ACS Publications. Most Trusted. Most Cited. Most Read
Structure Revision of the Lomaiviticins
My Activity

Figure 1Loading Img
    Article

    Structure Revision of the Lomaiviticins
    Click to copy article linkArticle link copied!

    • Lee Joon Kim
      Lee Joon Kim
      Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
      More by Lee Joon Kim
    • Mengzhao Xue
      Mengzhao Xue
      Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
      More by Mengzhao Xue
    • Xin Li
      Xin Li
      Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
      More by Xin Li
    • Zhi Xu
      Zhi Xu
      Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
      More by Zhi Xu
    • Eric Paulson
      Eric Paulson
      Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
      Chemical and Biological Instrumentation Center, Yale University, New Haven, Connecticut 06511, United States
      More by Eric Paulson
    • Brandon Mercado
      Brandon Mercado
      Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
      Chemical and Biological Instrumentation Center, Yale University, New Haven, Connecticut 06511, United States
    • Hosea M. Nelson*
      Hosea M. Nelson
      Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
      *Email: [email protected]
    • Seth B. Herzon*
      Seth B. Herzon
      Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
      Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06510, United States
      *Email: [email protected]
    Other Access OptionsSupporting Information (6)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2021, 143, 17, 6578–6585
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.1c01729
    Published April 26, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The lomaiviticins are dimeric genotoxic metabolites that contain unusual diazocyclopentadiene functional groups and 2–4 deoxyglycoside residues. Because only 6 of 19 carbon atoms in the monomeric aglycon unit are proton-attached, their structure determination by NMR spectroscopic analysis is difficult. Prior structure elucidation efforts established that the two halves of the lomaiviticins are joined by a single carbon–carbon bond appended to an oxidized cyclohexenone ring. This ring was believed to comprise a 4,5-dihydroxycyclohex-2-ene-1-one. The bridging bond was positioned at C6. This structure proposal has not been tested because no lomaiviticin has been prepared by total chemical synthesis or successfully analyzed by X-ray crystallography. Here, we disclose microED studies which establish that (−)-lomaiviticin C contains a 4,6-dihydroxy-cyclohex-2-ene-1-one residue, that the bridging carbon–carbon bond is located at C5, and that the orientation of the cyclohexenone ring and configuration of the secondary glycoside are reversed, relative to their original assignment. High-field (800 MHz) NMR analysis supports the revised assignment and suggests earlier efforts were misled by a combination of a near-zero 3JH4,H5 coupling constant and a 4JC,H coupling interpreted as a 3JC,H coupling. DFT calculations of the expected 13C chemical shifts and C–H coupling constants provide further robust support for the structure revision. Because the interconversion of lomaiviticins A, B, and C has been demonstrated, these findings apply to each isolate. These studies clarify the structures of this family of metabolites and underscore the power of microED analysis in natural product structure determination.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c01729

    • Procedures for microED analysis, crystallization methods, and graphical reproductions of NMR spectroscopic data (PDF)

    • Coordinates for structure 6a (PDB)

    • Coordinates for structure 6b (PDB)

    • Coordinates for structure 2a (PDB)

    • Coordinates for structure 2b (PDB)

    • Coordinates for structures 3a and 3b (PDB)

    Accession Codes

    CCDC 2062671 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing [email protected], or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 46 publications.

    1. Mikaela DiBello, Zhi Xu, Alexandria M. Palazzo, Seth B. Herzon. A Stereoselective Oxidative Dimerization En Route to (−)-Lomaiviticin A. Organic Letters 2025, 27 (4) , 937-941. https://doi.org/10.1021/acs.orglett.4c04098
    2. Brodie W. Bulcock, Rachel Chen, Ernest Lacey, Yit-Heng Chooi, Gavin R. Flematti. Ether–Diol Ambiguity: An Inconspicuous Issue in the Structure Elucidation of Oxygenated Natural Products. Journal of Natural Products 2024, 87 (8) , 2101-2109. https://doi.org/10.1021/acs.jnatprod.4c00675
    3. Yuto Nishidono, Ken Tanaka. Structural Revision of Tinotufolins from Tinospora crispa Leaves Guided by Empirical Rules and DFT Calculations. Journal of Natural Products 2024, 87 (4) , 774-782. https://doi.org/10.1021/acs.jnatprod.3c00902
    4. Shaomin Fu, Bo Liu. Total Synthesis with Gram-Scale Radical Process: An Inspiration for Pharmaceutical Industry. Organic Process Research & Development 2024, 28 (4) , 847-859. https://doi.org/10.1021/acs.oprd.4c00041
    5. David A. Delgadillo, Jessica E. Burch, Lee Joon Kim, Lygia S. de Moraes, Kanji Niwa, Jason Williams, Melody J. Tang, Vincent G. Lavallo, Bhuwan Khatri Chhetri, Christopher G. Jones, Isabel Hernandez Rodriguez, Joshua A. Signore, Lewis Marquez, Riya Bhanushali, Sunmin Woo, Julia Kubanek, Cassandra Quave, Yi Tang, Hosea M. Nelson. High-Throughput Identification of Crystalline Natural Products from Crude Extracts Enabled by Microarray Technology and microED. ACS Central Science 2024, 10 (1) , 176-183. https://doi.org/10.1021/acscentsci.3c01365
    6. Mikaela DiBello, Alan R. Healy, Herman Nikolayevskiy, Zhi Xu, Seth B. Herzon. Structure Elucidation of Secondary Metabolites: Current Frontiers and Lingering Pitfalls. Accounts of Chemical Research 2023, 56 (12) , 1656-1668. https://doi.org/10.1021/acs.accounts.3c00183
    7. Madeline C. Frischling, Seth B. Herzon. On the Abundance and Stability of Diazo-Containing Secondary Metabolites: Enantioselective Synthesis of (−)-Nenestatin A. Organic Letters 2023, 25 (20) , 3723-3727. https://doi.org/10.1021/acs.orglett.3c01175
    8. Xiaopeng Peng, Abdur Rahim, Weijie Peng, Feng Jiang, Zhenhua Gu, Shijun Wen. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chemical Reviews 2023, 123 (4) , 1364-1416. https://doi.org/10.1021/acs.chemrev.2c00591
    9. Ambarneil Saha, Shervin S. Nia, José A. Rodríguez. Electron Diffraction of 3D Molecular Crystals. Chemical Reviews 2022, 122 (17) , 13883-13914. https://doi.org/10.1021/acs.chemrev.1c00879
    10. Zhi Xu, Mikaela DiBello, Zechun Wang, John A. Rose, Lei Chen, Xin Li, Seth B. Herzon. Stereocontrolled Synthesis of the Fully Glycosylated Monomeric Unit of Lomaiviticin A. Journal of the American Chemical Society 2022, 144 (35) , 16199-16205. https://doi.org/10.1021/jacs.2c07631
    11. Suqi Yan, Mingyuan Zeng, Hong Wang, Huawei Zhang. Micromonospora: A Prolific Source of Bioactive Secondary Metabolites with Therapeutic Potential. Journal of Medicinal Chemistry 2022, 65 (13) , 8735-8771. https://doi.org/10.1021/acs.jmedchem.2c00626
    12. Yi Luo, Max T. B. Clabbers, Jian Qiao, Zhiqing Yuan, Weimin Yang, Xiaodong Zou. Visualizing the Entire Range of Noncovalent Interactions in Nanocrystalline Hybrid Materials Using 3D Electron Diffraction. Journal of the American Chemical Society 2022, 144 (24) , 10817-10824. https://doi.org/10.1021/jacs.2c02426
    13. Gabriel Castro-Falcón, Kaitlin E. Creamer, Alexander B. Chase, Min Cheol Kim, Douglas Sweeney, Evgenia Glukhov, William Fenical, Paul R. Jensen. Structure and Candidate Biosynthetic Gene Cluster of a Manumycin-Type Metabolite from Salinispora pacifica. Journal of Natural Products 2022, 85 (4) , 980-986. https://doi.org/10.1021/acs.jnatprod.1c01117
    14. Alexandra E. Kelly-Hunt, Aman Mehan, Sarah Brooks, Miron A. Leanca, Jack E. D. McKay, Nashad Mahamed, Daniel Lambert, Nicola M. Dempster, Robert J. Allen, Andrew R. Evans, Satyajit D Sarker, Lutfun Nahar, George P. Sharples, Michael G. B. Drew, Alistair J. Fielding, Fyaz M. D. Ismail. Synthesis and Analytical Characterization of Purpurogallin: A Pharmacologically Active Constituent of Oak Galls. Journal of Chemical Education 2022, 99 (2) , 983-993. https://doi.org/10.1021/acs.jchemed.1c00699
    15. Joseph Hitchen, Iryna Andrusenko, Charlie L. Hall, Enrico Mugnaioli, Jason Potticary, Mauro Gemmi, Simon R. Hall. Organic Cocrystals of TCNQ and TCNB Based on an Orthocetamol Backbone Solved by Three-Dimensional Electron Diffraction. Crystal Growth & Design 2022, 22 (2) , 1155-1163. https://doi.org/10.1021/acs.cgd.1c01095
    16. Danilo Marchetti, Francesca Guagnini, Arianna E. Lanza, Alessandro Pedrini, Lara Righi, Enrico Dalcanale, Mauro Gemmi, Chiara Massera. Combined Approach of Mechanochemistry and Electron Crystallography for the Discovery of 1D and 2D Coordination Polymers. Crystal Growth & Design 2021, 21 (12) , 6660-6664. https://doi.org/10.1021/acs.cgd.1c01058
    17. Chunshuai Huang, Chunfang Yang, Wenjun Zhang, Liping Zhang, Yiguang Zhu, Changsheng Zhang. Discovery of an Unexpected 1,4-Oxazepine-Linked seco-Fluostatin Heterodimer by Inactivation of the Oxidoreductase-Encoding Gene flsP. Journal of Natural Products 2021, 84 (8) , 2336-2344. https://doi.org/10.1021/acs.jnatprod.1c00461
    18. Yu Xiong, Li-Jun Hu, Jian-Guo Song, Di Zhang, Yi-Shuang Peng, Xiao-Jun Huang, Jian Hong, Bin Zhu, Wen-Cai Ye, Ying Wang. Structure elucidation of plumerubradins A–C: Correlations between 1H NMR signal patterns and structural information of [2+2]-type cyclobutane derivatives. Chinese Chemical Letters 2025, 36 (5) , 110149. https://doi.org/10.1016/j.cclet.2024.110149
    19. Daichen Mu, Hongyu Yang, Wenfang Gao, Jinghan Zhao, Liqin Wang, Feng Wang, Caihong Song, Zimin Wei. Nuclear magnetic resonance revealed the structural unit difference and polymerization process of pre-humic acid from different organic waste sources. International Journal of Biological Macromolecules 2025, 304 , 140457. https://doi.org/10.1016/j.ijbiomac.2025.140457
    20. Jian-Guo Song, Wen-Cai Ye, Ying Wang. Advanced crystallography for structure determination of natural products. Natural Product Reports 2025, 42 (3) , 429-442. https://doi.org/10.1039/D4NP00071D
    21. Fan Zhang, Wenhui Wang, Doug R. Braun, Gene E. Ananiev, Weiting Liao, Mary Kay Harper, Scott R. Rajski, Tim S. Bugni. Isolation, Structure Elucidation and Biological Evaluation of Lomaiviticins F–H, Dimeric Benzofluorene Glycosides from Marine-Derived Micromonospora sp. Bacterium. Marine Drugs 2025, 23 (2) , 65. https://doi.org/10.3390/md23020065
    22. William J. Nicolas, Cody Gillman, Sara J. Weaver, Max T. B. Clabbers, Anna Shiriaeva, Ampon Sae Her, Michael W. Martynowycz, Tamir Gonen. Comprehensive microcrystal electron diffraction sample preparation for cryo-EM. Nature Protocols 2024, 7 https://doi.org/10.1038/s41596-024-01088-7
    23. . Aromatic Polyketide Glycosides. 2024, 7-45. https://doi.org/10.1002/9783527817894.ch2
    24. Mahira Aragon, Sarah E. J. Bowman, Chun-Hsing Chen, M. Jason de la Cruz, Daniel A. Decato, Edward T. Eng, Kristen M. Flatt, Sahil Gulati, Yuchen Li, Charles J. Lomba, Brandon Mercado, Jessalyn Miller, Lukáš Palatinus, William J. Rice, David Waterman, Christina M. Zimanyi. Applying 3D ED/MicroED workflows toward the next frontiers. Acta Crystallographica Section C Structural Chemistry 2024, 80 (6) , 179-189. https://doi.org/10.1107/S2053229624004078
    25. Jin-Chang Liu, Wei-Ping Huang, Yu-Xin Tian, Wei Xu, Wen-Cai Ye, Ren-Wang Jiang. A new versatile crystalline sponge for organic structural analysis without the need for activation. Journal of Materials Chemistry A 2024, 12 (21) , 12609-12618. https://doi.org/10.1039/D3TA07946E
    26. Alison Haymaker, Brent L. Nannenga. Advances and applications of microcrystal electron diffraction (MicroED). Current Opinion in Structural Biology 2024, 84 , 102741. https://doi.org/10.1016/j.sbi.2023.102741
    27. Jieye Lin, Johan Unge, Tamir Gonen. Distinct Conformations of Mirabegron Determined by MicroED. Advanced Science 2023, 10 (34) https://doi.org/10.1002/advs.202304476
    28. Somayah S. Elsayed, Helga U. van der Heul, Xiansha Xiao, Aleksi Nuutila, Laura R. Baars, Changsheng Wu, Mikko Metsä-Ketelä, Gilles P. van Wezel. Unravelling key enzymatic steps in C-ring cleavage during angucycline biosynthesis. Communications Chemistry 2023, 6 (1) https://doi.org/10.1038/s42004-023-01059-1
    29. Wenjun Luo, Fang Xu, Zhenguo Wang, Jiyan Pang, Zixu Wang, Zhixiu Sun, Aiyun Peng, Xiaohui Cao, Le Li. Chemodivergent Staudinger Reactions of Secondary Phosphine Oxides and Application to the Total Synthesis of LL–D05139β Potassium Salt. Angewandte Chemie 2023, 135 (41) https://doi.org/10.1002/ange.202310118
    30. Wenjun Luo, Fang Xu, Zhenguo Wang, Jiyan Pang, Zixu Wang, Zhixiu Sun, Aiyun Peng, Xiaohui Cao, Le Li. Chemodivergent Staudinger Reactions of Secondary Phosphine Oxides and Application to the Total Synthesis of LL–D05139β Potassium Salt. Angewandte Chemie International Edition 2023, 62 (41) https://doi.org/10.1002/anie.202310118
    31. Radwa N. Morgan, Amer Al Ali, Mohammad Y. Alshahrani, Khaled M. Aboshanab. New Insights on Biological Activities, Chemical Compositions, and Classifications of Marine Actinomycetes Antifouling Agents. Microorganisms 2023, 11 (10) , 2444. https://doi.org/10.3390/microorganisms11102444
    32. Jin Wook Cha, Min‐Seon Kim, Jin‐Soo Park. A Single‐Scan Ultraselective Heteronuclear Polarization Transfer Method for Unambiguous Complex Structure Assignment. Angewandte Chemie 2023, 135 (32) https://doi.org/10.1002/ange.202304196
    33. Jin Wook Cha, Min‐Seon Kim, Jin‐Soo Park. A Single‐Scan Ultraselective Heteronuclear Polarization Transfer Method for Unambiguous Complex Structure Assignment. Angewandte Chemie International Edition 2023, 62 (32) https://doi.org/10.1002/anie.202304196
    34. Ambarneil Saha, Alexander Pattison, Matthew Mecklenburg, Aaron Brewster, Peter Ercius, Jose A Rodriguez. Beyond MicroED: Ab Initio Structure Elucidation using 4D-STEM. Microscopy and Microanalysis 2023, 29 (Supplement_1) , 309-310. https://doi.org/10.1093/micmic/ozad067.143
    35. Jieye Lin, Johan Unge, Tamir Gonen. Distinct Conformations of Mirabegron Determined by MicroED. 2023https://doi.org/10.1101/2023.06.28.546957
    36. Durga Prasad Karothu, Zainab Alhaddad, Christian R. Göb, Christian J. Schürmann, Robert Bücker, Panče Naumov. Levocetirizin‐Dihydrochlorid: Die Aufklärung einer lang verborgenen Struktur mittels Elektronenbeugung. Angewandte Chemie 2023, 135 (26) https://doi.org/10.1002/ange.202303761
    37. Durga Prasad Karothu, Zainab Alhaddad, Christian R. Göb, Christian J. Schürmann, Robert Bücker, Panče Naumov. The Elusive Structure of Levocetirizine Dihydrochloride Determined by Electron Diffraction. Angewandte Chemie International Edition 2023, 62 (26) https://doi.org/10.1002/anie.202303761
    38. Jin-Xin Zhao, Jian-Min Yue. Frontier studies on natural products: moving toward paradigm shifts. Science China Chemistry 2023, 66 (4) , 928-942. https://doi.org/10.1007/s11426-022-1512-0
    39. Emma Danelius, Khushboo Patel, Brenda Gonzalez, Tamir Gonen. MicroED in drug discovery. Current Opinion in Structural Biology 2023, 79 , 102549. https://doi.org/10.1016/j.sbi.2023.102549
    40. Yoshihiro Watanabe, Shuhei Takahashi, Sho Ito, Toshiyuki Tokiwa, Yoshihiko Noguchi, Haruki Azami, Hiroki Kojima, Mayuka Higo, Sayaka Ban, Kenichiro Nagai, Tomoyasu Hirose, Toshiaki Sunazuka, Takashi Yaguchi, Kenichi Nonaka, Masato Iwatsuki. Hakuhybotrol, a polyketide produced by Hypomyces pseudocorticiicola , characterized with the assistance of 3D ED/MicroED. Organic & Biomolecular Chemistry 2023, 21 (11) , 2320-2330. https://doi.org/10.1039/D2OB02286A
    41. Josef Hájíček, Martin Kotora. Naturally Occurring Diazofluorenes. 2023, 175-204. https://doi.org/10.1007/3418_2023_93
    42. . Natural Product Isolation and Characterization: Gene-independent Approaches. 2022, 705-739. https://doi.org/10.1039/BK9781839165641-00705
    43. Bidhan Chandra De, Wenjun Zhang, Chunfang Yang, Attila Mándi, Chunshuai Huang, Liping Zhang, Wei Liu, Mark W. Ruszczycky, Yiguang Zhu, Ming Ma, Ghader Bashiri, Tibor Kurtán, Hung-wen Liu, Changsheng Zhang. Flavin-enabled reductive and oxidative epoxide ring opening reactions. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-32641-1
    44. Hai-Yan He, Haruka Niikura, Yi-Ling Du, Katherine S. Ryan. Synthetic and biosynthetic routes to nitrogen–nitrogen bonds. Chemical Society Reviews 2022, 51 (8) , 2991-3046. https://doi.org/10.1039/C7CS00458C
    45. Max T. B. Clabbers, Anna Shiriaeva, Tamir Gonen. MicroED: conception, practice and future opportunities. IUCrJ 2022, 9 (2) , 169-179. https://doi.org/10.1107/S2052252521013063
    46. Sho Ito, Fraser J. White, Eiji Okunishi, Yoshitaka Aoyama, Akihito Yamano, Hiroyasu Sato, Joseph D. Ferrara, Michał Jasnowski, Mathias Meyer. Structure determination of small molecule compounds by an electron diffractometer for 3D ED/MicroED. CrystEngComm 2021, 23 (48) , 8622-8630. https://doi.org/10.1039/D1CE01172C
    47. Charlie L. Hall, Iryna Andrusenko, Jason Potticary, Siyu Gao, Xingyu Liu, Werner Schmidt, Noa Marom, Enrico Mugnaioli, Mauro Gemmi, Simon R. Hall. 3D Electron Diffraction Structure Determination of Terrylene, a Promising Candidate for Intermolecular Singlet Fission. ChemPhysChem 2021, 22 (15) , 1631-1637. https://doi.org/10.1002/cphc.202100320

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2021, 143, 17, 6578–6585
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.1c01729
    Published April 26, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    7295

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.