Mechanochemical Synthesis and Magnetic Properties of the Mixed-Valent Binary Silver(I,II) Fluorides, AgI2AgIIF4 and AgIAgIIF3Click to copy article linkArticle link copied!
- Matic Belak VivodMatic Belak VivodJožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, SloveniaJožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, SloveniaMore by Matic Belak Vivod
- Zvonko JagličićZvonko JagličićInstitute of Mathematics, Physics and Mechanics, 1000 Ljubljana, SloveniaFaculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova cesta 2, 1000 Ljubljana, SloveniaMore by Zvonko Jagličić
- Graham KingGraham KingCanadian Light Source, 44 Innovation Blvd, Saskatoon, S7N 2V3 Saskatchewan, CanadaMore by Graham King
- Thomas C. Hansen
- Matic LozinšekMatic LozinšekJožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, SloveniaJožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, SloveniaMore by Matic Lozinšek
- Mirela Dragomir*Mirela Dragomir*Email: [email protected]Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, SloveniaJožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, SloveniaMore by Mirela Dragomir
Abstract
Fluoridoargentates(II) represent a fascinating class of silver(II) compounds with structural and magnetic similarities to cuprate superconductors. However, their synthesis is challenging, leaving their properties largely underexplored and hindering the discovery of new phases. This study introduces mechanochemistry as a novel approach for the synthesis of fluoridoargentates(II), avoiding the use of anhydrous HF or elemental fluorine and employing readily available equipment. Notably, ball milling of commercially available precursors successfully produced the long-sought-after first two examples of binary mixed-valent silver(I,II) phases, AgI2AgIIF4 (Ag3F4) and AgIAgIIF3 (Ag2F3). While the AgI2AgIIF4 phase was obtained at room temperature, the AgIAgIIF3 phase is metastable and required milling under cryogenic conditions. Characterization by synchrotron powder X-ray and neutron diffraction revealed that AgI2AgIIF4 crystallizes in the P21/c space group and is isostructural to β-K2AgF4. In this crystal structure, [AgIIF2F4/2]2– distorted octahedral units with 4 + 2 coordination, extend parallel to a-crystallographic axis giving a quasi-one-dimensional canted antiferromagnetic character, as shown by magnetic susceptibility. The triclinic perovskite AgIAgIIF3 phase adopts the P1̅ space group, is isostructural to AgCuF3 and also shows features of a one-dimensional antiferromagnet. This mechanochemical approach, also successfully applied to synthesize β-K2AgF4, is expected to expand the field of silver(II) chemistry, accelerating the search for silver analogs to cuprate superconductors and potentially extending to other cations in unusual oxidation states.
This publication is licensed under
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
Introduction
Results and Discussion
AgI2AgIIF4
AgIAgIIF3
Conclusions
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.4c11772.
The experimental procedures, description of the characterization techniques, and results of analyses (PDF)
Deposition numbers 2321112 (for Ag2F3) and 2321184 (for Ag3F4) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgments
Support from the Slovenian Research and Innovation Agency (J2-2496, P2-0105, P2-0348); the Marie Skłodowska-Curie Individual Fellowship (101031415) and the European Research Council Starting Grant (950625) under the European Union’s Horizon 2020 Research and Innovation Programme; and the Jožef Stefan Institute Director’s Fund, are gratefully acknowledged. Part of the research described in this paper was performed at the Canadian Light Source, a national research facility of the University of Saskatchewan, which is supported by the Canada Foundation for Innovation (CFI), the Natural Sciences and Engineering Research Council (NSERC), the National Research Council (NRC), the Canadian Institutes of Health Research (CIHR), the Government of Saskatchewan, and the University of Saskatchewan.
Dedication
This work is dedicated to the memory of Professor Boris Žemva, whose passion for fluorine chemistry ignited our pursuit in this field.
References
This article references 44 other publications.
- 1Broholm, C.; Cava, R. J.; Kivelson, S. A.; Nocera, D. G.; Norman, M. R.; Senthil, T. Quantum spin liquids. Science 2020, 367 (6475), eaay0668 DOI: 10.1126/science.aay0668Google ScholarThere is no corresponding record for this reference.
- 2Anderson, P. W. The Resonating Valence Bond State in La2CuO4 and Superconductivity. Science 1987, 235 (4793), 1196– 1198, DOI: 10.1126/science.235.4793.1196Google Scholar2https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaL2sXitVKjurs%253D&md5=7179bd3803d22dec4ce4214143242b92The resonating valence bond state in lanthanum copper oxide (La2CuO4) and superconductivityAnderson, P. W.Science (Washington, DC, United States) (1987), 235 (4793), 1196-8CODEN: SCIEAS; ISSN:0036-8075.The oxide superconductors, particularly those recently discovered that are based on La2CuO4, have a set of peculiarities that suggest a common, unique mechanism: they tend in every case to occur near a metal-insulator transition into an odd-electron insulator with peculiar magnetic properties. This insulating phase may be the long-sought "resonating-valence-bond" state or "quantum spin liq.". This insulating magnetic phase is favored by low spin, low dimensionality, and magnetic frustration. The pre-existing magnetic singlet pairs of the insulating state become charged superconducting pairs when the insulator is doped sufficiently strongly. The mechanism for supercond. is hence predominantly electronic and magnetic, although weak phonon interactions may favor the state. Many unusual properties are predicted, esp. of the insulating state.
- 3Grochala, W.; Hoffmann, R. Real and Hypothetical Intermediate-Valence AgII/AgIII and AgII/AgI Fluoride Systems as Potential Superconductors. Angew. Chem., Int. Ed. 2001, 40 (15), 2742– 2781, DOI: 10.1002/1521-3773(20010803)40:15<2742::AID-ANIE2742>3.0.CO;2-XGoogle ScholarThere is no corresponding record for this reference.
- 4Grochala, W. The theory-driven quest for a novel family of superconductors: fluorides. J. Mater. Chem. 2009, 19 (38), 6949– 6968, DOI: 10.1039/b904204kGoogle ScholarThere is no corresponding record for this reference.
- 5Žemva, B.; Hagiwara, R.; Casteel, W. J.; Lutar, K.; Jesih, A.; Bartlett, N. Spontaneous oxidation of xenon to Xe(II) by cationic Ag(II) in anhydrous hydrogen fluoride solutions. J. Am. Chem. Soc. 1990, 112 (12), 4846– 4849, DOI: 10.1021/ja00168a032Google ScholarThere is no corresponding record for this reference.
- 6Žemva, B. Protonic superacid anhydrous hydrogen fluoride as a solvent in the chemistry of high oxidation states. C. R. Acad. Sci., Ser. IIc: Chim. 1998, 1 (3), 151– 156, DOI: 10.1016/S1387-1609(99)80073-5Google ScholarThere is no corresponding record for this reference.
- 7Grochala, W. Silverland: the Realm of Compounds of Divalent Silver─and Why They are Interesting. J. Supercond. Novel Magn. 2018, 31, 737– 752, DOI: 10.1007/s10948-017-4326-8Google ScholarThere is no corresponding record for this reference.
- 8Gawraczyński, J.; Kurzydłowski, D.; Ewings, R. A.; Bandaru, S.; Gadomski, W.; Mazej, Z.; Ruani, G.; Bergenti, I.; Jaroń, T.; Ozarowski, A.; Hill, S.; Leszczyński, P. J.; Tokár, K.; Derzsi, M.; Barone, P.; Wohlfeld, K.; Lorenzana, J.; Grochala, W. Silver route to cuprate analogs. Proc. Natl. Acad. Sci. U.S.A. 2019, 116 (5), 1495– 1500, DOI: 10.1073/pnas.1812857116Google ScholarThere is no corresponding record for this reference.
- 9Grochala, W.; Egdell, R. G.; Edwards, P. P.; Mazej, Z.; Žemva, B. On the Covalency of Silver–Fluorine Bonds in Compounds of Silver(I), Silver(II) and Silver(III). ChemPhysChem 2003, 4 (9), 997– 1001, DOI: 10.1002/cphc.200300777Google ScholarThere is no corresponding record for this reference.
- 10Bachar, N.; Koteras, K.; Gawraczynski, J.; Trzciński, W.; Paszula, J.; Piombo, R.; Barone, P.; Mazej, Z.; Ghiringhelli, G.; Nag, A.; Zhou, K.-J.; Lorenzana, J.; Van Der Marel, D.; Grochala, W. Charge-Transfer and dd excitations in AgF2. Phys. Rev. Res. 2022, 4 (2), 023108, DOI: 10.1103/PhysRevResearch.4.023108Google ScholarThere is no corresponding record for this reference.
- 11Hettich, A. Über die Natur von Silbersubfluorid. Z. Anorg. Allg. Chem. 1927, 167 (1), 67– 74, DOI: 10.1002/zaac.19271670106Google ScholarThere is no corresponding record for this reference.
- 12Terrey, H.; Diamond, H. The Crystal Structure of Silver Subfluoride. J. Chem. Soc. 1928, 2820– 2824, DOI: 10.1039/JR9280002820Google ScholarThere is no corresponding record for this reference.
- 13Andres, K.; Kuebler, N. A.; Robin, M. B. Superconductivity in Ag2F. J. Phys. Chem. Solids 1966, 27 (11–12), 1747– 1748, DOI: 10.1016/0022-3697(66)90104-1Google ScholarThere is no corresponding record for this reference.
- 14Ott, H. Die Strukturen von MnO, MnS, AgF, NiS, SnJ4, SrCl2, BaF2; Präzisionsmessungen einiger Alkalihalogenide. Z. Kristallogr. 1926, 63 (1–6), 222– 230, DOI: 10.1524/zkri.1926.63.1.222Google ScholarThere is no corresponding record for this reference.
- 15Lozinšek, M.; Belak Vivod, M.; Dragomir, M. Crystal structure reinvestigation of silver(I) fluoride, AgF. IUCrData 2023, 8, x230018, DOI: 10.1107/S2414314623000184Google ScholarThere is no corresponding record for this reference.
- 16Ebert, M. S.; Rodowskas, E. L.; Frazer, J. C. W. Higher valence states of silver. J. Am. Chem. Soc. 1933, 55 (7), 3056– 3057, DOI: 10.1021/ja01334a514Google ScholarThere is no corresponding record for this reference.
- 17Ruff, O.; Giese, M. Die Fluorierung des Silbers und Kupfers. Z. Anorg. Allg. Chem. 1934, 219 (2), 143– 148, DOI: 10.1002/zaac.19342190206Google ScholarThere is no corresponding record for this reference.
- 18Jesih, A.; Lutar, K.; Žemva, B.; Bachmann, B.; Becker, S.; Müller, B. G.; Hoppe, R. Einkristalluntersuchungen an AgF2. Z. Anorg. Allg. Chem. 1990, 588 (1), 77– 83, DOI: 10.1002/zaac.19905880110Google ScholarThere is no corresponding record for this reference.
- 19Bougon, R.; Bui Huy, T.; Lance, M.; Abazli, H. Synthesis and Properties of Silver Trifluoride, AgF3. Inorg. Chem. 1984, 23 (22), 3667– 3668, DOI: 10.1021/ic00190a049Google ScholarThere is no corresponding record for this reference.
- 20Žemva, B.; Lutar, K.; Jesih, A.; Casteel, W. J.; Wilkinson, A. P.; Cox, D. E.; von Dreele, R. B.; Borrmann, H.; Bartlett, N. Silver trifluoride: preparation, crystal structure, some properties, and comparison with AuF3. J. Am. Chem. Soc. 1991, 113 (11), 4192– 4198, DOI: 10.1021/ja00011a021Google ScholarThere is no corresponding record for this reference.
- 21Fischer, R.; Müller, B. G. Die Kristallstruktur von AgIIF[AgIIIF4]. Z. Anorg. Allg. Chem. 2002, 628 (12), 2592– 2596, DOI: 10.1002/1521-3749(200212)628:12<2592::AID-ZAAC2592>3.0.CO;2-OGoogle ScholarThere is no corresponding record for this reference.
- 22Graudejus, O.; Wilkinson, A. P.; Bartlett, N. Structural Features of Ag[AuF4] and Ag[AuF6] and the Structural Relationship of Ag[AgF4]2 and Au[AuF4]2 to Ag[AuF4]2. Inorg. Chem. 2000, 39 (7), 1545– 1548, DOI: 10.1021/ic991178tGoogle Scholar22https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD3cXhsFyiurY%253D&md5=7780fafd6459cd4720167cbf2a8ba8d2Structural Features of Ag[AuF4] and Ag[AuF6] and the Structural Relationship of Ag[AgF4]2 and Au[AuF4]2 to Ag[AuF4]2Graudejus, Oliver; Wilkinson, Angus P.; Bartlett, NeilInorganic Chemistry (2000), 39 (7), 1545-1548CODEN: INOCAJ; ISSN:0020-1669. (American Chemical Society)Synchrotron radiation x-ray powder diffraction data (SPDD) were obtained for Ag[AgF4]2, Au[AuF4]2, Ag[AuF4], and Ag[AuF6]. Ag[AgF4]2 and Au[AuF4]2 are isostructural with Ag[AuF4]2, space group P21/n, Z = 2, with the following: for Ag[AgF4]2 a 5.04664(8), b 11.0542(2), c 5.44914(9) Å, β 97.170(2)°; for Au[AuF4]2 a 5.203(2), b 11.186(3), c 5.531(2) Å, β 90.55(2)°. The structure of Ag[AgF4]2 was refined successfully (SPDD) applying the Rietveld method, yielding the following interat. distances (Å): AgII-F 2.056(12), 2.200(13), 2.558(13); AgIII-F two at 1.846(12), others at 1.887(12), 1.909(13), 2.786(12), 2.796(12), 2.855(12). AgAuF4, like other AA'F4 salts (A = Na-Rb; A' = Ag, Au), crystallizes in the KBrF4 structure type, space group I4/mcm, Z = 4 with a 5.79109(6), c 10.81676(7) Å. SPDD gave (in Å) four AuIII-F 1.89(1) and eight AgI-F 2.577(7). SPDD for AgAuF6 confirmed that it has the LiSbF6 structure, space group R‾3, Z = 3, with a 5.2840(2), c 15.0451(6) Å.
- 23Grochala, W. On possible existence of pseudobinary mixed valence fluorides of Ag(I)/Ag(II): a DFT study. J. Mol. Model. 2011, 17, 2237– 2248, DOI: 10.1007/s00894-010-0949-4Google ScholarThere is no corresponding record for this reference.
- 24Kurzydłowski, D.; Derzsi, M.; Zurek, E.; Grochala, W. Fluorides of silver under large compression. Chem.─Eur. J. 2021, 27 (17), 5536– 5545, DOI: 10.1002/chem.202100028Google ScholarThere is no corresponding record for this reference.
- 25Rybin, N.; Chepkasov, I.; Novoselov, D. Y.; Anisimov, V. I.; Oganov, A. R. Prediction of Stable Silver Fluorides. J. Phys. Chem. C 2022, 126 (35), 15057– 15063, DOI: 10.1021/acs.jpcc.2c04785Google ScholarThere is no corresponding record for this reference.
- 26Babel, D. Untersuchungen an ternären Fluoriden. III. Die Struktur des Na2CuF4. Z. Anorg. Allg. Chem. 1965, 336 (3–4), 200– 206, DOI: 10.1002/zaac.19653360310Google ScholarThere is no corresponding record for this reference.
- 27Kurzydłowski, D.; Derzsi, M.; Budzianowski, A.; Jagličić, Z.; Koźmiński, W.; Mazej, Z.; Grochala, W. Polymorphism of Fluoroargentates(II): Facile Collapse of a Layered Network of α-K2AgF4 Due to the Insufficient Size of the Potassium Cation. Eur. J. Inorg. Chem. 2010, (19), 2919– 2925, DOI: 10.1002/ejic.201000124Google ScholarThere is no corresponding record for this reference.
- 28Baláž, P.; Achimovičová, M.; Baláž, M.; Billik, P.; Cherkezova-Zheleva, Z.; Criado, J. M.; Delogu, F.; Dutková, E.; Gaffet, E.; Gotor, F. J.; Kumar, R.; Mitov, I.; Rojac, T.; Senna, M.; Streletskii, A.; Wieczorek-Ciurowa, K. Hallmarks of mechanochemistry: from nanoparticles to technology. Chem. Soc. Rev. 2013, 42 (18), 7571– 7637, DOI: 10.1039/C3CS35468GGoogle Scholar28https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3sXht1ylsrjI&md5=2bb199896014855830b891ea50ac1979Hallmarks of mechanochemistry: from nanoparticles to technologyBalaz, Peter; Achimovicova, Marcela; Balaz, Matej; Billik, Peter; Cherkezova-Zheleva, Zara; Criado, Jose Manuel; Delogu, Francesco; Dutkova, Erika; Gaffet, Eric; Gotor, Francisco Jose; Kumar, Rakesh; Mitov, Ivan; Rojac, Tadej; Senna, Mamoru; Streletskii, Andrey; Wieczorek-Ciurowa, KrystynaChemical Society Reviews (2013), 42 (18), 7571-7637CODEN: CSRVBR; ISSN:0306-0012. (Royal Society of Chemistry)The aim of this review article on recent developments of mechanochem. (nowadays established as a part of chem.) is to provide a comprehensive overview of advances achieved in the field of atomistic processes, phase transformations, simple and multicomponent nanosystems and peculiarities of mechanochem. reactions. Industrial aspects with successful penetration into fields like materials engineering, heterogeneous catalysis and extractive metallurgy are also reviewed. The hallmarks of mechanochem. include influencing reactivity of solids by the presence of solid-state defects, interphases and relaxation phenomena, enabling processes to take place under non-equil. conditions, creating a well-crystd. core of nanoparticles with disordered near-surface shell regions and performing simple dry time-convenient one-step syntheses. Underlying these hallmarks are technol. consequences like prepg. new nanomaterials with the desired properties or producing these materials in a reproducible way with high yield and under simple and easy operating conditions. The last but not least hallmark is enabling work under environmentally friendly and essentially waste-free conditions (822 refs.).
- 29Tan, D.; Garcia, F. Main group mechanochemistry: from curiosity to established protocols. Chem. Soc. Rev. 2019, 48 (8), 2274– 2292, DOI: 10.1039/C7CS00813AGoogle Scholar29https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC1MXmtFKns7Y%253D&md5=2f2bff74bb2c913277b82f709381f603Main group mechanochemistry: from curiosity to established protocolsTan, Davin; Garcia, FelipeChemical Society Reviews (2019), 48 (8), 2274-2292CODEN: CSRVBR; ISSN:0306-0012. (Royal Society of Chemistry)In the last few decades, mechanochem. has become rapidly established as a powerful tool enabling environmentally-benign and sustainable chem. syntheses. Not only have these techniques been demonstrated as viable alternatives to traditional soln.-based syntheses, but they have also received attention for their ability to enable new reactivity and "unlocking" novel compds. inaccessible by conventional methods. Reflecting the rising popularity of mechanochem., many excellent reviews highlighting its benefits have recently been published. While the scope of most of these focuses on org. chem., transition-metal catalysis, porous framework materials, coordination compds. and supramol. synthesis, few have addressed the use of mechanochem. ball milling for the synthesis of compds. contg. s- and p-block elements. This tutorial review turns the spotlight towards mechanochem. research in the field of inorg. main group chem., highlighting significant advantages that solid-state inorg. reactions often possess, and the potential for these to drive the development of greener methodologies within the modern main group arena.
- 30Friščić, T.; Mottillo, C.; Titi, H. M. Mechanochemistry for Synthesis. Angew. Chem., Int. Ed. 2020, 59 (3), 1018– 1029, DOI: 10.1002/anie.201906755Google Scholar30https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC1MXhvVCmsLjO&md5=de42be473de70f6c5eafcc8ad55b419aMechanochemistry for SynthesisFriscic, Tomislav; Mottillo, Cristina; Titi, Hatem M.Angewandte Chemie, International Edition (2020), 59 (3), 1018-1029CODEN: ACIEF5; ISSN:1433-7851. (Wiley-VCH Verlag GmbH & Co. KGaA)A review. Mechanochem. solvent-free reactions by milling, grinding or other types of mech. action have emerged as a viable alternative to soln. chem. Mechanochem. offers not only a possibility to eliminate the need for bulk solvent use, and reduce the generation of waste, but it also unlocks the door to a different reaction environment in which synthetic strategies, reactions and mols. previously not accessible in soln., can be achieved. This Minireview examines the potential of mechanochem. in chem. and materials synthesis, by providing a cross-section of the recent developments in using ball milling for the formation of mols. and materials based on covalent and coordination bonds.
- 31Martinez, V.; Stolar, T.; Karadeniz, B.; Brekalo, I.; Užarević, K. Advancing mechanochemical synthesis by combining milling with different energy sources. Nat. Rev. Chem 2023, 7, 51– 65, DOI: 10.1038/s41570-022-00442-1Google Scholar31https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BB38XivFGnsLzJ&md5=b83a9f7821ba8ad6605c1b28c21987abAdvancing mechanochemical synthesis by combining milling with different energy sourcesMartinez, Valentina; Stolar, Tomislav; Karadeniz, Bahar; Brekalo, Ivana; Uzarevic, KrunoslavNature Reviews Chemistry (2023), 7 (1), 51-65CODEN: NRCAF7; ISSN:2397-3358. (Nature Portfolio)A review. Owing to its efficiency and unique reactivity, mechanochem. processing of bulk solids has developed into a powerful tool for the synthesis and transformation of various classes of materials. Nevertheless, mechanochem. is primarily based on simple techniques, such as milling in comminution devices. Recently, mechanochem. reactivity has started being combined with other energy sources commonly used in soln.-based chem. Milling under controlled temp., light irradn., sound agitation or elec. impulses in newly developed exptl. setups has led to reactions not achievable by conventional mechanochem. processing. This Perspective describes these unique reactivities and the advances in equipment tailored to synthetic mechanochem. These techniques - thermo-mechanochem., sono-mechanochem., electro-mechanochem. and photo-mechanochem. - represent a notable advance in modern mechanochem. and herald a new level of solid-state reactivity: mechanochem. 2.0.
- 32Šepelák, V.; Düvel, A.; Wilkening, M.; Becker, K. D.; Heitjans, P. Mechanochemical reactions and syntheses of oxides. Chem. Soc. Rev. 2013, 42 (18), 7507– 7520, DOI: 10.1039/c2cs35462dGoogle Scholar32https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3sXht1ylsrjE&md5=7e80a19f8e2c69ae644832f5bd20731cMechanochemical reactions and syntheses of oxidesSepelak, Vladimir; Duevel, Andre; Wilkening, Martin; Becker, Klaus-Dieter; Heitjans, PaulChemical Society Reviews (2013), 42 (18), 7507-7520CODEN: CSRVBR; ISSN:0306-0012. (Royal Society of Chemistry)A review. Technol. and scientific challenges coupled with environmental considerations have prompted a search for simple and energy-efficient syntheses and processing routes of materials. This tutorial review provides an overview of recent research efforts in non-conventional reactions and syntheses of oxides induced by mech. action. It starts with a brief account of the history of mechanochem. Ensuing discussions will review the progress in homogeneous and heterogeneous mechanochem. reactions in oxides of various structures. It is demonstrated that the event of mech. induced reactions provides novel opportunities for the non-thermal manipulation of materials and for the tailoring of their properties.
- 33Preishuber-Pflügl, F.; Wilkening, M. Mechanochemically synthesized fluorides: local structures and ion transport. Dalton Trans. 2016, 45 (21), 8675– 8687, DOI: 10.1039/C6DT00944AGoogle ScholarThere is no corresponding record for this reference.
- 34Ruprecht, B.; Wilkening, M.; Feldhoff, A.; Steuernagel, S.; Heitjans, P. High anion conductivity in a ternary non-equilibrium phase of BaF2 and CaF2 with mixed cations. Phys. Chem. Chem. Phys. 2009, 11 (17), 3071– 3081, DOI: 10.1039/b901293aGoogle ScholarThere is no corresponding record for this reference.
- 35Kurzydłowski, D.; Jaroń, T.; Ozarowski, A.; Hill, S.; Jagličić, Z.; Filinchuk, Y.; Mazej, Z.; Grochala, W. Local and Cooperative Jahn–Teller Effect and Resultant Magnetic Properties of M2AgF4 (M = Na–Cs) Phases. Inorg. Chem. 2016, 55 (21), 11479– 11489, DOI: 10.1021/acs.inorgchem.6b02037Google ScholarThere is no corresponding record for this reference.
- 36Lozinšek, M.; Goreshnik, G.; Žemva, B. Silver(I) Tetrafluoridooxidovanadate(V) – Ag[VOF4]. Acta Chim. Slov. 2014, 61 (3), 542– 547Google ScholarThere is no corresponding record for this reference.
- 37Brown, I. D. Recent Developments in the Methods and Applications of the Bond Valence Model. Chem. Rev. 2009, 109 (12), 6858– 6919, DOI: 10.1021/cr900053kGoogle Scholar37https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1MXhtV2mtbfI&md5=1d9308f078590b5864b2e82e3e641fcfRecent Developments in the Methods and Applications of the Bond Valence ModelBrown, Ian DavidChemical Reviews (Washington, DC, United States) (2009), 109 (12), 6858-6919CODEN: CHREAY; ISSN:0009-2665. (American Chemical Society)A review. The following topics are discussed: derivation of the bond valence model, relationship with structural models, bond valence as measure of energy, bond valence-bond length correlation, distorted ion environments (electronic, lone-pair, and steric distortions, crystal field effects), bond valence vectors, valence maps and ionic conduction, valence matching rule, homopolar bonds, charge distribution, incommensurate structures; perovskites, minerals, glasses, interfaces, biol. systems.
- 38Gawraczyński, J. Optical Spectroscopy of Selected Divalent Silver Compounds. Ph.D. Dissertation, University of Warsaw, 2019.Google ScholarThere is no corresponding record for this reference.
- 39Bonner, J. C.; Fisher, M. E. Linear Magnetic Chains with Anisotropic Coupling. Phys. Rev. 1964, 135 (3A), A640– A658, DOI: 10.1103/PhysRev.135.A640Google ScholarThere is no corresponding record for this reference.
- 40Tong, J.; Lee, C.; Whangbo, M. H.; Kremer, R. K.; Simon, A.; Köhler, J. Cooperative Jahn–Teller distortion leading to the spin-1/2 uniform antiferromagnetic chains in triclinic perovskites AgCuF3 and NaCuF3. Solid State Sci. 2010, 12 (5), 680– 684, DOI: 10.1016/j.solidstatesciences.2009.02.028Google ScholarThere is no corresponding record for this reference.
- 41Odenthal, R. H.; Hoppe, R. Fluoroargentate(II) der Alkalimetalle. Monatsh. Chem. 1971, 102, 1340– 1350, DOI: 10.1007/BF00917190Google ScholarThere is no corresponding record for this reference.
- 42Kaiser, V.; Otto, M.; Binder, F.; Babel, D. Jahn-Teller-Effekt und Kristallstruktur-Verzerrung bei den Kupfer-Fluorperowskiten NaCuF3 und RbCuF3. Z. Anorg. Allg. Chem. 1990, 585 (1), 93– 104, DOI: 10.1002/zaac.19905850112Google ScholarThere is no corresponding record for this reference.
- 43Mazej, Z.; Goreshnik, E.; Jagličić, Z.; Gaweł, B.; Łasocha, W.; Grzybowska, D.; Jaroń, T.; Kurzydłowski, D.; Malinowski, P.; Koźminski, W.; Szydłowska, J.; Leszczyński, P.; Grochala, W. KAgF3, K2AgF4 and K3Ag2F7: important steps towards a layered antiferromagnetic fluoroargentate(II). CrystEngComm 2009, 11 (8), 1702– 1710, DOI: 10.1039/B902161BGoogle Scholar43https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1MXhsVSks7%252FI&md5=e805c29e52e93b39c85b1b71566a6767KAgF3, K2AgF4 and K3Ag2F7: important steps towards a layered antiferromagnetic fluoroargentate(II)Mazej, Zoran; Goreshnik, Evgeny; Jaglicic, Zvonko; Gawel, Bartlomiej; Lasocha, Wieslaw; Grzybowska, Dorota; Jaron, Tomasz; Kurzydlowski, Dominik; Malinowski, Przemyslaw; Kozminski, Wiktor; Szydlowska, Jadwiga; Leszczynski, Piotr; Grochala, WojciechCrystEngComm (2009), 11 (8), 1702-1710CODEN: CRECF4; ISSN:1466-8033. (Royal Society of Chemistry)Crystal structure and magnetic properties of K2AgF4, related to recently studied Cs2AgF4, have been scrutinized. It crystallizes orthorhombic (Cmca No.64) with a = 6.182(3) A, b = 12.632(5) A, c = 6.436(3) A (Z = 4, V = 502.6(7) A3). K2AgF4 exhibits slightly puckered [AgF2] sheets and a compressed octahedral coordination of Ag(II) and it is not isostructural to related Cs2AgF4. Violet-colored K2AgF4 orders ferromagnetically below 26 K. The DFT calcns. reproduce semiconducting properties and ferromagnetism of K2AgF4 at the LSDA + U level but only if substantial values of Mott-Hubbard on-site electron-electron repulsion energies for Ag and F are used in calcns. We have also succeeded to solve the crystal structure of a brown KAgF3 (1D antiferromagnet below 64 K; GdFeO3-type, Pnma No. 62, a = 6.2689(2) A, b = 8.3015(2) A, c = 6.1844(2) A, Z = 4, V = 321.84(2) A3) and to prep. K3Ag2F7, a novel KAgF3/K2AgF4 intergrowth phase and a member of the Ruddlsden-Popper KnAgFn + 2 series (n = 1.5). Dark brown K3Ag2F7 crystallizes orthorhombic (K3Cu2Cl7-type, Ccca No. 68, setting 2) with a = 20.8119(14) A, b = 6.3402(4) A, c = 6.2134(4) A (Z = 4, V = 819.87(9) A3).
- 44Kurzydłowski, D.; Mazej, Z.; Jagličić, Z.; Filinchuk, Y.; Grochala, W. Structural transition and unusually strong antiferromagnetic superexchange coupling in perovskite KAgF3. Chem. Commun. 2013, 49 (56), 6262– 6264, DOI: 10.1039/c3cc41521jGoogle ScholarThere is no corresponding record for this reference.
Cited By
This article has not yet been cited by other publications.
Article Views
Altmetric
Citations
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles
References
This article references 44 other publications.
- 1Broholm, C.; Cava, R. J.; Kivelson, S. A.; Nocera, D. G.; Norman, M. R.; Senthil, T. Quantum spin liquids. Science 2020, 367 (6475), eaay0668 DOI: 10.1126/science.aay0668There is no corresponding record for this reference.
- 2Anderson, P. W. The Resonating Valence Bond State in La2CuO4 and Superconductivity. Science 1987, 235 (4793), 1196– 1198, DOI: 10.1126/science.235.4793.11962https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADyaL2sXitVKjurs%253D&md5=7179bd3803d22dec4ce4214143242b92The resonating valence bond state in lanthanum copper oxide (La2CuO4) and superconductivityAnderson, P. W.Science (Washington, DC, United States) (1987), 235 (4793), 1196-8CODEN: SCIEAS; ISSN:0036-8075.The oxide superconductors, particularly those recently discovered that are based on La2CuO4, have a set of peculiarities that suggest a common, unique mechanism: they tend in every case to occur near a metal-insulator transition into an odd-electron insulator with peculiar magnetic properties. This insulating phase may be the long-sought "resonating-valence-bond" state or "quantum spin liq.". This insulating magnetic phase is favored by low spin, low dimensionality, and magnetic frustration. The pre-existing magnetic singlet pairs of the insulating state become charged superconducting pairs when the insulator is doped sufficiently strongly. The mechanism for supercond. is hence predominantly electronic and magnetic, although weak phonon interactions may favor the state. Many unusual properties are predicted, esp. of the insulating state.
- 3Grochala, W.; Hoffmann, R. Real and Hypothetical Intermediate-Valence AgII/AgIII and AgII/AgI Fluoride Systems as Potential Superconductors. Angew. Chem., Int. Ed. 2001, 40 (15), 2742– 2781, DOI: 10.1002/1521-3773(20010803)40:15<2742::AID-ANIE2742>3.0.CO;2-XThere is no corresponding record for this reference.
- 4Grochala, W. The theory-driven quest for a novel family of superconductors: fluorides. J. Mater. Chem. 2009, 19 (38), 6949– 6968, DOI: 10.1039/b904204kThere is no corresponding record for this reference.
- 5Žemva, B.; Hagiwara, R.; Casteel, W. J.; Lutar, K.; Jesih, A.; Bartlett, N. Spontaneous oxidation of xenon to Xe(II) by cationic Ag(II) in anhydrous hydrogen fluoride solutions. J. Am. Chem. Soc. 1990, 112 (12), 4846– 4849, DOI: 10.1021/ja00168a032There is no corresponding record for this reference.
- 6Žemva, B. Protonic superacid anhydrous hydrogen fluoride as a solvent in the chemistry of high oxidation states. C. R. Acad. Sci., Ser. IIc: Chim. 1998, 1 (3), 151– 156, DOI: 10.1016/S1387-1609(99)80073-5There is no corresponding record for this reference.
- 7Grochala, W. Silverland: the Realm of Compounds of Divalent Silver─and Why They are Interesting. J. Supercond. Novel Magn. 2018, 31, 737– 752, DOI: 10.1007/s10948-017-4326-8There is no corresponding record for this reference.
- 8Gawraczyński, J.; Kurzydłowski, D.; Ewings, R. A.; Bandaru, S.; Gadomski, W.; Mazej, Z.; Ruani, G.; Bergenti, I.; Jaroń, T.; Ozarowski, A.; Hill, S.; Leszczyński, P. J.; Tokár, K.; Derzsi, M.; Barone, P.; Wohlfeld, K.; Lorenzana, J.; Grochala, W. Silver route to cuprate analogs. Proc. Natl. Acad. Sci. U.S.A. 2019, 116 (5), 1495– 1500, DOI: 10.1073/pnas.1812857116There is no corresponding record for this reference.
- 9Grochala, W.; Egdell, R. G.; Edwards, P. P.; Mazej, Z.; Žemva, B. On the Covalency of Silver–Fluorine Bonds in Compounds of Silver(I), Silver(II) and Silver(III). ChemPhysChem 2003, 4 (9), 997– 1001, DOI: 10.1002/cphc.200300777There is no corresponding record for this reference.
- 10Bachar, N.; Koteras, K.; Gawraczynski, J.; Trzciński, W.; Paszula, J.; Piombo, R.; Barone, P.; Mazej, Z.; Ghiringhelli, G.; Nag, A.; Zhou, K.-J.; Lorenzana, J.; Van Der Marel, D.; Grochala, W. Charge-Transfer and dd excitations in AgF2. Phys. Rev. Res. 2022, 4 (2), 023108, DOI: 10.1103/PhysRevResearch.4.023108There is no corresponding record for this reference.
- 11Hettich, A. Über die Natur von Silbersubfluorid. Z. Anorg. Allg. Chem. 1927, 167 (1), 67– 74, DOI: 10.1002/zaac.19271670106There is no corresponding record for this reference.
- 12Terrey, H.; Diamond, H. The Crystal Structure of Silver Subfluoride. J. Chem. Soc. 1928, 2820– 2824, DOI: 10.1039/JR9280002820There is no corresponding record for this reference.
- 13Andres, K.; Kuebler, N. A.; Robin, M. B. Superconductivity in Ag2F. J. Phys. Chem. Solids 1966, 27 (11–12), 1747– 1748, DOI: 10.1016/0022-3697(66)90104-1There is no corresponding record for this reference.
- 14Ott, H. Die Strukturen von MnO, MnS, AgF, NiS, SnJ4, SrCl2, BaF2; Präzisionsmessungen einiger Alkalihalogenide. Z. Kristallogr. 1926, 63 (1–6), 222– 230, DOI: 10.1524/zkri.1926.63.1.222There is no corresponding record for this reference.
- 15Lozinšek, M.; Belak Vivod, M.; Dragomir, M. Crystal structure reinvestigation of silver(I) fluoride, AgF. IUCrData 2023, 8, x230018, DOI: 10.1107/S2414314623000184There is no corresponding record for this reference.
- 16Ebert, M. S.; Rodowskas, E. L.; Frazer, J. C. W. Higher valence states of silver. J. Am. Chem. Soc. 1933, 55 (7), 3056– 3057, DOI: 10.1021/ja01334a514There is no corresponding record for this reference.
- 17Ruff, O.; Giese, M. Die Fluorierung des Silbers und Kupfers. Z. Anorg. Allg. Chem. 1934, 219 (2), 143– 148, DOI: 10.1002/zaac.19342190206There is no corresponding record for this reference.
- 18Jesih, A.; Lutar, K.; Žemva, B.; Bachmann, B.; Becker, S.; Müller, B. G.; Hoppe, R. Einkristalluntersuchungen an AgF2. Z. Anorg. Allg. Chem. 1990, 588 (1), 77– 83, DOI: 10.1002/zaac.19905880110There is no corresponding record for this reference.
- 19Bougon, R.; Bui Huy, T.; Lance, M.; Abazli, H. Synthesis and Properties of Silver Trifluoride, AgF3. Inorg. Chem. 1984, 23 (22), 3667– 3668, DOI: 10.1021/ic00190a049There is no corresponding record for this reference.
- 20Žemva, B.; Lutar, K.; Jesih, A.; Casteel, W. J.; Wilkinson, A. P.; Cox, D. E.; von Dreele, R. B.; Borrmann, H.; Bartlett, N. Silver trifluoride: preparation, crystal structure, some properties, and comparison with AuF3. J. Am. Chem. Soc. 1991, 113 (11), 4192– 4198, DOI: 10.1021/ja00011a021There is no corresponding record for this reference.
- 21Fischer, R.; Müller, B. G. Die Kristallstruktur von AgIIF[AgIIIF4]. Z. Anorg. Allg. Chem. 2002, 628 (12), 2592– 2596, DOI: 10.1002/1521-3749(200212)628:12<2592::AID-ZAAC2592>3.0.CO;2-OThere is no corresponding record for this reference.
- 22Graudejus, O.; Wilkinson, A. P.; Bartlett, N. Structural Features of Ag[AuF4] and Ag[AuF6] and the Structural Relationship of Ag[AgF4]2 and Au[AuF4]2 to Ag[AuF4]2. Inorg. Chem. 2000, 39 (7), 1545– 1548, DOI: 10.1021/ic991178t22https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD3cXhsFyiurY%253D&md5=7780fafd6459cd4720167cbf2a8ba8d2Structural Features of Ag[AuF4] and Ag[AuF6] and the Structural Relationship of Ag[AgF4]2 and Au[AuF4]2 to Ag[AuF4]2Graudejus, Oliver; Wilkinson, Angus P.; Bartlett, NeilInorganic Chemistry (2000), 39 (7), 1545-1548CODEN: INOCAJ; ISSN:0020-1669. (American Chemical Society)Synchrotron radiation x-ray powder diffraction data (SPDD) were obtained for Ag[AgF4]2, Au[AuF4]2, Ag[AuF4], and Ag[AuF6]. Ag[AgF4]2 and Au[AuF4]2 are isostructural with Ag[AuF4]2, space group P21/n, Z = 2, with the following: for Ag[AgF4]2 a 5.04664(8), b 11.0542(2), c 5.44914(9) Å, β 97.170(2)°; for Au[AuF4]2 a 5.203(2), b 11.186(3), c 5.531(2) Å, β 90.55(2)°. The structure of Ag[AgF4]2 was refined successfully (SPDD) applying the Rietveld method, yielding the following interat. distances (Å): AgII-F 2.056(12), 2.200(13), 2.558(13); AgIII-F two at 1.846(12), others at 1.887(12), 1.909(13), 2.786(12), 2.796(12), 2.855(12). AgAuF4, like other AA'F4 salts (A = Na-Rb; A' = Ag, Au), crystallizes in the KBrF4 structure type, space group I4/mcm, Z = 4 with a 5.79109(6), c 10.81676(7) Å. SPDD gave (in Å) four AuIII-F 1.89(1) and eight AgI-F 2.577(7). SPDD for AgAuF6 confirmed that it has the LiSbF6 structure, space group R‾3, Z = 3, with a 5.2840(2), c 15.0451(6) Å.
- 23Grochala, W. On possible existence of pseudobinary mixed valence fluorides of Ag(I)/Ag(II): a DFT study. J. Mol. Model. 2011, 17, 2237– 2248, DOI: 10.1007/s00894-010-0949-4There is no corresponding record for this reference.
- 24Kurzydłowski, D.; Derzsi, M.; Zurek, E.; Grochala, W. Fluorides of silver under large compression. Chem.─Eur. J. 2021, 27 (17), 5536– 5545, DOI: 10.1002/chem.202100028There is no corresponding record for this reference.
- 25Rybin, N.; Chepkasov, I.; Novoselov, D. Y.; Anisimov, V. I.; Oganov, A. R. Prediction of Stable Silver Fluorides. J. Phys. Chem. C 2022, 126 (35), 15057– 15063, DOI: 10.1021/acs.jpcc.2c04785There is no corresponding record for this reference.
- 26Babel, D. Untersuchungen an ternären Fluoriden. III. Die Struktur des Na2CuF4. Z. Anorg. Allg. Chem. 1965, 336 (3–4), 200– 206, DOI: 10.1002/zaac.19653360310There is no corresponding record for this reference.
- 27Kurzydłowski, D.; Derzsi, M.; Budzianowski, A.; Jagličić, Z.; Koźmiński, W.; Mazej, Z.; Grochala, W. Polymorphism of Fluoroargentates(II): Facile Collapse of a Layered Network of α-K2AgF4 Due to the Insufficient Size of the Potassium Cation. Eur. J. Inorg. Chem. 2010, (19), 2919– 2925, DOI: 10.1002/ejic.201000124There is no corresponding record for this reference.
- 28Baláž, P.; Achimovičová, M.; Baláž, M.; Billik, P.; Cherkezova-Zheleva, Z.; Criado, J. M.; Delogu, F.; Dutková, E.; Gaffet, E.; Gotor, F. J.; Kumar, R.; Mitov, I.; Rojac, T.; Senna, M.; Streletskii, A.; Wieczorek-Ciurowa, K. Hallmarks of mechanochemistry: from nanoparticles to technology. Chem. Soc. Rev. 2013, 42 (18), 7571– 7637, DOI: 10.1039/C3CS35468G28https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3sXht1ylsrjI&md5=2bb199896014855830b891ea50ac1979Hallmarks of mechanochemistry: from nanoparticles to technologyBalaz, Peter; Achimovicova, Marcela; Balaz, Matej; Billik, Peter; Cherkezova-Zheleva, Zara; Criado, Jose Manuel; Delogu, Francesco; Dutkova, Erika; Gaffet, Eric; Gotor, Francisco Jose; Kumar, Rakesh; Mitov, Ivan; Rojac, Tadej; Senna, Mamoru; Streletskii, Andrey; Wieczorek-Ciurowa, KrystynaChemical Society Reviews (2013), 42 (18), 7571-7637CODEN: CSRVBR; ISSN:0306-0012. (Royal Society of Chemistry)The aim of this review article on recent developments of mechanochem. (nowadays established as a part of chem.) is to provide a comprehensive overview of advances achieved in the field of atomistic processes, phase transformations, simple and multicomponent nanosystems and peculiarities of mechanochem. reactions. Industrial aspects with successful penetration into fields like materials engineering, heterogeneous catalysis and extractive metallurgy are also reviewed. The hallmarks of mechanochem. include influencing reactivity of solids by the presence of solid-state defects, interphases and relaxation phenomena, enabling processes to take place under non-equil. conditions, creating a well-crystd. core of nanoparticles with disordered near-surface shell regions and performing simple dry time-convenient one-step syntheses. Underlying these hallmarks are technol. consequences like prepg. new nanomaterials with the desired properties or producing these materials in a reproducible way with high yield and under simple and easy operating conditions. The last but not least hallmark is enabling work under environmentally friendly and essentially waste-free conditions (822 refs.).
- 29Tan, D.; Garcia, F. Main group mechanochemistry: from curiosity to established protocols. Chem. Soc. Rev. 2019, 48 (8), 2274– 2292, DOI: 10.1039/C7CS00813A29https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC1MXmtFKns7Y%253D&md5=2f2bff74bb2c913277b82f709381f603Main group mechanochemistry: from curiosity to established protocolsTan, Davin; Garcia, FelipeChemical Society Reviews (2019), 48 (8), 2274-2292CODEN: CSRVBR; ISSN:0306-0012. (Royal Society of Chemistry)In the last few decades, mechanochem. has become rapidly established as a powerful tool enabling environmentally-benign and sustainable chem. syntheses. Not only have these techniques been demonstrated as viable alternatives to traditional soln.-based syntheses, but they have also received attention for their ability to enable new reactivity and "unlocking" novel compds. inaccessible by conventional methods. Reflecting the rising popularity of mechanochem., many excellent reviews highlighting its benefits have recently been published. While the scope of most of these focuses on org. chem., transition-metal catalysis, porous framework materials, coordination compds. and supramol. synthesis, few have addressed the use of mechanochem. ball milling for the synthesis of compds. contg. s- and p-block elements. This tutorial review turns the spotlight towards mechanochem. research in the field of inorg. main group chem., highlighting significant advantages that solid-state inorg. reactions often possess, and the potential for these to drive the development of greener methodologies within the modern main group arena.
- 30Friščić, T.; Mottillo, C.; Titi, H. M. Mechanochemistry for Synthesis. Angew. Chem., Int. Ed. 2020, 59 (3), 1018– 1029, DOI: 10.1002/anie.20190675530https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC1MXhvVCmsLjO&md5=de42be473de70f6c5eafcc8ad55b419aMechanochemistry for SynthesisFriscic, Tomislav; Mottillo, Cristina; Titi, Hatem M.Angewandte Chemie, International Edition (2020), 59 (3), 1018-1029CODEN: ACIEF5; ISSN:1433-7851. (Wiley-VCH Verlag GmbH & Co. KGaA)A review. Mechanochem. solvent-free reactions by milling, grinding or other types of mech. action have emerged as a viable alternative to soln. chem. Mechanochem. offers not only a possibility to eliminate the need for bulk solvent use, and reduce the generation of waste, but it also unlocks the door to a different reaction environment in which synthetic strategies, reactions and mols. previously not accessible in soln., can be achieved. This Minireview examines the potential of mechanochem. in chem. and materials synthesis, by providing a cross-section of the recent developments in using ball milling for the formation of mols. and materials based on covalent and coordination bonds.
- 31Martinez, V.; Stolar, T.; Karadeniz, B.; Brekalo, I.; Užarević, K. Advancing mechanochemical synthesis by combining milling with different energy sources. Nat. Rev. Chem 2023, 7, 51– 65, DOI: 10.1038/s41570-022-00442-131https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BB38XivFGnsLzJ&md5=b83a9f7821ba8ad6605c1b28c21987abAdvancing mechanochemical synthesis by combining milling with different energy sourcesMartinez, Valentina; Stolar, Tomislav; Karadeniz, Bahar; Brekalo, Ivana; Uzarevic, KrunoslavNature Reviews Chemistry (2023), 7 (1), 51-65CODEN: NRCAF7; ISSN:2397-3358. (Nature Portfolio)A review. Owing to its efficiency and unique reactivity, mechanochem. processing of bulk solids has developed into a powerful tool for the synthesis and transformation of various classes of materials. Nevertheless, mechanochem. is primarily based on simple techniques, such as milling in comminution devices. Recently, mechanochem. reactivity has started being combined with other energy sources commonly used in soln.-based chem. Milling under controlled temp., light irradn., sound agitation or elec. impulses in newly developed exptl. setups has led to reactions not achievable by conventional mechanochem. processing. This Perspective describes these unique reactivities and the advances in equipment tailored to synthetic mechanochem. These techniques - thermo-mechanochem., sono-mechanochem., electro-mechanochem. and photo-mechanochem. - represent a notable advance in modern mechanochem. and herald a new level of solid-state reactivity: mechanochem. 2.0.
- 32Šepelák, V.; Düvel, A.; Wilkening, M.; Becker, K. D.; Heitjans, P. Mechanochemical reactions and syntheses of oxides. Chem. Soc. Rev. 2013, 42 (18), 7507– 7520, DOI: 10.1039/c2cs35462d32https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3sXht1ylsrjE&md5=7e80a19f8e2c69ae644832f5bd20731cMechanochemical reactions and syntheses of oxidesSepelak, Vladimir; Duevel, Andre; Wilkening, Martin; Becker, Klaus-Dieter; Heitjans, PaulChemical Society Reviews (2013), 42 (18), 7507-7520CODEN: CSRVBR; ISSN:0306-0012. (Royal Society of Chemistry)A review. Technol. and scientific challenges coupled with environmental considerations have prompted a search for simple and energy-efficient syntheses and processing routes of materials. This tutorial review provides an overview of recent research efforts in non-conventional reactions and syntheses of oxides induced by mech. action. It starts with a brief account of the history of mechanochem. Ensuing discussions will review the progress in homogeneous and heterogeneous mechanochem. reactions in oxides of various structures. It is demonstrated that the event of mech. induced reactions provides novel opportunities for the non-thermal manipulation of materials and for the tailoring of their properties.
- 33Preishuber-Pflügl, F.; Wilkening, M. Mechanochemically synthesized fluorides: local structures and ion transport. Dalton Trans. 2016, 45 (21), 8675– 8687, DOI: 10.1039/C6DT00944AThere is no corresponding record for this reference.
- 34Ruprecht, B.; Wilkening, M.; Feldhoff, A.; Steuernagel, S.; Heitjans, P. High anion conductivity in a ternary non-equilibrium phase of BaF2 and CaF2 with mixed cations. Phys. Chem. Chem. Phys. 2009, 11 (17), 3071– 3081, DOI: 10.1039/b901293aThere is no corresponding record for this reference.
- 35Kurzydłowski, D.; Jaroń, T.; Ozarowski, A.; Hill, S.; Jagličić, Z.; Filinchuk, Y.; Mazej, Z.; Grochala, W. Local and Cooperative Jahn–Teller Effect and Resultant Magnetic Properties of M2AgF4 (M = Na–Cs) Phases. Inorg. Chem. 2016, 55 (21), 11479– 11489, DOI: 10.1021/acs.inorgchem.6b02037There is no corresponding record for this reference.
- 36Lozinšek, M.; Goreshnik, G.; Žemva, B. Silver(I) Tetrafluoridooxidovanadate(V) – Ag[VOF4]. Acta Chim. Slov. 2014, 61 (3), 542– 547There is no corresponding record for this reference.
- 37Brown, I. D. Recent Developments in the Methods and Applications of the Bond Valence Model. Chem. Rev. 2009, 109 (12), 6858– 6919, DOI: 10.1021/cr900053k37https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1MXhtV2mtbfI&md5=1d9308f078590b5864b2e82e3e641fcfRecent Developments in the Methods and Applications of the Bond Valence ModelBrown, Ian DavidChemical Reviews (Washington, DC, United States) (2009), 109 (12), 6858-6919CODEN: CHREAY; ISSN:0009-2665. (American Chemical Society)A review. The following topics are discussed: derivation of the bond valence model, relationship with structural models, bond valence as measure of energy, bond valence-bond length correlation, distorted ion environments (electronic, lone-pair, and steric distortions, crystal field effects), bond valence vectors, valence maps and ionic conduction, valence matching rule, homopolar bonds, charge distribution, incommensurate structures; perovskites, minerals, glasses, interfaces, biol. systems.
- 38Gawraczyński, J. Optical Spectroscopy of Selected Divalent Silver Compounds. Ph.D. Dissertation, University of Warsaw, 2019.There is no corresponding record for this reference.
- 39Bonner, J. C.; Fisher, M. E. Linear Magnetic Chains with Anisotropic Coupling. Phys. Rev. 1964, 135 (3A), A640– A658, DOI: 10.1103/PhysRev.135.A640There is no corresponding record for this reference.
- 40Tong, J.; Lee, C.; Whangbo, M. H.; Kremer, R. K.; Simon, A.; Köhler, J. Cooperative Jahn–Teller distortion leading to the spin-1/2 uniform antiferromagnetic chains in triclinic perovskites AgCuF3 and NaCuF3. Solid State Sci. 2010, 12 (5), 680– 684, DOI: 10.1016/j.solidstatesciences.2009.02.028There is no corresponding record for this reference.
- 41Odenthal, R. H.; Hoppe, R. Fluoroargentate(II) der Alkalimetalle. Monatsh. Chem. 1971, 102, 1340– 1350, DOI: 10.1007/BF00917190There is no corresponding record for this reference.
- 42Kaiser, V.; Otto, M.; Binder, F.; Babel, D. Jahn-Teller-Effekt und Kristallstruktur-Verzerrung bei den Kupfer-Fluorperowskiten NaCuF3 und RbCuF3. Z. Anorg. Allg. Chem. 1990, 585 (1), 93– 104, DOI: 10.1002/zaac.19905850112There is no corresponding record for this reference.
- 43Mazej, Z.; Goreshnik, E.; Jagličić, Z.; Gaweł, B.; Łasocha, W.; Grzybowska, D.; Jaroń, T.; Kurzydłowski, D.; Malinowski, P.; Koźminski, W.; Szydłowska, J.; Leszczyński, P.; Grochala, W. KAgF3, K2AgF4 and K3Ag2F7: important steps towards a layered antiferromagnetic fluoroargentate(II). CrystEngComm 2009, 11 (8), 1702– 1710, DOI: 10.1039/B902161B43https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1MXhsVSks7%252FI&md5=e805c29e52e93b39c85b1b71566a6767KAgF3, K2AgF4 and K3Ag2F7: important steps towards a layered antiferromagnetic fluoroargentate(II)Mazej, Zoran; Goreshnik, Evgeny; Jaglicic, Zvonko; Gawel, Bartlomiej; Lasocha, Wieslaw; Grzybowska, Dorota; Jaron, Tomasz; Kurzydlowski, Dominik; Malinowski, Przemyslaw; Kozminski, Wiktor; Szydlowska, Jadwiga; Leszczynski, Piotr; Grochala, WojciechCrystEngComm (2009), 11 (8), 1702-1710CODEN: CRECF4; ISSN:1466-8033. (Royal Society of Chemistry)Crystal structure and magnetic properties of K2AgF4, related to recently studied Cs2AgF4, have been scrutinized. It crystallizes orthorhombic (Cmca No.64) with a = 6.182(3) A, b = 12.632(5) A, c = 6.436(3) A (Z = 4, V = 502.6(7) A3). K2AgF4 exhibits slightly puckered [AgF2] sheets and a compressed octahedral coordination of Ag(II) and it is not isostructural to related Cs2AgF4. Violet-colored K2AgF4 orders ferromagnetically below 26 K. The DFT calcns. reproduce semiconducting properties and ferromagnetism of K2AgF4 at the LSDA + U level but only if substantial values of Mott-Hubbard on-site electron-electron repulsion energies for Ag and F are used in calcns. We have also succeeded to solve the crystal structure of a brown KAgF3 (1D antiferromagnet below 64 K; GdFeO3-type, Pnma No. 62, a = 6.2689(2) A, b = 8.3015(2) A, c = 6.1844(2) A, Z = 4, V = 321.84(2) A3) and to prep. K3Ag2F7, a novel KAgF3/K2AgF4 intergrowth phase and a member of the Ruddlsden-Popper KnAgFn + 2 series (n = 1.5). Dark brown K3Ag2F7 crystallizes orthorhombic (K3Cu2Cl7-type, Ccca No. 68, setting 2) with a = 20.8119(14) A, b = 6.3402(4) A, c = 6.2134(4) A (Z = 4, V = 819.87(9) A3).
- 44Kurzydłowski, D.; Mazej, Z.; Jagličić, Z.; Filinchuk, Y.; Grochala, W. Structural transition and unusually strong antiferromagnetic superexchange coupling in perovskite KAgF3. Chem. Commun. 2013, 49 (56), 6262– 6264, DOI: 10.1039/c3cc41521jThere is no corresponding record for this reference.
Supporting Information
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.4c11772.
The experimental procedures, description of the characterization techniques, and results of analyses (PDF)
Deposition numbers 2321112 (for Ag2F3) and 2321184 (for Ag3F4) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.