ACS Publications. Most Trusted. Most Cited. Most Read
The Siderocalin/Enterobactin Interaction: A Link between Mammalian Immunity and Bacterial Iron Transport1
My Activity

Figure 1Loading Img
    Article

    The Siderocalin/Enterobactin Interaction: A Link between Mammalian Immunity and Bacterial Iron Transport1
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of California, Berkeley, California 94720-1460, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
    †University of California, Berkeley.
    §Fred Hutchinson Cancer Research Center.
    ‡Lawrence Berkeley National Laboratory.
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2008, 130, 34, 11524–11534
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja803524w
    Published August 5, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The siderophore enterobactin (Ent) is produced by enteric bacteria to mediate iron uptake. Ent scavenges iron and is taken up by the bacteria as the highly stable ferric complex [FeIII(Ent)]3−. This complex is also a specific target of the mammalian innate immune system protein, Siderocalin (Scn), which acts as an antibacterial agent by specifically sequestering siderophores and their ferric complexes during infection. Recent literature suggesting that Scn may also be involved in cellular iron transport has increased the importance of understanding the mechanism of siderophore interception and clearance by Scn; Scn is observed to release iron in acidic endosomes and [FeIII(Ent)]3− is known to undergo a change from catecholate to salicylate coordination in acidic conditions, which is predicted to be sterically incompatible with the Scn binding pocket (also referred to as the calyx). To investigate the interactions between the ferric Ent complex and Scn at different pH values, two recombinant forms of Scn with mutations in three residues lining the calyx were prepared: Scn-W79A/R81A and Scn-Y106F. Binding studies and crystal structures of the Scn-W79A/R81A:[FeIII(Ent)]3− and Scn-Y106F:[FeIII(Ent)]3− complexes confirm that such mutations do not affect the overall conformation of the protein but do weaken significantly its affinity for [FeIII(Ent)]3−. Fluorescence, UV−vis, and EXAFS spectroscopies were used to determine Scn/siderophore dissociation constants and to characterize the coordination mode of iron over a wide pH range, in the presence of both mutant proteins and synthetic salicylate analogues of Ent. While Scn binding hinders salicylate coordination transformation, strong acidification results in the release of iron and degraded siderophore. Iron release may therefore result from a combination of Ent degradation and coordination change.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Full ref 18; additional figures and spectral data obtained for the fluorescence and spectrophotometric titrations of the various mutants of Scn in the presence of apo- and ferric- enterobactin; EXAFS Fourier transforms and table of crystallographic statistics. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 87 publications.

    1. Tomohiko Inomata, Suguru Endo, Hiroki Ido, Masakazu Miyamoto, Hiroki Ichikawa, Ririka Sugita, Tomohiro Ozawa, Hideki Masuda. Detection of Microorganisms Using Artificial Siderophore–FeIII Complex-Modified Substrates. Langmuir 2024, 40 (5) , 2632-2645. https://doi.org/10.1021/acs.langmuir.3c03084
    2. Phillip E. Klebba, Salete M. C. Newton, David A. Six, Ashish Kumar, Taihao Yang, Brittany L. Nairn, Colton Munger, Somnath Chakravorty. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chemical Reviews 2021, 121 (9) , 5193-5239. https://doi.org/10.1021/acs.chemrev.0c01005
    3. Chunyang Guo, Lindsey K. Steinberg, Jeffrey P. Henderson, Michael L. Gross. Organic Solvents for Enhanced Proteolysis of Stable Proteins for Hydrogen–Deuterium Exchange Mass Spectrometry. Analytical Chemistry 2020, 92 (17) , 11553-11557. https://doi.org/10.1021/acs.analchem.0c02194
    4. Chunyang Guo, Lindsey K. Steinberg, Ming Cheng, Jong Hee Song, Jeffrey P. Henderson, Michael L. Gross. Site-Specific Siderocalin Binding to Ferric and Ferric-Free Enterobactin As Revealed by Mass Spectrometry. ACS Chemical Biology 2020, 15 (5) , 1154-1160. https://doi.org/10.1021/acschembio.9b00741
    5. Joseph A. Cotruvo, Jr.. The Chemistry of Lanthanides in Biology: Recent Discoveries, Emerging Principles, and Technological Applications. ACS Central Science 2019, 5 (9) , 1496-1506. https://doi.org/10.1021/acscentsci.9b00642
    6. Wei Zhang, Xiao Li, Fang Hua, Wei Chen, Wei Wang, Gang-Xiu Chu, and Guan-Hu Bao . Interaction between Ester-Type Tea Catechins and Neutrophil Gelatinase-Associated Lipocalin: Inhibitory Mechanism. Journal of Agricultural and Food Chemistry 2018, 66 (5) , 1147-1156. https://doi.org/10.1021/acs.jafc.7b05399
    7. Timothy C. Johnstone and Elizabeth M. Nolan . Determination of the Molecular Structures of Ferric Enterobactin and Ferric Enantioenterobactin Using Racemic Crystallography. Journal of the American Chemical Society 2017, 139 (42) , 15245-15250. https://doi.org/10.1021/jacs.7b09375
    8. Kenneth N. Raymond, Benjamin E. Allred, and Allyson K. Sia . Coordination Chemistry of Microbial Iron Transport. Accounts of Chemical Research 2015, 48 (9) , 2496-2505. https://doi.org/10.1021/acs.accounts.5b00301
    9. André Schiefner and Arne Skerra . The Menagerie of Human Lipocalins: A Natural Protein Scaffold for Molecular Recognition of Physiological Compounds. Accounts of Chemical Research 2015, 48 (4) , 976-985. https://doi.org/10.1021/ar5003973
    10. Benjamin E. Allred, Colin Correnti, Matthew C. Clifton, Roland K. Strong, and Kenneth N. Raymond . Siderocalin Outwits the Coordination Chemistry of Vibriobactin, a Siderophore of Vibrio cholerae. ACS Chemical Biology 2013, 8 (9) , 1882-1887. https://doi.org/10.1021/cb4002552
    11. Daniele Veggi, Maria A. Gentile, Francesca Cantini, Paola Lo Surdo, Vincenzo Nardi-Dei, Kate L. Seib, Mariagrazia Pizza, Rino Rappuoli, Lucia Banci, Silvana Savino, and Maria Scarselli . The Factor H Binding Protein of Neisseria meningitidis Interacts with Xenosiderophores in Vitro. Biochemistry 2012, 51 (46) , 9384-9393. https://doi.org/10.1021/bi301161w
    12. Lijie Zhai, Tianjiao Wang, Kyungho Kang, Yue Zhao, Pranav Shrotriya, and Marit Nilsen-Hamilton . An RNA Aptamer-Based Microcantilever Sensor To Detect the Inflammatory Marker, Mouse Lipocalin-2. Analytical Chemistry 2012, 84 (20) , 8763-8770. https://doi.org/10.1021/ac3020643
    13. Moriah Sandy and Alison Butler. Microbial Iron Acquisition: Marine and Terrestrial Siderophores. Chemical Reviews 2009, 109 (10) , 4580-4595. https://doi.org/10.1021/cr9002787
    14. Trisha M. Hoette, Rebecca J. Abergel, Jide Xu, Roland K. Strong and Kenneth N. Raymond. The Role of Electrostatics in Siderophore Recognition by the Immunoprotein Siderocalin. Journal of the American Chemical Society 2008, 130 (51) , 17584-17592. https://doi.org/10.1021/ja8074665
    15. Kimihiko Sugaya. Characterization of cells expressing lipocalin-2 (LCN2) as a reporter. Biochemistry and Cell Biology 2024, 102 (4) , 342-345. https://doi.org/10.1139/bcb-2024-0013
    16. Alexia G. Cosby, Trevor Arino, Tyler A. Bailey, Matthew Buerger, Joshua J. Woods, Luis M. Aguirre Quintana, Jennifer V. Alvarenga Vasquez, Jennifer N. Wacker, Alyssa N. Gaiser, Roland K. Strong, Rebecca J. Abergel. Siderocalin fusion proteins enable a new 86 Y/ 90 Y theranostic approach. RSC Chemical Biology 2023, 4 (8) , 587-591. https://doi.org/10.1039/D3CB00050H
    17. Philipp Klahn, Robert Zscherp, Claire C. Jimidar. Advances in the Synthesis of Enterobactin, Artificial Analogues, and Enterobactin-Derived Antimicrobial Drug Conjugates and Imaging Tools for Infection Diagnosis. Synthesis 2022, 54 (16) , 3499-3557. https://doi.org/10.1055/a-1783-0751
    18. Yanchun Lin, Michael L. Gross. Mass Spectrometry-Based Structural Proteomics for Metal Ion/Protein Binding Studies. Biomolecules 2022, 12 (1) , 135. https://doi.org/10.3390/biom12010135
    19. Alexandra R. Mey, Camilo Gómez-Garzón, Shelley M. Payne, . Iron Transport and Metabolism in Escherichia, Shigella, and Salmonella. EcoSal Plus 2021, 9 (2) https://doi.org/10.1128/ecosalplus.ESP-0034-2020
    20. Dahui Li, Haoyun Li, Carlie Bauer, Yue Hu, Joshua R. Lewis, Aimin Xu, Itamar Levinger, Yu Wang. Lipocalin-2 Variants and Their Relationship With Cardio-Renal Risk Factors. Frontiers in Endocrinology 2021, 12 https://doi.org/10.3389/fendo.2021.781763
    21. Sergey A. Samsonov, Ferenc Zsila, Martyna Maszota-Zieleniak. Acute phase α1-acid glycoprotein as a siderophore-capturing component of the human plasma: A molecular modeling study. Journal of Molecular Graphics and Modelling 2021, 105 , 107861. https://doi.org/10.1016/j.jmgm.2021.107861
    22. Roger M. Pallares, Korey P. Carter, David Faulkner, Rebecca J. Abergel. Macromolecular crystallography for f-element complex characterization. 2021, 139-155. https://doi.org/10.1016/bs.mie.2021.01.014
    23. Mingzhe Fu, Hong Su, Zhanqiang Su, Zheng Yin, Jian Jin, Lixiang Wang, Qi Zhang, Xingang Xu. Transcriptome analysis of Corynebacterium pseudotuberculosis-infected spleen of dairy goats. Microbial Pathogenesis 2020, 147 , 104370. https://doi.org/10.1016/j.micpath.2020.104370
    24. Ferenc Zsila, Tamás Beke-Somfai. Human host-defense peptide LL-37 targets stealth siderophores. Biochemical and Biophysical Research Communications 2020, 526 (3) , 780-785. https://doi.org/10.1016/j.bbrc.2020.03.162
    25. Malcom G P Page. The Role of Iron and Siderophores in Infection, and the Development of Siderophore Antibiotics. Clinical Infectious Diseases 2019, 69 (Supplement_7) , S529-S537. https://doi.org/10.1093/cid/ciz825
    26. Stephanie Probst, Bettina Scharner, Ruairi McErlean, Wing-Kee Lee, Frank Thévenod. Inverse Regulation of Lipocalin-2/24p3 Receptor/SLC22A17 and Lipocalin-2 Expression by Tonicity, NFAT5/TonEBP and Arginine Vasopressin in Mouse Cortical Collecting Duct Cells mCCD(cl.1): Implications for Osmotolerance. International Journal of Molecular Sciences 2019, 20 (21) , 5398. https://doi.org/10.3390/ijms20215398
    27. Andrew L. Lakes, Julian A. Rees, Rebecca J. Abergel. Ironed Out: A Bacterial Siderophore Primer. 2019, 1-31. https://doi.org/10.1002/9781119951438.eibc2627
    28. Frank Thévenod, Johannes Fels, Wing-Kee Lee, Ralf Zarbock. Channels, transporters and receptors for cadmium and cadmium complexes in eukaryotic cells: myths and facts. BioMetals 2019, 32 (3) , 469-489. https://doi.org/10.1007/s10534-019-00176-6
    29. Matthew C. Clifton, Peter B. Rupert, Trisha M. Hoette, Kenneth N. Raymond, Rebecca J. Abergel, Roland K. Strong. Parsing the functional specificity of Siderocalin/Lipocalin 2/NGAL for siderophores and related small-molecule ligands. Journal of Structural Biology: X 2019, 2 , 100008. https://doi.org/10.1016/j.yjsbx.2019.100008
    30. Mikhail Barkovskiy, Elena Ilyukhina, Martin Dauner, Andreas Eichinger, Arne Skerra. An engineered lipocalin that tightly complexes the plant poison colchicine for use as antidote and in bioanalytical applications. Biological Chemistry 2019, 400 (3) , 351-366. https://doi.org/10.1515/hsz-2018-0342
    31. Ellis J. Wilde, Elena V. Blagova, Thomas J. Sanderson, Daniel J. Raines, Ross P. Thomas, Anne Routledge, Anne-Kathrin Duhme-Klair, Keith S. Wilson. Mimicking salmochelin S1 and the interactions of its Fe(III) complex with periplasmic iron siderophore binding proteins CeuE and VctP. Journal of Inorganic Biochemistry 2019, 190 , 75-84. https://doi.org/10.1016/j.jinorgbio.2018.10.008
    32. R. Betten, B. Scharner, S. Probst, B. Edemir, N. A. Wolff, C. Langelueddecke, W.-K. Lee, F. Thévenod. Tonicity inversely modulates lipocalin-2 (Lcn2/24p3/NGAL) receptor (SLC22A17) and Lcn2 expression via Wnt/β-catenin signaling in renal inner medullary collecting duct cells: implications for cell fate and bacterial infection. Cell Communication and Signaling 2018, 16 (1) https://doi.org/10.1186/s12964-018-0285-3
    33. Martin Dauner, Andreas Eichinger, Genia Lücking, Siegfried Scherer, Arne Skerra. Neuprogrammierung von humanem Siderocalin zur Neutralisierung von Petrobactin, dem essenziellen Eisenfänger des Milzbrand‐Bazillus. Angewandte Chemie 2018, 130 (44) , 14829-14833. https://doi.org/10.1002/ange.201807442
    34. Martin Dauner, Andreas Eichinger, Genia Lücking, Siegfried Scherer, Arne Skerra. Reprogramming Human Siderocalin To Neutralize Petrobactin, the Essential Iron Scavenger of Anthrax Bacillus. Angewandte Chemie International Edition 2018, 57 (44) , 14619-14623. https://doi.org/10.1002/anie.201807442
    35. Frank Thévenod. Membrane Transport Proteins and Receptors for Cadmium and Cadmium Complexes. 2018, 1-22. https://doi.org/10.1007/978-3-319-89623-6_1
    36. Fang Hua, Peng Zhou, Hao-Yue Wu, Gang-Xiu Chu, Zhong-Wen Xie, Guan-Hu Bao. Inhibition of α-glucosidase and α-amylase by flavonoid glycosides from Lu'an GuaPian tea: molecular docking and interaction mechanism. Food & Function 2018, 9 (8) , 4173-4183. https://doi.org/10.1039/C8FO00562A
    37. Alexander G. Bobrov, Olga Kirillina, Marina Y. Fosso, Jacqueline D. Fetherston, M. Clarke Miller, Tiva T. VanCleave, Joseph A. Burlison, William K. Arnold, Matthew B. Lawrenz, Sylvie Garneau-Tsodikova, Robert D. Perry. Zinc transporters YbtX and ZnuABC are required for the virulence of Yersinia pestis in bubonic and pneumonic plague in mice. Metallomics 2017, 9 (6) , 757-772. https://doi.org/10.1039/C7MT00126F
    38. John P. Prybylski, Erin Maxwell, Carla Coste Sanchez, Michael Jay. Gadolinium deposition in the brain: Lessons learned from other metals known to cross the blood–brain barrier. Magnetic Resonance Imaging 2016, 34 (10) , 1366-1372. https://doi.org/10.1016/j.mri.2016.08.018
    39. Robin R. Shields-Cutler, Jan R. Crowley, Connelly D. Miller, Ann E. Stapleton, Weidong Cui, Jeffrey P. Henderson. Human Metabolome-derived Cofactors Are Required for the Antibacterial Activity of Siderocalin in Urine. Journal of Biological Chemistry 2016, 291 (50) , 25901-25910. https://doi.org/10.1074/jbc.M116.759183
    40. A.K. Hagan, P.E. Carlson, P.C. Hanna. Flying under the radar: The non‐canonical biochemistry and molecular biology of petrobactin from Bacillus anthracis. Molecular Microbiology 2016, 102 (2) , 196-206. https://doi.org/10.1111/mmi.13465
    41. Bingqing Li, Ning Li, Yingying Yue, Xiuhua Liu, Yan Huang, Lichuan Gu, Sujuan Xu. An unusual crystal structure of ferric-enterobactin bound FepB suggests novel functions of FepB in microbial iron uptake. Biochemical and Biophysical Research Communications 2016, 478 (3) , 1049-1053. https://doi.org/10.1016/j.bbrc.2016.08.036
    42. Shelley M. Payne, Alexandra R. Mey, Elizabeth E. Wyckoff. Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments. Microbiology and Molecular Biology Reviews 2016, 80 (1) , 69-90. https://doi.org/10.1128/MMBR.00046-15
    43. Ana-Isabel Cabedo Martinez, Katharina Weinhäupl, Wing-Kee Lee, Natascha A. Wolff, Barbara Storch, Szymon Żerko, Robert Konrat, Wiktor Koźmiński, Kathrin Breuker, Frank Thévenod, Nicolas Coudevylle. Biochemical and Structural Characterization of the Interaction between the Siderocalin NGAL/LCN2 (Neutrophil Gelatinase-associated Lipocalin/Lipocalin 2) and the N-terminal Domain of Its Endocytic Receptor SLC22A17. Journal of Biological Chemistry 2016, 291 (6) , 2917-2930. https://doi.org/10.1074/jbc.M115.685644
    44. Hsin-Chieh Tang, Pei-Chun Chang, Yu-Chian Chen. Iron depletion strategy for targeted cancer therapy: utilizing the dual roles of neutrophil gelatinase-associated lipocalin protein. Journal of Molecular Modeling 2016, 22 (1) https://doi.org/10.1007/s00894-015-2897-5
    45. Frank Thévenod, Natascha A. Wolff. Iron transport in the kidney: implications for physiology and cadmium nephrotoxicity. Metallomics 2016, 8 (1) , 17-42. https://doi.org/10.1039/C5MT00215J
    46. Douglas B. Kell, Etheresia Pretorius. On the translocation of bacteria and their lipopolysaccharides between blood and peripheral locations in chronic, inflammatory diseases: the central roles of LPS and LPS-induced cell death. Integrative Biology 2015, 7 (11) , 1339-1377. https://doi.org/10.1039/c5ib00158g
    47. Benjamin E. Allred, Peter B. Rupert, Stacey S. Gauny, Dahlia D. An, Corie Y. Ralston, Manuel Sturzbecher-Hoehne, Roland K. Strong, Rebecca J. Abergel. Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides. Proceedings of the National Academy of Sciences 2015, 112 (33) , 10342-10347. https://doi.org/10.1073/pnas.1508902112
    48. Wan-Jie Chia, Francis Chee Kuan Tan, Wei-Yi Ong, Gavin S. Dawe. Expression and localisation of brain-type organic cation transporter (BOCT/24p3R/LCN2R) in the normal rat hippocampus and after kainate-induced excitotoxicity. Neurochemistry International 2015, 87 , 43-59. https://doi.org/10.1016/j.neuint.2015.04.009
    49. Sophie Vaulont, Isabelle Schalk. Rôles des sidérophores bactériens et de mammifères dans les interactions hôtes-pathogènes. médecine/sciences 2015, 31 (8-9) , 756-763. https://doi.org/10.1051/medsci/20153108014
    50. Jessica R. Sheldon, David E. Heinrichs, . Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiology Reviews 2015, 39 (4) , 592-630. https://doi.org/10.1093/femsre/fuv009
    51. Andrew J. Collins, Matthew S. Fullmer, Johann P. Gogarten, Spencer V. Nyholm. Comparative genomics of Roseobacter clade bacteria isolated from the accessory nidamental gland of Euprymna scolopes. Frontiers in Microbiology 2015, 6 https://doi.org/10.3389/fmicb.2015.00123
    52. Timothy C. Johnstone, Elizabeth M. Nolan. Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Transactions 2015, 44 (14) , 6320-6339. https://doi.org/10.1039/C4DT03559C
    53. Byron C.H. Chu, Renee Otten, Karla D. Krewulak, Frans A.A. Mulder, Hans J. Vogel. The Solution Structure, Binding Properties, and Dynamics of the Bacterial Siderophore-binding Protein FepB. Journal of Biological Chemistry 2014, 289 (42) , 29219-29234. https://doi.org/10.1074/jbc.M114.564021
    54. Neal Paragas, Ritwij Kulkarni, Max Werth, Kai M. Schmidt-Ott, Catherine Forster, Rong Deng, Qingyin Zhang, Eugenia Singer, Alexander D. Klose, Tian Huai Shen, Kevin P. Francis, Sunetra Ray, Soundarapandian Vijayakumar, Samuel Seward, Mary E. Bovino, Katherine Xu, Yared Takabe, Fábio E. Amaral, Sumit Mohan, Rebecca Wax, Kaitlyn Corbin, Simone Sanna-Cherchi, Kiyoshi Mori, Lynne Johnson, Thomas Nickolas, Vivette D’Agati, Chyuan-Sheng Lin, Andong Qiu, Qais Al-Awqati, Adam J. Ratner, Jonathan Barasch. α–Intercalated cells defend the urinary system from bacterial infection. Journal of Clinical Investigation 2014, 124 (7) , 2963-2976. https://doi.org/10.1172/JCI71630
    55. Mark R. Bleackley, Brigitte M. Hayes, Kathy Parisi, Tamana Saiyed, Ana Traven, Ian D. Potter, Nicole L. van der Weerden, Marilyn A. Anderson. Bovine pancreatic trypsin inhibitor is a new antifungal peptide that inhibits cellular magnesium uptake. Molecular Microbiology 2014, 92 (6) , 1188-1197. https://doi.org/10.1111/mmi.12621
    56. Li‐June Ming. Biological and Biomedical Aspects of Metal Phenolates. 2014, 1-154. https://doi.org/10.1002/9780470682531.pat0602
    57. Leon Grayfer, Jordan W. Hodgkinson, Miodrag Belosevic. Antimicrobial responses of teleost phagocytes and innate immune evasion strategies of intracellular bacteria. Developmental & Comparative Immunology 2014, 43 (2) , 223-242. https://doi.org/10.1016/j.dci.2013.08.003
    58. Mario Ruiz, Maria D. Ganfornina, Colin Correnti, Roland K. Strong, Diego Sanchez. Ligand binding‐dependent functions of the lipocalin NLaz: an in vivo study in Drosophila. The FASEB Journal 2014, 28 (4) , 1555-1567. https://doi.org/10.1096/fj.13-240556
    59. Susu M. Zughaier, Justin L. Kandler, William M. Shafer, . Neisseria gonorrhoeae Modulates Iron-Limiting Innate Immune Defenses in Macrophages. PLoS ONE 2014, 9 (1) , e87688. https://doi.org/10.1371/journal.pone.0087688
    60. Susu M. Zughaier, Brandon B. Stauffer, Nael A. McCarty. Inflammation and ER Stress Downregulate BDH2 Expression and Dysregulate Intracellular Iron in Macrophages. Journal of Immunology Research 2014, 2014 , 1-16. https://doi.org/10.1155/2014/140728
    61. Cristina Gómez-Casado, Franziska Roth-Walter, Erika Jensen-Jarolim, Araceli Díaz-Perales, Luis F. Pacios. Modeling iron-catecholates binding to NGAL protein. Journal of Molecular Graphics and Modelling 2013, 45 , 111-121. https://doi.org/10.1016/j.jmgm.2013.08.013
    62. Susu M. Zughaier, Vin Tangpricha, Traci Leong, Arlene A. Stecenko, Nael A. McCarty. Peripheral Monocytes Derived from Patients with Cystic Fibrosis and Healthy Donors Secrete NGAL in Response to Pseudomonas aeruginosa Infection. Journal of Investigative Medicine 2013, 61 (6) , 1018-1025. https://doi.org/10.2310/JIM.0b013e31829cbd14
    63. Scott Banta, Kevin Dooley, Oren Shur. Replacing Antibodies: Engineering New Binding Proteins. Annual Review of Biomedical Engineering 2013, 15 (1) , 93-113. https://doi.org/10.1146/annurev-bioeng-071812-152412
    64. Ranjan Chakraborty. Ferric Siderophore Transport via Outer Membrane Receptors of Escherichia coli: Structural Advancement and A Tribute to Dr. Dick van der Helm—an ‘Ironman’ of Siderophore Biology. 2013, 1-29. https://doi.org/10.1007/978-94-007-6088-2_1
    65. H.K. Zane, A. Butler. Fe Acquisition. 2013, 1-20. https://doi.org/10.1016/B978-0-08-097774-4.00301-6
    66. Tomohiko Inomata, Hirohito Tanabashi, Yasuhiro Funahashi, Tomohiro Ozawa, Hideki Masuda. Adsorption and detection of Escherichia coli using an Au substrate modified with a catecholate-type artificial siderophore–Fe3+ complex. Dalton Transactions 2013, 42 (45) , 16043. https://doi.org/10.1039/c3dt51448j
    67. Evan Meszaros, Charles J. Malemud. Prospects for treating osteoarthritis: enzyme–protein interactions regulating matrix metalloproteinase activity. Therapeutic Advances in Chronic Disease 2012, 3 (5) , 219-229. https://doi.org/10.1177/2040622312454157
    68. Kornelius Zeth. Dps biomineralizing proteins: multifunctional architects of nature. Biochemical Journal 2012, 445 (3) , 297-311. https://doi.org/10.1042/BJ20120514
    69. Winfried Meining, Arne Skerra. The crystal structure of human α1-microglobulin reveals a potential haem-binding site. Biochemical Journal 2012, 445 (2) , 175-182. https://doi.org/10.1042/BJ20120448
    70. Colin Correnti, Roland K. Strong. Mammalian Siderophores, Siderophore-binding Lipocalins, and the Labile Iron Pool. Journal of Biological Chemistry 2012, 287 (17) , 13524-13531. https://doi.org/10.1074/jbc.R111.311829
    71. Ning Li, Conggang Zhang, Bingqing Li, Xiuhua Liu, Yan Huang, Sujuan Xu, Lichuan Gu. Unique Iron Coordination in Iron-chelating Molecule Vibriobactin Helps Vibrio cholerae Evade Mammalian Siderocalin-mediated Immune Response. Journal of Biological Chemistry 2012, 287 (12) , 8912-8919. https://doi.org/10.1074/jbc.M111.316034
    72. Mary E. Peek, Abhinav Bhatnagar, Nael A. McCarty, Susu M. Zughaier. Pyoverdine, the Major Siderophore in Pseudomonas aeruginosa , Evades NGAL Recognition. Interdisciplinary Perspectives on Infectious Diseases 2012, 2012 , 1-10. https://doi.org/10.1155/2012/843509
    73. Colin Correnti, Matthew C. Clifton, Rebecca J. Abergel, Ben Allred, Trisha M. Hoette, Mario Ruiz, Ranieri Cancedda, Kenneth N. Raymond, Fiorella Descalzi, Roland K. Strong. Galline Ex-FABP Is an Antibacterial Siderocalin and a Lysophosphatidic Acid Sensor Functioning through Dual Ligand Specificities. Structure 2011, 19 (12) , 1796-1806. https://doi.org/10.1016/j.str.2011.09.019
    74. Nicolas Coudevylle, Leonhard Geist, Matthias Hötzinger, Markus Hartl, Georg Kontaxis, Klaus Bister, Robert Konrat. The v-myc-induced Q83 Lipocalin Is a Siderocalin. Journal of Biological Chemistry 2010, 285 (53) , 41646-41652. https://doi.org/10.1074/jbc.M110.123331
    75. Jeffery A. Mayfield, Rosanne E. Frederick, Bennett R. Streit, Timothy A. Wencewicz, David P. Ballou, Jennifer L. DuBois. Comprehensive Spectroscopic, Steady State, and Transient Kinetic Studies of a Representative Siderophore-associated Flavin Monooxygenase. Journal of Biological Chemistry 2010, 285 (40) , 30375-30388. https://doi.org/10.1074/jbc.M110.157578
    76. Guanhu Bao, Matthew Clifton, Trisha M Hoette, Kiyoshi Mori, Shi-Xian Deng, Andong Qiu, Melanie Viltard, David Williams, Neal Paragas, Thomas Leete, Ritwij Kulkarni, Xiangpo Li, Belinda Lee, Avtandil Kalandadze, Adam J Ratner, Juan Carlos Pizarro, Kai M Schmidt-Ott, Donald W Landry, Kenneth N Raymond, Roland K Strong, Jonathan Barasch. Iron traffics in circulation bound to a siderocalin (Ngal)–catechol complex. Nature Chemical Biology 2010, 6 (8) , 602-609. https://doi.org/10.1038/nchembio.402
    77. Marcus Miethke, Arne Skerra. Neutrophil Gelatinase-Associated Lipocalin Expresses Antimicrobial Activity by Interfering with l -Norepinephrine-Mediated Bacterial Iron Acquisition. Antimicrobial Agents and Chemotherapy 2010, 54 (4) , 1580-1589. https://doi.org/10.1128/AAC.01158-09
    78. Alison Butler, Roslyn M. Theisen. Iron(III)–siderophore coordination chemistry: Reactivity of marine siderophores. Coordination Chemistry Reviews 2010, 254 (3-4) , 288-296. https://doi.org/10.1016/j.ccr.2009.09.010
    79. David B. Kastrinsky, Nicholas S. McBride, Keriann M. Backus, Jason J. LeBlanc, Clifton E. Barry. Mycolic Acid/Cyclopropane Fatty Acid/Fatty Acid Biosynthesis and Health Relations. 2010, 65-145. https://doi.org/10.1016/B978-008045382-8.00029-0
    80. Douglas B Kell. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Medical Genomics 2009, 2 (1) https://doi.org/10.1186/1755-8794-2-2
    81. Matthew C. Clifton, Colin Corrent, Roland K. Strong. Siderocalins: siderophore-binding proteins of the innate immune system. BioMetals 2009, 22 (4) , 557-564. https://doi.org/10.1007/s10534-009-9207-6
    82. Yvonne R. Chan, Jessica S. Liu, Derek A. Pociask, Mingquan Zheng, Timothy A. Mietzner, Thorsten Berger, Tak W. Mak, Matthew C. Clifton, Roland K. Strong, Prabir Ray, Jay K. Kolls. Lipocalin 2 Is Required for Pulmonary Host Defense against Klebsiella Infection. The Journal of Immunology 2009, 182 (8) , 4947-4956. https://doi.org/10.4049/jimmunol.0803282
    83. Tomas Ganz. Iron in innate immunity: starve the invaders. Current Opinion in Immunology 2009, 21 (1) , 63-67. https://doi.org/10.1016/j.coi.2009.01.011
    84. S. A. Cotton. Iron, ruthenium and osmium. Annual Reports Section "A" (Inorganic Chemistry) 2009, 105 , 221. https://doi.org/10.1039/b818261m
    85. Ramon Vilar. Bioinorganic chemistry. Annual Reports Section "A" (Inorganic Chemistry) 2009, 105 , 477. https://doi.org/10.1039/b818285j
    86. Lalla Aicha Ba, Mandy Doering, Torsten Burkholz, Claus Jacob. Metal trafficking: from maintaining the metal homeostasis to future drug design. Metallomics 2009, 1 (4) , 292. https://doi.org/10.1039/b904533c
    87. Colin Correnti, Roland K. Strong. Iron Sequestration in Immunity. 2004, 1-11. https://doi.org/10.1002/9781119951438.eibc2142

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2008, 130, 34, 11524–11534
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja803524w
    Published August 5, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    2615

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.