ACS Publications. Most Trusted. Most Cited. Most Read
Biocatalysis in Drug Design: Engineered Reductive Aminases (RedAms) Are Used to Access Chiral Building Blocks with Multiple Stereocenters
My Activity

Figure 1Loading Img
  • Open Access
Article

Biocatalysis in Drug Design: Engineered Reductive Aminases (RedAms) Are Used to Access Chiral Building Blocks with Multiple Stereocenters
Click to copy article linkArticle link copied!

  • Arnau Rué Casamajo
    Arnau Rué Casamajo
    Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
  • Yuqi Yu
    Yuqi Yu
    Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
    More by Yuqi Yu
  • Christian Schnepel
    Christian Schnepel
    School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, 11421 Stockholm, Sweden
  • Charlotte Morrill
    Charlotte Morrill
    Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
  • Rhys Barker
    Rhys Barker
    Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
    More by Rhys Barker
  • Colin W. Levy
    Colin W. Levy
    Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
  • James Finnigan
    James Finnigan
    Prozomix Ltd, Building 4, West End Ind. Estate, Haltwhistle NE49 9HA, United Kingdom
  • Victor Spelling
    Victor Spelling
    Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Mölndal, 431 50 Gothenburg, Sweden
  • Kristina Westerlund
    Kristina Westerlund
    Medicinal Chemistry, Research and Early Development; Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 50 Gothenburg Sweden
  • Mark Petchey
    Mark Petchey
    Compound Synthesis and Management, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Mölndal, 431 50 Gothenburg, Sweden
    More by Mark Petchey
  • Robert J. Sheppard
    Robert J. Sheppard
    Medicinal Chemistry, Research and Early Development; Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 50 Gothenburg Sweden
  • Richard J. Lewis
    Richard J. Lewis
    Department of Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, Sweden
  • Francesco Falcioni
    Francesco Falcioni
    Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, CB21 6GP Cambridge, United Kingdom
  • Martin A. Hayes
    Martin A. Hayes
    Compound Synthesis and Management, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Mölndal, 431 50 Gothenburg, Sweden
  • Nicholas J. Turner*
    Nicholas J. Turner
    Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
    *Email: [email protected]
Open PDFSupporting Information (1)

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2023, 145, 40, 22041–22046
Click to copy citationCitation copied!
https://doi.org/10.1021/jacs.3c07010
Published October 2, 2023

Copyright © 2023 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Abstract

Click to copy section linkSection link copied!

Novel building blocks are in constant demand during the search for innovative bioactive small molecule therapeutics by enabling the construction of structure–activity–property–toxicology relationships. Complex chiral molecules containing multiple stereocenters are an important component in compound library expansion but can be difficult to access by traditional organic synthesis. Herein, we report a biocatalytic process to access a specific diastereomer of a chiral amine building block used in drug discovery. A reductive aminase (RedAm) was engineered following a structure-guided mutagenesis strategy to produce the desired isomer. The engineered RedAm (IR-09 W204R) was able to generate the (S,S,S)-isomer 3 in 45% conversion and 95% ee from the racemic ketone 2. Subsequent palladium-catalyzed deallylation of 3 yielded the target primary amine 4 in a 73% yield. This engineered biocatalyst was used at preparative scale and represents a potential starting point for further engineering and process development.

This publication is licensed under

CC-BY 4.0 .
  • cc licence
  • by licence
Copyright © 2023 The Authors. Published by American Chemical Society

Introduction

Click to copy section linkSection link copied!

Chiral amines are common building blocks in the pharmaceutical industry that allow access to a plethora of biologically active compounds. (1−5) They can be used for different applications, from development of small molecule pharmaceuticals (4−8) to more complex therapeutics, such as proteolysis targeting chimeras (PROTACs), (9) or for bioconjugation of peptides or proteins. (10−13) The pharmaceutical industry is constantly looking for innovative ways to produce new bioactive compounds, which has increased the demand for novel building blocks in drug design. (14−20) The wide structural diversity of such compounds facilitates the study of drug properties, such as permeability, potency, or secondary pharmacology. Current synthetic methodologies allow extensive coverage of available chemical space, but there are still opportunities for novel building blocks. (14,21−24) Biocatalysis is a powerful synthetic methodology that can allow access to novel chemistries by exploiting mild reactions conditions, as well as the catalytic nature of the transformation, with high stereoselectivity driven by precise enzyme/substrate interactions. (17,18,25−27)
Importantly, biocatalytic synthesis can play a crucial role in drug discovery since enzymes are tunable catalysts that allow for excellent control of chemoselectivity, regioselectivity and enantioselectivity. (25,28,29) Imine reductases (IREDs) are one emerging platform of biocatalyst (30−34) that perform a variety of reactions, including cyclic imine reduction, (31,35,36) reductive amination (RedAms), (34,37,38) and alkene reduction (EneIRED). (3,39) Interestingly, individual IREDs can behave simultaneously as an IRED, a RedAm, or an EneIRED depending on the substrate used while still maintaining excellent chemoselectivity. (3)

Results and Discussion

Click to copy section linkSection link copied!

Herein, we address the enzymatic synthesis of a chiral building block (S,S,S)-4, which was required for a medicinal chemistry discovery program and proved to be particularly challenging to obtain by organic synthesis. We initially envisioned directly accessing this primary chiral amine via a RedAm-mediated reductive amination with ammonia. However, although RedAms have been previously shown to use ammonia as the nucleophile, (40) they were found to be inactive with racemic ketone 2. We therefore elected to use allylamine 1, which typically shows high activity with a wide range of different RedAms and should generate a product that could be readily converted to primary amine 4 (Figure 1).

Figure 1

Figure 1. Combined biocatalytic resolution and reductive amination of racemic ketone 2 with allylamine 1 forming (S,S,S)-3, which is a key intermediate for the desired primary amine (S,S,S)-4.

A metagenomic panel of IREDs and RedAms, (36) containing different biocatalysts, was screened to identify active enzymes capable of converting the substrate ketone 2 to the product 3. A previously reported colorimetric high-throughput screening method (HTS), (36) which operates in the oxidative direction and uses the product of the reaction 3 to identify active enzymes, was initially employed to select enzymes for further characterization.
Any hits obtained from this primary screen were subsequently confirmed by examining the reductive amination of 2 with allylamine 1 in the synthetic direction. In addition, on the basis of previous experience, several other IREDs were selected because of known substrate promiscuity. Two of these IREDs were found to be active; IR-09 and IR-20 exhibited >95% and 47% conversion, respectively.
All biotransformations were performed with glucose and glucose dehydrogenase (GDH) as the NADPH recycling system. For all reactions, formation of alcohol was observed to some extent, likely because of either ketone reduction catalyzed by GDH (41,42) and/or other ketoreductases (KREDs) present in the cell-free extract (CFE). (43,44) Consequently, IR-09 was purified, and reactions were performed with pure IR-09 in the absence of GDH; under these conditions, no alcohol formation was observed, thereby confirming the excellent chemoselectivity of IR-09. (Supplementary Figure S8).
Unfortunately, none of the active enzymes generated the desired diastereomer (S,S,S)-3 (Table 1). In fact, all of the hits preferentially yielded the trans-diastereomers (S,S,R)-3 and (R,R,S)-3 as the major products, as shown by chiral supercritical fluid chromatography (SFC) (Figure 2). For example, IR-09 gave 96% conversion to predominantly a mixture of (S,S,R)-3 and (R,R,S)-3 (expressed as 85% de trans) with a small amount of (R,R,R)-3 of high ee (99%). A phylogenetic tree was constructed to identify further homologues of IR-09 and IR-20 that might possess similar levels of activity but with altered diastereoselectivity. In total, eight homologues of IR-09 were screened and showed some activity, but none exhibited the desired diastereoselectivity.

Figure 2

Figure 2. (a) The four possible reductive amination products (S,S,S)-3, (R,R,R)-3, (S,S,R)-3, and (R,R,S)-3 derived from ketone (±)-2; (b) SFC chromatogram of the stereoisomers.

Table 1. Active Enzymes for the Reductive Amination of (±)-2 with Allylamine 1a
IREDconversion (%)de trans (%)ee (R,R,R) (%)
IR-09968599
IR-16899399
IR-20473499
IR-615399 
IR-202729299
IR-3612999 
a

All enzymes yielded (S,S,R)-3 and (R,R,S)-3 as the major diastereomers. Reaction conditions: 10 mM rac-2, 10 amine equiv of 1, 4 mg mL–1 of imine reductase cell-free extract (IRED CFE), 0.5 mg mL–1 of glucose dehydrogenase (GDH), 40 mM glucose, 5% v/v of DMSO, 100 mM Tris buffer pH 8. See the Supporting Information Section 4 for equations details.

In order to gain access to the desired diastereomer, we therefore considered engineering one of our active hits. It was decided to initially explore a structure-guided approach in order to alter the stereoselectivity of IR-09.
Clearly, the major challenge for protein engineering of IR-09 was to generate variants with both high kinetic selectivity for the ketone enantiomer [i.e., preference for reaction of (S,S)-2 over (R,R)-2], as well as high stereoselectivity for the reductive amination step [i.e., preference for formation of (S,S,S)-2 over (S,S,R)-2] (Figure 2a). Encouragingly, previous studies have shown that RedAms can be engineered for high kinetic selectivity for racemic amines. (5)
Since IR-09 exhibited higher activity than the other enzyme hits, this enzyme was selected as the backbone for engineering. A structure-guided mutagenesis approach was developed around the principle that the diastereoselectivity and enantioselectivity of the enzyme would be based on the orientation of the substrate in the active site. A crystal structure of IR-09 was available and used to identify activity site residues that could potentially play a key role in determining the stereoselectivity of the reaction.
The crystal structure of IR-09 contained a monomer in the asymmetric unit with the biological dimer being generated through crystallographic symmetry (see the Supporting Information Section 9 for details.). The crystal structure was obtained as a ternary complex with NADPH and N-cyclopropylcyclohexanamine. N-Cyclopropylcyclohexanamine is a considerably smaller ligand than 3, thus AutoDock Vina (45) flexible docking was performed to find a suitable pose for 3. Amino acid residues within 5 Å of the substrate were selected and allowed to freely rotate. Thereafter, the active site containing the imine intermediate was studied, and residues having a potential influence on the orientation of the ligand were identified (Figure 3). W204 was found at a distance of 3.6 Å from the ligand, and a similar situation was observed for M233 and Q234, which were at 3.7 and 3.4 Å, respectively. These observations were consistent with previous experience of corresponding residues in different RedAms. (37) A multiple sequence alignment was performed and used to confirm that these three residues were conserved across all hits and in AspRedAm.

Figure 3

Figure 3. (a) Crystal structure of IRED-09 (purple) in complex with NADPH (pink) and N-cyclopropylcyclohexanamine; there is only one molecule in the asymmetric unit. (b) IR-09 biological dimer. (c) Active site of IR-09 with the imine intermediate of 3 modeled into the active site showing distances (Å) from C4 of the nicotinamide ring of NAPDH and (B) W204 to the electrophilic carbon of the ligand. (d) The view is rotated 180 deg to observe the active site from the opposite perspective and show distances from (B) M233 and (B) Q234 to the ligand.

As a result of these docking studies, amino acid residues W204, M233, and Q234 were targeted for site-directed mutagenesis (SDM) with either alanine or serine as the initial replacements. W204A and W204S were identified as the most promising variants (Table S2 and Supplementary Figures S10 and S11) since they both gave rise to a partial increase in diastereoselectivity for the cis diastereomer and, most importantly, they both generated the previously unobserved (S,S,S)-enantiomer. Assignment of the absolute configuration of all four diastereomers of 3 was established by visible circular dichroism (VCD) (see the Supporting Information Section 15). Variants M233A and Q234A also exhibited a change in diastereoselectivity, but both of these enzymes continued to favor the formation of the undesired trans diastereomers.
Since both IR-09 W204 variants still generated considerable amounts of the (S,S,R)-enantiomer (Figure 4a), site saturation mutagenesis (SSM) was performed in order to obtain a variant with higher selectivity. Three new variants were identified that generated the (S,S,S)-enantiomer, namely W204L, W204R, and W204G. Among these variants, IR-09 W204R exhibited the highest selectivity for the (S,S,S)-enantiomer, with 45% S,S,S yield. In contrast, W204L resulted in a decrease in enantioselectivity to lower levels than those of either W204A or W204S.

Figure 4

Figure 4. (a) SFC chromatograms comparing the isomer production of IR-09 WT, the best SDM variant, and the best SSM variant (peak at rt = 4.4. min corresponds to the alcohol). (b) Comparison between WT and the best variants for the production of (S,S,S)-3. Conversion to (S,S,S)-3 (%) = (S,S,S) yield × conversion.

The relative activity of these new variants was also assessed. Previously, all reactions were performed with a large excess of amine (10 equiv). Screening at a lower amine concentration (1 equiv) revealed that IR-09 WT, IR-09 W204S, and IR-09 W204R all exhibited good levels of activity, especially W204R, which yielded 60% conversion (Supplementary Figure S1). Most variants and WT enzymes exhibited similar degrees of enantioselectivity toward the (R,R)- and (S,S)-2 ketone, since the differences between the amount of (S,S,S) and (S,S,R) in comparison with the amount of (R,R,R) and (R,R,S) formed was always below 2%.
IR-09 W204G is clearly selective for the (S,S)-ketone and was the first variant identified to achieve selective reductive amination while simultaneously performing a kinetic resolution of the starting material. Variant W204G yielded an (S,S,S) yield of 56% with 75% conversion (Table 2 and Supplementary Figure S16).
Table 2. Characterization of WT and IR-09 Variants with Respect to Both the Diastereoselectivity and Enantioselectivitya
IR-09conversion (%)de cis (%)ee (S,S,S) (%)S,S,S yield (%)
WT96–85 0
W204L89–478519
W204A92–486421
W204S93–398028
W204G75159656
W204R93–99545
a

Reaction conditions: 10 mM rac-2, 10 amine equiv of 1, 4 mg mL–1 of IRED CFE, 0.5 mg mL–1 of GDH, 40 mM glucose, 5% v/v of DMSO, 100 mM Tris buffer pH 8. See the Supporting Information Section 4 for equation details.

Finally, preparative biotransformations were carried out to assess the scalability of the reductive amination process. IR-09 W204R was selected for a 50 mL scale reaction, which was carried out on an EasyMax system (Mettler Toledo). The reactions resulted in 91% conversion and yielded the same distribution of stereoisomers as the analytical scale reactions [ee of (S,S,S)-3 = 95%]. The product mixture was extracted with methyl tert-butyl ether (MTBE) and subsequently purified by preparative supercritical fluid chromatography (SFC) to yield pure stereoisomers of amine 3, which were characterized by NMR and mass spectrometry (Supplementary Section 15). Finally, deallylation of (S,S,S)-3 was performed with Pd(dba)2 and DPPB in THF for 2 h followed by extraction with EtOAc to yield the target N-tosyl-protected amine product (S,S,S)-4 in 73% yield as a colorless oil (Supporting Information Sections 13 and 16).

Conclusions

Click to copy section linkSection link copied!

In summary, we have demonstrated that biocatalysis is a powerful tool to enable the production of difficult to access complex chiral amine building blocks for drug design. In this context, structure-guided mutagenesis proved to be a rapid way of tuning the selectivity of the wild-type biocatalyst for the synthesis of a target molecule with multiple stereocenters. Both the stereoselectivity and stereospecificity of the enzyme were further improved by saturating a key active site residue, which enabled reductive amination with concomitant kinetic resolution. The engineered enzyme retained high levels of conversion and selectivity on a preparative scale, thereby showing the potential for further evolution for early chemical development.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.3c07010.

  • Experimental section, including general information, experimental procedures, enzyme and primers sequences, chromatograms of biotransformations, and characterization of compounds (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
  • Authors
    • Arnau Rué Casamajo - Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United KingdomOrcidhttps://orcid.org/0000-0001-8932-8763
    • Yuqi Yu - Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
    • Christian Schnepel - School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, 11421 Stockholm, SwedenOrcidhttps://orcid.org/0000-0002-4331-2675
    • Charlotte Morrill - Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
    • Rhys Barker - Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
    • Colin W. Levy - Department of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
    • James Finnigan - Prozomix Ltd, Building 4, West End Ind. Estate, Haltwhistle NE49 9HA, United Kingdom
    • Victor Spelling - Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Mölndal, 431 50 Gothenburg, SwedenOrcidhttps://orcid.org/0000-0001-5976-8047
    • Kristina Westerlund - Medicinal Chemistry, Research and Early Development; Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 50 Gothenburg Sweden
    • Mark Petchey - Compound Synthesis and Management, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Mölndal, 431 50 Gothenburg, Sweden
    • Robert J. Sheppard - Medicinal Chemistry, Research and Early Development; Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 50 Gothenburg Sweden
    • Richard J. Lewis - Department of Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, 43183 Mölndal, SwedenOrcidhttps://orcid.org/0000-0001-9404-8520
    • Francesco Falcioni - Early Chemical Development, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, CB21 6GP Cambridge, United Kingdom
    • Martin A. Hayes - Compound Synthesis and Management, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Mölndal, 431 50 Gothenburg, SwedenOrcidhttps://orcid.org/0000-0002-2640-8464
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

N.J.T. is grateful to the ERC for the award of an Advanced Grant (Grant no. 742987). A.R.C., Y.Y., C.S., and C.M. are supported by the EPSRC, BBSRC, and AstraZeneca (EP/S005226/1).

References

Click to copy section linkSection link copied!

This article references 45 other publications.

  1. 1
    Chen, K.; Arnold, F. H. Engineering New Catalytic Activities in Enzymes. Nature Catalysis 2020, 203213,  DOI: 10.1038/s41929-019-0385-5
  2. 2
    Athavale, S. V.; Gao, S.; Das, A.; Mallojjala, S. C.; Alfonzo, E.; Long, Y.; Hirschi, J. S.; Arnold, F. H. Enzymatic Nitrogen Insertion into Unactivated C–H Bonds. J. Am. Chem. Soc. 2022, 144 (41), 1909719105,  DOI: 10.1021/jacs.2c08285
  3. 3
    Thorpe, T. W.; Marshall, J. R.; Harawa, V.; Ruscoe, R. E.; Cuetos, A.; Finnigan, J. D.; Angelastro, A.; Heath, R. S.; Parmeggiani, F.; Charnock, S. J.; Howard, R. M.; Kumar, R.; Daniels, D. S. B.; Grogan, G.; Turner, N. J. Multifunctional Biocatalyst for Conjugate Reduction and Reductive Amination. Nature 2022, 604 (7904), 8691,  DOI: 10.1038/s41586-022-04458-x
  4. 4
    Kumar, R.; Karmilowicz, M. J.; Burke, D.; Burns, M. P.; Clark, L. A.; Connor, C. G.; Cordi, E.; Do, N. M.; Doyle, K. M.; Hoagland, S.; Lewis, C. A.; Mangan, D.; Martinez, C. A.; McInturff, E. L.; Meldrum, K.; Pearson, R.; Steflik, J.; Rane, A.; Weaver, J. Biocatalytic Reductive Amination from Discovery to Commercial Manufacturing Applied to Abrocitinib JAK1 Inhibitor. Nat. Catal. 2021, 4 (9), 775782,  DOI: 10.1038/s41929-021-00671-5
  5. 5
    Schober, M.; MacDermaid, C.; Ollis, A. A.; Chang, S.; Khan, D.; Hosford, J.; Latham, J.; Ihnken, L. A. F.; Brown, M. J. B.; Fuerst, D.; Sanganee, M. J.; Roiban, G. D. Chiral Synthesis of LSD1 Inhibitor GSK2879552 Enabled by Directed Evolution of an Imine Reductase. Nat. Catal. 2019, 2 (10), 909915,  DOI: 10.1038/s41929-019-0341-4
  6. 6
    Savile, C. K.; Janey, J. M.; Mundorff, E. C.; Moore, J. C.; Tam, S.; Jarvis, W. R.; Colbeck, J. C.; Krebber, A.; Fleitz, F. J.; Brands, J.; Devine, P. N.; Huisman, G. W.; Hughes, G. J. Biocatalytic Asymmetric Synthesis of Sitagliptin Manufacture. Science (80-.) 2010, 329 (July), 305310,  DOI: 10.1126/science.1188934
  7. 7
    Adams, J. P.; Brown, M. J. B.; Diaz-Rodriguez, A.; Lloyd, R. C.; Roiban, G. D. Biocatalysis: A Pharma Perspective. Adv. Synth. Catal. 2019, 361 (11), 24212432,  DOI: 10.1002/adsc.201900424
  8. 8
    Romero, E.; Jones, B. S.; Hogg, B. N.; Rué Casamajo, A.; Hayes, M. A.; Flitsch, S. L.; Turner, N. J.; Schnepel, C. Enzymatic Late-Stage Modifications: Better Late Than Never. Angew. Chemie - Int. Ed. 2021, 60 (31), 1682416855,  DOI: 10.1002/anie.202014931
  9. 9
    Hendrick, C. E.; Jorgensen, J. R.; Chaudhry, C.; Strambeanu, I. I.; Brazeau, J. F.; Schiffer, J.; Shi, Z.; Venable, J. D.; Wolkenberg, S. E. Direct-to-Biology Accelerates PROTAC Synthesis and the Evaluation of Linker Effects on Permeability and Degradation. ACS Med. Chem. Lett. 2022, 13 (7), 11821190,  DOI: 10.1021/acsmedchemlett.2c00124
  10. 10
    Fryszkowska, A.; An, C.; Alvizo, O.; Banerjee, G.; Canada, K. A.; Cao, Y.; DeMong, D.; Devine, P. N.; Duan, D.; Elgart, D. M.; Farasat, I.; Gauthier, D. R.; Guidry, E. N.; Jia, X.; Kong, J.; Kruse, N.; Lexa, K. W.; Makarov, A. A.; Mann, B. F.; Milczek, E. M.; Mitchell, V.; Nazor, J.; Neri, C.; Orr, R. K.; Orth, P.; Phillips, E. M.; Riggins, J. N.; Schafer, W. A.; Silverman, S. M.; Strulson, C. A.; Subramanian, N.; Voladri, R.; Yang, H.; Yang, J.; Yi, X.; Zhang, X.; Zhong, W. A Chemoenzymatic Strategy for Site-Selective Functionalization of Native Peptides and Proteins. Science (80-.) 2022, 376 (6599), 13211327,  DOI: 10.1126/science.abn2009
  11. 11
    Rodríguez, D. F.; Moglie, Y.; Ramírez-Sarmiento, C. A.; Singh, S. K.; Dua, K.; Zacconi, F. C. Bio-Click Chemistry: A Bridge between Biocatalysis and Click Chemistry. RSC Adv. 2022, 12 (4), 19321949,  DOI: 10.1039/D1RA08053A
  12. 12
    Pessatti, T. B.; Terenzi, H.; Bertoldo, J. B. Protein Modifications: From Chemoselective Probes to Novel Biocatalysts. Catalysts 2021, 11 (12), 1466,  DOI: 10.3390/catal11121466
  13. 13
    Boutureira, O.; Bernardes, G. J. L. Advances in Chemical Protein Modification. Chem. Rev. 2015, 115 (5), 21742195,  DOI: 10.1021/cr500399p
  14. 14
    Fryszkowska, A.; Devine, P. N. Biocatalysis in Drug Discovery and Development. Curr. Opin. Chem. Biol. 2020, 55, 151160,  DOI: 10.1016/j.cbpa.2020.01.012
  15. 15
    Devine, P. N.; Howard, R. M.; Kumar, R.; Thompson, M. P.; Truppo, M. D.; Turner, N. J. Extending the Application of Biocatalysis to Meet the Challenges of Drug Development. Nat. Rev. Chem. 2018, 2 (12), 409421,  DOI: 10.1038/s41570-018-0055-1
  16. 16
    Brown, D. G.; Boström, J. Analysis of Past and Present Synthetic Methodologies on Medicinal Chemistry: Where Have All the New Reactions Gone?. J. Med. Chem. 2016, 59 (10), 44434458,  DOI: 10.1021/acs.jmedchem.5b01409
  17. 17
    Saldívar-González, F. I.; Aldas-Bulos, V. D.; Medina-Franco, J. L.; Plisson, F. Natural Product Drug Discovery in the Artificial Intelligence Era. Chem. Sci. 2022, 13 (6), 15261546,  DOI: 10.1039/D1SC04471K
  18. 18
    Ertl, P. Substituents of Life: The Most Common Substituent Patterns Present in Natural Products. Bioorg. Med. Chem. 2022, 54, 116562  DOI: 10.1016/j.bmc.2021.116562
  19. 19
    Volochnyuk, D. M.; Ryabukhin, S. V.; Moroz, Y. S.; Savych, O.; Chuprina, A.; Horvath, D.; Zabolotna, Y.; Varnek, A.; Judd, D. B. Evolution of Commercially Available Compounds for HTS. Drug Discovery Today 2019, 24 (2), 390402,  DOI: 10.1016/j.drudis.2018.10.016
  20. 20
    Tomberg, A.; Boström, J. Can Easy Chemistry Produce Complex, Diverse, and Novel Molecules?. Drug Discovery Today 2020, 25 (12), 21742181,  DOI: 10.1016/j.drudis.2020.09.027
  21. 21
    France, S. P.; Lewis, R. D.; Martinez, C. A. The Evolving Nature of Biocatalysis in Pharmaceutical Research and Development. JACS Au 2023, 3 (3), 715735,  DOI: 10.1021/jacsau.2c00712
  22. 22
    Benkovics, T.; Peng, F.; Phillips, E. M.; An, C.; Bade, R. S.; Chung, C. K.; Dance, Z. E. X.; Fier, P. S.; Forstater, J. H.; Liu, Z.; Liu, Z.; Maligres, P. E.; Marshall, N. M.; Salehi Marzijarani, N.; McIntosh, J. A.; Miller, S. P.; Moore, J. C.; Neel, A. J.; Obligacion, J. V.; Pan, W.; Pirnot, M. T.; Poirier, M.; Reibarkh, M.; Sherry, B. D.; Song, Z. J.; Tan, L.; Turnbull, B. W. H.; Verma, D.; Waldman, J. H.; Wang, L.; Wang, T.; Winston, M. S.; Xu, F. Diverse Catalytic Reactions for the Stereoselective Synthesis of Cyclic Dinucleotide MK-1454. J. Am. Chem. Soc. 2022, 144 (13), 58555863,  DOI: 10.1021/jacs.1c12106
  23. 23
    McIntosh, J. A.; Liu, Z.; Andresen, B. M.; Marzijarani, N. S.; Moore, J. C.; Marshall, N. M.; Borra-Garske, M.; Obligacion, J. V.; Fier, P. S.; Peng, F.; Forstater, J. H.; Winston, M. S.; An, C.; Chang, W.; Lim, J.; Huffman, M. A.; Miller, S. P.; Tsay, F. R.; Altman, M. D.; Lesburg, C. A.; Steinhuebel, D.; Trotter, B. W.; Cumming, J. N.; Northrup, A.; Bu, X.; Mann, B. F.; Biba, M.; Hiraga, K.; Murphy, G. S.; Kolev, J. N.; Makarewicz, A.; Pan, W.; Farasat, I.; Bade, R. S.; Stone, K.; Duan, D.; Alvizo, O.; Adpressa, D.; Guetschow, E.; Hoyt, E.; Regalado, E. L.; Castro, S.; Rivera, N.; Smith, J. P.; Wang, F.; Crespo, A.; Verma, D.; Axnanda, S.; Dance, Z. E. X.; Devine, P. N.; Tschaen, D.; Canada, K. A.; Bulger, P. G.; Sherry, B. D.; Truppo, M. D.; Ruck, R. T.; Campeau, L. C.; Bennett, D. J.; Humphrey, G. R.; Campos, K. R.; Maddess, M. L. A Kinase-CGAS Cascade to Synthesize a Therapeutic STING Activator. Nat. 2022 6037901 2022, 603 (7901), 439444,  DOI: 10.1038/s41586-022-04422-9
  24. 24
    Ertl, P.; Altmann, E.; Mckenna, J. M. The Most Common Functional Groups in Bioactive Molecules and How Their Popularity Has Evolved over Time. J. Med. Chem. 2020, 63 (15), 84088418,  DOI: 10.1021/acs.jmedchem.0c00754
  25. 25
    Young, R. J.; Flitsch, S. L.; Grigalunas, M.; Leeson, P. D.; Quinn, R. J.; Turner, N. J.; Waldmann, H. The Time and Place for Nature in Drug Discovery. J. Am. Chem. Soc. 2022, 2 (11), 24002416,  DOI: 10.1021/jacsau.2c00415
  26. 26
    Bauer, R. A.; Wurst, J. M.; Tan, D. S. Expanding the Range of ‘Druggable’ Targets with Natural Product-Based Libraries: An Academic Perspective. Curr. Opin. Chem. Biol. 2010, 14 (3), 308314,  DOI: 10.1016/j.cbpa.2010.02.001
  27. 27
    Newman, D. J.; Cragg, G. M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83 (3), 770803,  DOI: 10.1021/acs.jnatprod.9b01285
  28. 28
    Yao, P.; Xu, Z.; Yu, S.; Wu, Q.; Zhu, D. Imine Reductase-Catalyzed Enantioselective Reduction of Bulky α,B-Unsaturated Imines En Route to a Pharmaceutically Important Morphinan Skeleton. Adv. Synth. Catal. 2019, 361 (3), 556561,  DOI: 10.1002/adsc.201801326
  29. 29
    Arnold, F. H. Directed Evolution: Bringing New Chemistry to Life. Angew. Chemie - Int. Ed. 2018, 57 (16), 41434148,  DOI: 10.1002/anie.201708408
  30. 30
    Aleku, G. A.; Man, H.; France, S. P.; Leipold, F.; Hussain, S.; Toca-Gonzalez, L.; Marchington, R.; Hart, S.; Turkenburg, J. P.; Grogan, G.; Turner, N. J. Stereoselectivity and Structural Characterization of an Imine Reductase (IRED) from Amycolatopsis Orientalis. ACS Catal. 2016, 6 (6), 38803889,  DOI: 10.1021/acscatal.6b00782
  31. 31
    Gilio, A. K.; Thorpe, T. W.; Heyam, A.; Petchey, M. R.; Pogrányi, B.; France, S. P.; Howard, R. M.; Karmilowicz, M. J.; Lewis, R.; Turner, N.; Grogan, G. A Reductive Aminase Switches to Imine Reductase Mode for a Bulky Amine Substrate. ACS Catal. 2023, 13 (3), 16691677,  DOI: 10.1021/acscatal.2c06066
  32. 32
    Montgomery, S. L.; Pushpanath, A.; Heath, R. S.; Marshall, J. R.; Klemstein, U.; Galman, J. L.; Woodlock, D.; Bisagni, S.; Taylor, C. J.; Mangas-Sanchez, J.; Ramsden, J. I.; Dominguez, B.; Turner, N. J. Characterization of Imine Reductases in Reductive Amination for the Exploration of Structure-Activity Relationships. Sci. Adv. 2020, 6 (21), eaay9320  DOI: 10.1126/sciadv.aay9320
  33. 33
    Grogan, G. Synthesis of Chiral Amines Using Redox Biocatalysis. Curr. Opin. Chem. Biol. 2018, 43, 1522,  DOI: 10.1016/j.cbpa.2017.09.008
  34. 34
    Sharma, M.; Mangas-Sanchez, J.; France, S. P.; Aleku, G. A.; Montgomery, S. L.; Ramsden, J. I.; Turner, N. J.; Grogan, G. A Mechanism for Reductive Amination Catalyzed by Fungal Reductive Aminases. ACS Catal. 2018, 8 (12), 1153411541,  DOI: 10.1021/acscatal.8b03491
  35. 35
    Zumbrägel, N.; Machui, P.; Nonnhoff, J.; Gröger, H. Enantioselective Biocatalytic Reduction of 2 H-1,4-Benzoxazines Using Imine Reductases. J. Org. Chem. 2019, 84 (3), 14401447,  DOI: 10.1021/acs.joc.8b02867
  36. 36
    Marshall, J. R.; Yao, P.; Montgomery, S. L.; Finnigan, J. D.; Thorpe, T. W.; Palmer, R. B.; Mangas-Sanchez, J.; Duncan, R. A. M.; Heath, R. S.; Graham, K. M.; Cook, D. J.; Charnock, S. J.; Turner, N. J. Screening and Characterization of a Diverse Panel of Metagenomic Imine Reductases for Biocatalytic Reductive Amination. Nat. Chem. 2021, 13 (2), 140148,  DOI: 10.1038/s41557-020-00606-w
  37. 37
    Aleku, G. A.; France, S. P.; Man, H.; Mangas-Sanchez, J.; Montgomery, S. L.; Sharma, M.; Leipold, F.; Hussain, S.; Grogan, G.; Turner, N. J. A Reductive Aminase from Aspergillus Oryzae. Nat. Chem. 2017, 9 (10), 961969,  DOI: 10.1038/nchem.2782
  38. 38
    France, S. P.; Howard, R. M.; Steflik, J.; Weise, N. J.; Mangas-Sanchez, J.; Montgomery, S. L.; Crook, R.; Kumar, R.; Turner, N. J. Identification of Novel Bacterial Members of the Imine Reductase Enzyme Family That Perform Reductive Amination. ChemCatChem. 2018, 10 (3), 510514,  DOI: 10.1002/cctc.201701408
  39. 39
    Harawa, V.; W. Thorpe, T.; R. Marshall, J.; J. Sangster, J.; K. Gilio, A.; Pirvu, L.; S. Heath, R.; Angelastro, A.; D. Finnigan, J.; J. Charnock, S.; W. Nafie, J.; Grogan, G.; C. Whitehead, R.; J. Turner, N. Synthesis of Stereoenriched Piperidines via Chemo-Enzymatic Dearomatization of Activated Pyridines. J. Am. Chem. Soc. 2022, 144 (46), 2108821095,  DOI: 10.1021/jacs.2c07143
  40. 40
    Mangas-Sanchez, J.; Sharma, M.; Cosgrove, S. C.; Ramsden, J. I.; Marshall, J. R.; Thorpe, T. W.; Palmer, R. B.; Grogan, G.; Turner, N. J. Asymmetric Synthesis of Primary Amines Catalyzed by Thermotolerant Fungal Reductive Aminases. Chem. Sci. 2020, 11 (19), 2225,  DOI: 10.1039/d0sc02253e
  41. 41
    Husain, S. M.; Schätzle, M. A.; Lüdeke, S.; Müller, M. Unprecedented Role of Hydronaphthoquinone Tautomers in Biosynthesis. Angew. Chemie - Int. Ed. 2014, 53 (37), 98069811,  DOI: 10.1002/anie.201404560
  42. 42
    Conradt, D.; Schätzle, M. A.; Husain, S. M.; Müller, M. Diversity in Reduction with Short-Chain Dehydrogenases: Tetrahydroxynaphthalene Reductase, Trihydroxynaphthalene Reductase, and Glucose Dehydrogenase. ChemCatChem. 2015, 7 (19), 31163120,  DOI: 10.1002/cctc.201500605
  43. 43
    Huber, T.; Schneider, L.; Präg, A.; Gerhardt, S.; Einsle, O.; Müller, M. Direct Reductive Amination of Ketones: Structure and Activity of S-Selective Imine Reductases from Streptomyces. ChemCatChem. 2014, 6 (8), 22482252,  DOI: 10.1002/cctc.201402218
  44. 44
    Scheller, P. N.; Lenz, M.; Hammer, S. C.; Hauer, B.; Nestl, B. M. Imine Reductase-Catalyzed Intermolecular Reductive Amination of Aldehydes and Ketones. ChemCatChem. 2015, 7 (20), 32393242,  DOI: 10.1002/cctc.201500764
  45. 45
    AutoDock Vina Documentation Release 1.2.0; Center of Computational Structural Biology (CCSB)-Scripps Research, 2022.

Cited By

Click to copy section linkSection link copied!

This article is cited by 2 publications.

  1. Godwin A. Aleku. Imine Reductases and Reductive Aminases in Organic Synthesis. ACS Catalysis 2024, 14 (19) , 14308-14329. https://doi.org/10.1021/acscatal.4c04756
  2. Chenming Huang, Li Zhang, Tong Tang, Haijiao Wang, Yingqian Jiang, Hanwen Ren, Yitian Zhang, Jiali Fang, Wenhe Zhang, Xian Jia, Song You, Bin Qin. Application of Directed Evolution and Machine Learning to Enhance the Diastereoselectivity of Ketoreductase for Dihydrotetrabenazine Synthesis. JACS Au 2024, 4 (7) , 2547-2556. https://doi.org/10.1021/jacsau.4c00284

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2023, 145, 40, 22041–22046
Click to copy citationCitation copied!
https://doi.org/10.1021/jacs.3c07010
Published October 2, 2023

Copyright © 2023 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Article Views

7217

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Combined biocatalytic resolution and reductive amination of racemic ketone 2 with allylamine 1 forming (S,S,S)-3, which is a key intermediate for the desired primary amine (S,S,S)-4.

    Figure 2

    Figure 2. (a) The four possible reductive amination products (S,S,S)-3, (R,R,R)-3, (S,S,R)-3, and (R,R,S)-3 derived from ketone (±)-2; (b) SFC chromatogram of the stereoisomers.

    Figure 3

    Figure 3. (a) Crystal structure of IRED-09 (purple) in complex with NADPH (pink) and N-cyclopropylcyclohexanamine; there is only one molecule in the asymmetric unit. (b) IR-09 biological dimer. (c) Active site of IR-09 with the imine intermediate of 3 modeled into the active site showing distances (Å) from C4 of the nicotinamide ring of NAPDH and (B) W204 to the electrophilic carbon of the ligand. (d) The view is rotated 180 deg to observe the active site from the opposite perspective and show distances from (B) M233 and (B) Q234 to the ligand.

    Figure 4

    Figure 4. (a) SFC chromatograms comparing the isomer production of IR-09 WT, the best SDM variant, and the best SSM variant (peak at rt = 4.4. min corresponds to the alcohol). (b) Comparison between WT and the best variants for the production of (S,S,S)-3. Conversion to (S,S,S)-3 (%) = (S,S,S) yield × conversion.

  • References


    This article references 45 other publications.

    1. 1
      Chen, K.; Arnold, F. H. Engineering New Catalytic Activities in Enzymes. Nature Catalysis 2020, 203213,  DOI: 10.1038/s41929-019-0385-5
    2. 2
      Athavale, S. V.; Gao, S.; Das, A.; Mallojjala, S. C.; Alfonzo, E.; Long, Y.; Hirschi, J. S.; Arnold, F. H. Enzymatic Nitrogen Insertion into Unactivated C–H Bonds. J. Am. Chem. Soc. 2022, 144 (41), 1909719105,  DOI: 10.1021/jacs.2c08285
    3. 3
      Thorpe, T. W.; Marshall, J. R.; Harawa, V.; Ruscoe, R. E.; Cuetos, A.; Finnigan, J. D.; Angelastro, A.; Heath, R. S.; Parmeggiani, F.; Charnock, S. J.; Howard, R. M.; Kumar, R.; Daniels, D. S. B.; Grogan, G.; Turner, N. J. Multifunctional Biocatalyst for Conjugate Reduction and Reductive Amination. Nature 2022, 604 (7904), 8691,  DOI: 10.1038/s41586-022-04458-x
    4. 4
      Kumar, R.; Karmilowicz, M. J.; Burke, D.; Burns, M. P.; Clark, L. A.; Connor, C. G.; Cordi, E.; Do, N. M.; Doyle, K. M.; Hoagland, S.; Lewis, C. A.; Mangan, D.; Martinez, C. A.; McInturff, E. L.; Meldrum, K.; Pearson, R.; Steflik, J.; Rane, A.; Weaver, J. Biocatalytic Reductive Amination from Discovery to Commercial Manufacturing Applied to Abrocitinib JAK1 Inhibitor. Nat. Catal. 2021, 4 (9), 775782,  DOI: 10.1038/s41929-021-00671-5
    5. 5
      Schober, M.; MacDermaid, C.; Ollis, A. A.; Chang, S.; Khan, D.; Hosford, J.; Latham, J.; Ihnken, L. A. F.; Brown, M. J. B.; Fuerst, D.; Sanganee, M. J.; Roiban, G. D. Chiral Synthesis of LSD1 Inhibitor GSK2879552 Enabled by Directed Evolution of an Imine Reductase. Nat. Catal. 2019, 2 (10), 909915,  DOI: 10.1038/s41929-019-0341-4
    6. 6
      Savile, C. K.; Janey, J. M.; Mundorff, E. C.; Moore, J. C.; Tam, S.; Jarvis, W. R.; Colbeck, J. C.; Krebber, A.; Fleitz, F. J.; Brands, J.; Devine, P. N.; Huisman, G. W.; Hughes, G. J. Biocatalytic Asymmetric Synthesis of Sitagliptin Manufacture. Science (80-.) 2010, 329 (July), 305310,  DOI: 10.1126/science.1188934
    7. 7
      Adams, J. P.; Brown, M. J. B.; Diaz-Rodriguez, A.; Lloyd, R. C.; Roiban, G. D. Biocatalysis: A Pharma Perspective. Adv. Synth. Catal. 2019, 361 (11), 24212432,  DOI: 10.1002/adsc.201900424
    8. 8
      Romero, E.; Jones, B. S.; Hogg, B. N.; Rué Casamajo, A.; Hayes, M. A.; Flitsch, S. L.; Turner, N. J.; Schnepel, C. Enzymatic Late-Stage Modifications: Better Late Than Never. Angew. Chemie - Int. Ed. 2021, 60 (31), 1682416855,  DOI: 10.1002/anie.202014931
    9. 9
      Hendrick, C. E.; Jorgensen, J. R.; Chaudhry, C.; Strambeanu, I. I.; Brazeau, J. F.; Schiffer, J.; Shi, Z.; Venable, J. D.; Wolkenberg, S. E. Direct-to-Biology Accelerates PROTAC Synthesis and the Evaluation of Linker Effects on Permeability and Degradation. ACS Med. Chem. Lett. 2022, 13 (7), 11821190,  DOI: 10.1021/acsmedchemlett.2c00124
    10. 10
      Fryszkowska, A.; An, C.; Alvizo, O.; Banerjee, G.; Canada, K. A.; Cao, Y.; DeMong, D.; Devine, P. N.; Duan, D.; Elgart, D. M.; Farasat, I.; Gauthier, D. R.; Guidry, E. N.; Jia, X.; Kong, J.; Kruse, N.; Lexa, K. W.; Makarov, A. A.; Mann, B. F.; Milczek, E. M.; Mitchell, V.; Nazor, J.; Neri, C.; Orr, R. K.; Orth, P.; Phillips, E. M.; Riggins, J. N.; Schafer, W. A.; Silverman, S. M.; Strulson, C. A.; Subramanian, N.; Voladri, R.; Yang, H.; Yang, J.; Yi, X.; Zhang, X.; Zhong, W. A Chemoenzymatic Strategy for Site-Selective Functionalization of Native Peptides and Proteins. Science (80-.) 2022, 376 (6599), 13211327,  DOI: 10.1126/science.abn2009
    11. 11
      Rodríguez, D. F.; Moglie, Y.; Ramírez-Sarmiento, C. A.; Singh, S. K.; Dua, K.; Zacconi, F. C. Bio-Click Chemistry: A Bridge between Biocatalysis and Click Chemistry. RSC Adv. 2022, 12 (4), 19321949,  DOI: 10.1039/D1RA08053A
    12. 12
      Pessatti, T. B.; Terenzi, H.; Bertoldo, J. B. Protein Modifications: From Chemoselective Probes to Novel Biocatalysts. Catalysts 2021, 11 (12), 1466,  DOI: 10.3390/catal11121466
    13. 13
      Boutureira, O.; Bernardes, G. J. L. Advances in Chemical Protein Modification. Chem. Rev. 2015, 115 (5), 21742195,  DOI: 10.1021/cr500399p
    14. 14
      Fryszkowska, A.; Devine, P. N. Biocatalysis in Drug Discovery and Development. Curr. Opin. Chem. Biol. 2020, 55, 151160,  DOI: 10.1016/j.cbpa.2020.01.012
    15. 15
      Devine, P. N.; Howard, R. M.; Kumar, R.; Thompson, M. P.; Truppo, M. D.; Turner, N. J. Extending the Application of Biocatalysis to Meet the Challenges of Drug Development. Nat. Rev. Chem. 2018, 2 (12), 409421,  DOI: 10.1038/s41570-018-0055-1
    16. 16
      Brown, D. G.; Boström, J. Analysis of Past and Present Synthetic Methodologies on Medicinal Chemistry: Where Have All the New Reactions Gone?. J. Med. Chem. 2016, 59 (10), 44434458,  DOI: 10.1021/acs.jmedchem.5b01409
    17. 17
      Saldívar-González, F. I.; Aldas-Bulos, V. D.; Medina-Franco, J. L.; Plisson, F. Natural Product Drug Discovery in the Artificial Intelligence Era. Chem. Sci. 2022, 13 (6), 15261546,  DOI: 10.1039/D1SC04471K
    18. 18
      Ertl, P. Substituents of Life: The Most Common Substituent Patterns Present in Natural Products. Bioorg. Med. Chem. 2022, 54, 116562  DOI: 10.1016/j.bmc.2021.116562
    19. 19
      Volochnyuk, D. M.; Ryabukhin, S. V.; Moroz, Y. S.; Savych, O.; Chuprina, A.; Horvath, D.; Zabolotna, Y.; Varnek, A.; Judd, D. B. Evolution of Commercially Available Compounds for HTS. Drug Discovery Today 2019, 24 (2), 390402,  DOI: 10.1016/j.drudis.2018.10.016
    20. 20
      Tomberg, A.; Boström, J. Can Easy Chemistry Produce Complex, Diverse, and Novel Molecules?. Drug Discovery Today 2020, 25 (12), 21742181,  DOI: 10.1016/j.drudis.2020.09.027
    21. 21
      France, S. P.; Lewis, R. D.; Martinez, C. A. The Evolving Nature of Biocatalysis in Pharmaceutical Research and Development. JACS Au 2023, 3 (3), 715735,  DOI: 10.1021/jacsau.2c00712
    22. 22
      Benkovics, T.; Peng, F.; Phillips, E. M.; An, C.; Bade, R. S.; Chung, C. K.; Dance, Z. E. X.; Fier, P. S.; Forstater, J. H.; Liu, Z.; Liu, Z.; Maligres, P. E.; Marshall, N. M.; Salehi Marzijarani, N.; McIntosh, J. A.; Miller, S. P.; Moore, J. C.; Neel, A. J.; Obligacion, J. V.; Pan, W.; Pirnot, M. T.; Poirier, M.; Reibarkh, M.; Sherry, B. D.; Song, Z. J.; Tan, L.; Turnbull, B. W. H.; Verma, D.; Waldman, J. H.; Wang, L.; Wang, T.; Winston, M. S.; Xu, F. Diverse Catalytic Reactions for the Stereoselective Synthesis of Cyclic Dinucleotide MK-1454. J. Am. Chem. Soc. 2022, 144 (13), 58555863,  DOI: 10.1021/jacs.1c12106
    23. 23
      McIntosh, J. A.; Liu, Z.; Andresen, B. M.; Marzijarani, N. S.; Moore, J. C.; Marshall, N. M.; Borra-Garske, M.; Obligacion, J. V.; Fier, P. S.; Peng, F.; Forstater, J. H.; Winston, M. S.; An, C.; Chang, W.; Lim, J.; Huffman, M. A.; Miller, S. P.; Tsay, F. R.; Altman, M. D.; Lesburg, C. A.; Steinhuebel, D.; Trotter, B. W.; Cumming, J. N.; Northrup, A.; Bu, X.; Mann, B. F.; Biba, M.; Hiraga, K.; Murphy, G. S.; Kolev, J. N.; Makarewicz, A.; Pan, W.; Farasat, I.; Bade, R. S.; Stone, K.; Duan, D.; Alvizo, O.; Adpressa, D.; Guetschow, E.; Hoyt, E.; Regalado, E. L.; Castro, S.; Rivera, N.; Smith, J. P.; Wang, F.; Crespo, A.; Verma, D.; Axnanda, S.; Dance, Z. E. X.; Devine, P. N.; Tschaen, D.; Canada, K. A.; Bulger, P. G.; Sherry, B. D.; Truppo, M. D.; Ruck, R. T.; Campeau, L. C.; Bennett, D. J.; Humphrey, G. R.; Campos, K. R.; Maddess, M. L. A Kinase-CGAS Cascade to Synthesize a Therapeutic STING Activator. Nat. 2022 6037901 2022, 603 (7901), 439444,  DOI: 10.1038/s41586-022-04422-9
    24. 24
      Ertl, P.; Altmann, E.; Mckenna, J. M. The Most Common Functional Groups in Bioactive Molecules and How Their Popularity Has Evolved over Time. J. Med. Chem. 2020, 63 (15), 84088418,  DOI: 10.1021/acs.jmedchem.0c00754
    25. 25
      Young, R. J.; Flitsch, S. L.; Grigalunas, M.; Leeson, P. D.; Quinn, R. J.; Turner, N. J.; Waldmann, H. The Time and Place for Nature in Drug Discovery. J. Am. Chem. Soc. 2022, 2 (11), 24002416,  DOI: 10.1021/jacsau.2c00415
    26. 26
      Bauer, R. A.; Wurst, J. M.; Tan, D. S. Expanding the Range of ‘Druggable’ Targets with Natural Product-Based Libraries: An Academic Perspective. Curr. Opin. Chem. Biol. 2010, 14 (3), 308314,  DOI: 10.1016/j.cbpa.2010.02.001
    27. 27
      Newman, D. J.; Cragg, G. M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83 (3), 770803,  DOI: 10.1021/acs.jnatprod.9b01285
    28. 28
      Yao, P.; Xu, Z.; Yu, S.; Wu, Q.; Zhu, D. Imine Reductase-Catalyzed Enantioselective Reduction of Bulky α,B-Unsaturated Imines En Route to a Pharmaceutically Important Morphinan Skeleton. Adv. Synth. Catal. 2019, 361 (3), 556561,  DOI: 10.1002/adsc.201801326
    29. 29
      Arnold, F. H. Directed Evolution: Bringing New Chemistry to Life. Angew. Chemie - Int. Ed. 2018, 57 (16), 41434148,  DOI: 10.1002/anie.201708408
    30. 30
      Aleku, G. A.; Man, H.; France, S. P.; Leipold, F.; Hussain, S.; Toca-Gonzalez, L.; Marchington, R.; Hart, S.; Turkenburg, J. P.; Grogan, G.; Turner, N. J. Stereoselectivity and Structural Characterization of an Imine Reductase (IRED) from Amycolatopsis Orientalis. ACS Catal. 2016, 6 (6), 38803889,  DOI: 10.1021/acscatal.6b00782
    31. 31
      Gilio, A. K.; Thorpe, T. W.; Heyam, A.; Petchey, M. R.; Pogrányi, B.; France, S. P.; Howard, R. M.; Karmilowicz, M. J.; Lewis, R.; Turner, N.; Grogan, G. A Reductive Aminase Switches to Imine Reductase Mode for a Bulky Amine Substrate. ACS Catal. 2023, 13 (3), 16691677,  DOI: 10.1021/acscatal.2c06066
    32. 32
      Montgomery, S. L.; Pushpanath, A.; Heath, R. S.; Marshall, J. R.; Klemstein, U.; Galman, J. L.; Woodlock, D.; Bisagni, S.; Taylor, C. J.; Mangas-Sanchez, J.; Ramsden, J. I.; Dominguez, B.; Turner, N. J. Characterization of Imine Reductases in Reductive Amination for the Exploration of Structure-Activity Relationships. Sci. Adv. 2020, 6 (21), eaay9320  DOI: 10.1126/sciadv.aay9320
    33. 33
      Grogan, G. Synthesis of Chiral Amines Using Redox Biocatalysis. Curr. Opin. Chem. Biol. 2018, 43, 1522,  DOI: 10.1016/j.cbpa.2017.09.008
    34. 34
      Sharma, M.; Mangas-Sanchez, J.; France, S. P.; Aleku, G. A.; Montgomery, S. L.; Ramsden, J. I.; Turner, N. J.; Grogan, G. A Mechanism for Reductive Amination Catalyzed by Fungal Reductive Aminases. ACS Catal. 2018, 8 (12), 1153411541,  DOI: 10.1021/acscatal.8b03491
    35. 35
      Zumbrägel, N.; Machui, P.; Nonnhoff, J.; Gröger, H. Enantioselective Biocatalytic Reduction of 2 H-1,4-Benzoxazines Using Imine Reductases. J. Org. Chem. 2019, 84 (3), 14401447,  DOI: 10.1021/acs.joc.8b02867
    36. 36
      Marshall, J. R.; Yao, P.; Montgomery, S. L.; Finnigan, J. D.; Thorpe, T. W.; Palmer, R. B.; Mangas-Sanchez, J.; Duncan, R. A. M.; Heath, R. S.; Graham, K. M.; Cook, D. J.; Charnock, S. J.; Turner, N. J. Screening and Characterization of a Diverse Panel of Metagenomic Imine Reductases for Biocatalytic Reductive Amination. Nat. Chem. 2021, 13 (2), 140148,  DOI: 10.1038/s41557-020-00606-w
    37. 37
      Aleku, G. A.; France, S. P.; Man, H.; Mangas-Sanchez, J.; Montgomery, S. L.; Sharma, M.; Leipold, F.; Hussain, S.; Grogan, G.; Turner, N. J. A Reductive Aminase from Aspergillus Oryzae. Nat. Chem. 2017, 9 (10), 961969,  DOI: 10.1038/nchem.2782
    38. 38
      France, S. P.; Howard, R. M.; Steflik, J.; Weise, N. J.; Mangas-Sanchez, J.; Montgomery, S. L.; Crook, R.; Kumar, R.; Turner, N. J. Identification of Novel Bacterial Members of the Imine Reductase Enzyme Family That Perform Reductive Amination. ChemCatChem. 2018, 10 (3), 510514,  DOI: 10.1002/cctc.201701408
    39. 39
      Harawa, V.; W. Thorpe, T.; R. Marshall, J.; J. Sangster, J.; K. Gilio, A.; Pirvu, L.; S. Heath, R.; Angelastro, A.; D. Finnigan, J.; J. Charnock, S.; W. Nafie, J.; Grogan, G.; C. Whitehead, R.; J. Turner, N. Synthesis of Stereoenriched Piperidines via Chemo-Enzymatic Dearomatization of Activated Pyridines. J. Am. Chem. Soc. 2022, 144 (46), 2108821095,  DOI: 10.1021/jacs.2c07143
    40. 40
      Mangas-Sanchez, J.; Sharma, M.; Cosgrove, S. C.; Ramsden, J. I.; Marshall, J. R.; Thorpe, T. W.; Palmer, R. B.; Grogan, G.; Turner, N. J. Asymmetric Synthesis of Primary Amines Catalyzed by Thermotolerant Fungal Reductive Aminases. Chem. Sci. 2020, 11 (19), 2225,  DOI: 10.1039/d0sc02253e
    41. 41
      Husain, S. M.; Schätzle, M. A.; Lüdeke, S.; Müller, M. Unprecedented Role of Hydronaphthoquinone Tautomers in Biosynthesis. Angew. Chemie - Int. Ed. 2014, 53 (37), 98069811,  DOI: 10.1002/anie.201404560
    42. 42
      Conradt, D.; Schätzle, M. A.; Husain, S. M.; Müller, M. Diversity in Reduction with Short-Chain Dehydrogenases: Tetrahydroxynaphthalene Reductase, Trihydroxynaphthalene Reductase, and Glucose Dehydrogenase. ChemCatChem. 2015, 7 (19), 31163120,  DOI: 10.1002/cctc.201500605
    43. 43
      Huber, T.; Schneider, L.; Präg, A.; Gerhardt, S.; Einsle, O.; Müller, M. Direct Reductive Amination of Ketones: Structure and Activity of S-Selective Imine Reductases from Streptomyces. ChemCatChem. 2014, 6 (8), 22482252,  DOI: 10.1002/cctc.201402218
    44. 44
      Scheller, P. N.; Lenz, M.; Hammer, S. C.; Hauer, B.; Nestl, B. M. Imine Reductase-Catalyzed Intermolecular Reductive Amination of Aldehydes and Ketones. ChemCatChem. 2015, 7 (20), 32393242,  DOI: 10.1002/cctc.201500764
    45. 45
      AutoDock Vina Documentation Release 1.2.0; Center of Computational Structural Biology (CCSB)-Scripps Research, 2022.
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.3c07010.

    • Experimental section, including general information, experimental procedures, enzyme and primers sequences, chromatograms of biotransformations, and characterization of compounds (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.