 2022, 14 (42) , 15586-15595. https://doi.org/10.1039/D2NR04040A
    54. Qiao Sun, Xiao Xie, Yujie Song, Litao Sun. A review on silver-mediated DNA base pairs: methodology and application. Biomaterials Research 2022, 26 (1) https://doi.org/10.1186/s40824-022-00254-w
    55. Cheng Zhang, Xueying Ma, Xuedong Zheng, Yonggang Ke, Kuiting Chen, Dongsheng Liu, Zuhong Lu, Jing Yang, Hao Yan. Programmable allosteric DNA regulations for molecular networks and nanomachines. Science Advances 2022, 8 (5) https://doi.org/10.1126/sciadv.abl4589
    56. Adeyinka Adegbenro, Seth Coleman, Irina V. Nesterova. Stoichiometric approach to quantitative analysis of biomolecules: the case of nucleic acids. Analytical and Bioanalytical Chemistry 2022, 414 (4) , 1587-1594. https://doi.org/10.1007/s00216-021-03781-y
    57. Aidan Tinafar, Yu Zhou, Fan Hong, Kirstie L. Swingle, Anli A. Tang, Alexander A. Green, Keith Pardee. Cell-Free Biosensors: Synthetic Biology Without Borders. 2022, 243-281. https://doi.org/10.1007/978-3-030-23217-7_130
    58. Liang-Liang Wang, Qiu-Long Zhang, Yang Wang, Yan Liu, Jiao Lin, Fan Xie, Liang Xu. Controllable DNA strand displacement by independent metal–ligand complexation. Chemical Science 2021, 12 (25) , 8698-8705. https://doi.org/10.1039/D1SC01041G
    59. Wenfeng Zhu, Yake Liu, Weinan Zhang, Wentao Fan, Siqi Wang, Jin-Hua Gu, Huanjian Sun, Fan Liu. Selenomethionine protects hematopoietic stem/progenitor cells against cobalt nanoparticles by stimulating antioxidant actions and DNA repair functions. Aging 2021, 13 (8) , 11705-11726. https://doi.org/10.18632/aging.202865
    60. Nada Farag, Rosanna Mattossovich, Rosa Merlo, Łukasz Nierzwicki, Giulia Palermo, Alessandro Porchetta, Giuseppe Perugino, Francesco Ricci. Folding‐upon‐Repair DNA Nanoswitches for Monitoring the Activity of DNA Repair Enzymes. Angewandte Chemie 2021, 133 (13) , 7359-7365. https://doi.org/10.1002/ange.202016223
    61. Nada Farag, Rosanna Mattossovich, Rosa Merlo, Łukasz Nierzwicki, Giulia Palermo, Alessandro Porchetta, Giuseppe Perugino, Francesco Ricci. Folding‐upon‐Repair DNA Nanoswitches for Monitoring the Activity of DNA Repair Enzymes. Angewandte Chemie International Edition 2021, 60 (13) , 7283-7289. https://doi.org/10.1002/anie.202016223
    62. Kotaro Nishiyama, Keita Mori, Yusuke Takezawa, Mitsuhiko Shionoya. Metal-responsive reversible binding of triplex-forming oligonucleotides with 5-hydroxyuracil nucleobases. Chemical Communications 2021, 57 (20) , 2487-2490. https://doi.org/10.1039/D1CC00553G
    63. Dominic Lauzon, Guichi Zhu, Alexis Vallée‐Bélisle. Engineering DNA Switches for DNA Computing Applications. 2021, 105-124. https://doi.org/10.1002/9783527825424.ch7
    64. Ali Amini, Sima Kazemi, Vahid Safarifard. Metal-organic framework-based nanocomposites for sensing applications – A review. Polyhedron 2020, 177 , 114260. https://doi.org/10.1016/j.poly.2019.114260
    65. Maggie Hicks, Till T. Bachmann, Baojun Wang. Synthetic Biology Enables Programmable Cell‐Based Biosensors. ChemPhysChem 2020, 21 (2) , 132-144. https://doi.org/10.1002/cphc.201900739
    66. Aidan Tinafar, Yu Zhou, Fan Hong, Kirstie L. Swingle, Anli A. Tang, Alexander A. Green, Keith Pardee. Cell-Free Biosensors: Synthetic Biology Without Borders. 2020, 1-39. https://doi.org/10.1007/978-3-319-47405-2_130-1
    67. Nai-Han Huang, Rong-Tian Li, Cheng Fan, Ke-Yang Wu, Zhe Zhang, Jin-Xiang Chen. Rapid sequential detection of Hg2+ and biothiols by a probe DNA—MOF hybrid sensory system. Journal of Inorganic Biochemistry 2019, 197 , 110690. https://doi.org/10.1016/j.jinorgbio.2019.04.004
    68. Chang Yeol Lee, Hansol Kim, Ki Soo Park, Hyun Gyu Park. Nucleic acid-based fluorescent methods for the determination of DNA repair enzyme activities: A review. Analytica Chimica Acta 2019, 1060 , 30-44. https://doi.org/10.1016/j.aca.2018.12.055
    69. Dick Yan Tam, Xinyu Zhuang, Sze Wing Wong, Pik Kwan Lo. Photoresponsive Self‐Assembled DNA Nanomaterials: Design, Working Principles, and Applications. Small 2019, 15 (26) https://doi.org/10.1002/smll.201805481
    70. Piaopiao Chen, Ke Huang, Rui Dai, Erica Sawyer, Ke Sun, Binwu Ying, Xiawei Wei, Jia Geng. Sensitive CVG-AFS/ICP-MS label-free nucleic acid and protein assays based on a selective cation exchange reaction and simple filtration separation. The Analyst 2019, 144 (8) , 2797-2802. https://doi.org/10.1039/C8AN01926F
    71. Jeffrey D. Munzar, Andy Ng, David Juncker. Duplexed aptamers: history, design, theory, and application to biosensing. Chemical Society Reviews 2019, 48 (5) , 1390-1419. https://doi.org/10.1039/C8CS00880A
    72. Xin Yuan, Sujuan Chen, Shan Li, Qiuyun Liu, Mengqian Kou, Ting Xu, Hong Luo, Ke Huang, Mei Zhang. Enzymatic reaction modulation of G-quadruplex formation for the sensitive homogeneous fluorescence sensing of cholinesterase and organophosphate pesticides. Analytical Methods 2019, 11 (7) , 980-988. https://doi.org/10.1039/C8AY01996G
    73. Pan Lu, Di Zhang, Yahong Chai, Chanchan Yu, Xiuyu Wang, Yalin Tang, Maofa Ge, Li Yao. Regulatory-sequence mechanical biosensor: A versatile platform for investigation of G-quadruplex/label-free protein interactions and tunable protein detection. Analytica Chimica Acta 2019, 1045 , 1-9. https://doi.org/10.1016/j.aca.2018.09.019
    74. Jeffrey D. Munzar, Andy Ng, David Juncker. Comprehensive profiling of the ligand binding landscapes of duplexed aptamer families reveals widespread induced fit. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-017-02556-3
    75. Marianna Rossetti, Alessandro Porchetta. Allosterically regulated DNA-based switches: From design to bioanalytical applications. Analytica Chimica Acta 2018, 1012 , 30-41. https://doi.org/10.1016/j.aca.2017.12.046
    76. Shao-Hua Wu, Biao Zhang, Fang-Fang Wang, Zhen-Zhen Mi, Jian-Jun Sun. Heating enhanced sensitive and selective electrochemical detection of Hg 2+ based on T-Hg 2+ -T structure and exonuclease III-assisted target recycling amplification strategy at heated gold disk electrode. Biosensors and Bioelectronics 2018, 104 , 145-151. https://doi.org/10.1016/j.bios.2018.01.004
    77. Scott G. Harroun, Carl Prévost-Tremblay, Dominic Lauzon, Arnaud Desrosiers, Xiaomeng Wang, Liliana Pedro, Alexis Vallée-Bélisle. Programmable DNA switches and their applications. Nanoscale 2018, 10 (10) , 4607-4641. https://doi.org/10.1039/C7NR07348H
    78. Shichao Hu, Na Li, Feng Liu. Combining cooperativity with sequestration: a novel strategy for discrimination of single nucleotide variants. Chemical Communications 2018, 54 (26) , 3223-3226. https://doi.org/10.1039/C8CC00838H
    79. Biswarup Jash, Jens Müller. Metal‐Mediated Base Pairs: From Characterization to Application. Chemistry – A European Journal 2017, 23 (68) , 17166-17178. https://doi.org/10.1002/chem.201703518
    80. Han Weng, Bing Yan. A Eu(III) doped metal-organic framework conjugated with fluorescein-labeled single-stranded DNA for detection of Cu(II) and sulfide. Analytica Chimica Acta 2017, 988 , 89-95. https://doi.org/10.1016/j.aca.2017.07.061
    81. Van Sang Le, Ji-Eun Jeong, Boram Kim, Jiae Lee, Kwangseuk Kyhm, Han Young Woo. Inhibitor effects on molecular beacon-based mercury assays for tuning of detection range. Sensors and Actuators B: Chemical 2017, 240 , 810-817. https://doi.org/10.1016/j.snb.2016.09.034
    82. Ziwen Dai, Hoi Man Leung, Pik Kwan Lo. Stimuli‐Responsive Self‐Assembled DNA Nanomaterials for Biomedical Applications. Small 2017, 13 (7) https://doi.org/10.1002/smll.201602881
    83. Y. Takezawa, M. Shionoya, J. Müller. Self-Assemblies Based on Metal-Mediated Artificial Nucleobase Pairing. 2017, 259-293. https://doi.org/10.1016/B978-0-12-409547-2.12556-9
    84. Marianna Rossetti, Simona Ranallo, Andrea Idili, Giuseppe Palleschi, Alessandro Porchetta, Francesco Ricci. Allosteric DNA nanoswitches for controlled release of a molecular cargo triggered by biological inputs. Chemical Science 2017, 8 (2) , 914-920. https://doi.org/10.1039/C6SC03404G
    85. Jeffrey D. Munzar, Andy Ng, Mario Corrado, David Juncker. Complementary oligonucleotides regulate induced fit ligand binding in duplexed aptamers. Chemical Science 2017, 8 (3) , 2251-2256. https://doi.org/10.1039/C6SC03993F
    86. Xiaoli Zhu, Xiaoxia Chen, Fangfang Ban, Ya Cao, Jing Zhao, Guifang Chen, Genxi Li. The design of a mechanical wave-like DNA nanomachine for the fabrication of a programmable and multifunctional molecular device. Chemical Communications 2017, 53 (76) , 10504-10507. https://doi.org/10.1039/C7CC05174C
    87. Yue Zhao, Huaqing Liu, Feng Chen, Min Bai, Junwu Zhao, Yongxi Zhao. Trifunctional molecular beacon-mediated quadratic amplification for highly sensitive and rapid detection of mercury(II) ion with tunable dynamic range. Biosensors and Bioelectronics 2016, 86 , 892-898. https://doi.org/10.1016/j.bios.2016.07.099
    88. Yeonho Jo, Kyobum Kim, Jonghoon Choi. Perspectives on the nanotechnology applications of for the analytical detection of heavy metals in marine organisms. Biotechnology and Bioprocess Engineering 2016, 21 (2) , 191-198. https://doi.org/10.1007/s12257-015-0737-1
    89. Lan‐Lan Wu, Zhuo Wang, Shu‐Na Zhao, Xing Meng, Xue‐Zhi Song, Jing Feng, Shu‐Yan Song, Hong‐Jie Zhang. A Metal–Organic Framework/DNA Hybrid System as a Novel Fluorescent Biosensor for Mercury(II) Ion Detection. Chemistry – A European Journal 2016, 22 (2) , 477-480. https://doi.org/10.1002/chem.201503335
    90. Reza Tabaraki, Ashraf Nateghi. Nitrogen- Doped Graphene Quantum Dots: “Turn-off” Fluorescent Probe for Detection of Ag+ Ions. Journal of Fluorescence 2016, 26 (1) , 297-305. https://doi.org/10.1007/s10895-015-1714-y
    91. Simona Ranallo, Alessia Amodio, Andrea Idili, Alessandro Porchetta, Francesco Ricci. Electronic control of DNA-based nanoswitches and nanodevices. Chem. Sci. 2016, 7 (1) , 66-71. https://doi.org/10.1039/C5SC03694A
    92. Xiuhai Mao, Anna J. Simon, Hao Pei, Jiye Shi, Jiang Li, Qing Huang, Kevin W. Plaxco, Chunhai Fan. Activity modulation and allosteric control of a scaffolded DNAzyme using a dynamic DNA nanostructure. Chemical Science 2016, 7 (2) , 1200-1204. https://doi.org/10.1039/C5SC03705K
    93. Takenori Dairaku, Kyoko Furuita, Hajime Sato, Yoshinori Kondo, Chojiro Kojima, Akira Ono, Yoshiyuki Tanaka. Exploring a DNA Sequence for the Three-Dimensional Structure Determination of a Silver(I)-Mediated C-C Base Pair in a DNA Duplex By 1 H NMR Spectroscopy. Nucleosides, Nucleotides and Nucleic Acids 2015, 34 (12) , 877-900. https://doi.org/10.1080/15257770.2015.1088160
    94. Wei Deng, Bin Zheng, Wei Ding, Hong Zhu, Hao-jun Liang. Metal-Triggered DNA Folding by Different Mechanisms. Chinese Journal of Chemical Physics 2015, 28 (5) , 630-638. https://doi.org/10.1063/1674-0068/28/cjcp1503051
    95. Ting Bao, Wei Wen, Xiuhua Zhang, Qinghua Xia, Shengfu Wang. An exonuclease-assisted amplification electrochemical aptasensor for Hg2+ detection based on hybridization chain reaction. Biosensors and Bioelectronics 2015, 70 , 318-323. https://doi.org/10.1016/j.bios.2015.03.065
    96. Kang Mao, Zitong Wu, Yinran Chen, Xiaodong Zhou, Aiguo Shen, Jiming Hu. A novel biosensor based on single-layer MoS2 nanosheets for detection of Ag+. Talanta 2015, 132 , 658-663. https://doi.org/10.1016/j.talanta.2014.10.026
    97. Xu Xue-tao, Liang Kai-yi, Zeng Jia-ying. Highly sensitive and portable mercury( ii ) ion sensor using personal glucose meter. Analytical Methods 2015, 7 (1) , 81-85. https://doi.org/10.1039/C4AY01502A
    98. Long Ma, Guanrong Wu, Yufeng Li, Ping Qin, Lingpei Meng, Haiyan Liu, Yuyin Li, Aipo Diao. A reversible metal ion fueled DNA three-way junction molecular device for “turn-on and -off” fluorescence detection of mercury ions (II) and biothiols respectively with high selectivity and sensitivity. Nanoscale 2015, 7 (43) , 18044-18048. https://doi.org/10.1039/C5NR04688B
    99. Anna J. Simon, Alexis Vallée‐Bélisle, Francesco Ricci, Herschel M. Watkins, Kevin W. Plaxco. Using the Population‐Shift Mechanism to Rationally Introduce “Hill‐type” Cooperativity into a Normally Non‐Cooperative Receptor. Angewandte Chemie 2014, 126 (36) , 9625-9629. https://doi.org/10.1002/ange.201403777
    100. Anna J. Simon, Alexis Vallée‐Bélisle, Francesco Ricci, Herschel M. Watkins, Kevin W. Plaxco. Using the Population‐Shift Mechanism to Rationally Introduce “Hill‐type” Cooperativity into a Normally Non‐Cooperative Receptor. Angewandte Chemie International Edition 2014, 53 (36) , 9471-9475. https://doi.org/10.1002/anie.201403777
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2013, 135, 36, 13238–13241
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja404653q
    Published August 23, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    4202

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.