ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Kinetically Controlled Coassembly of Multichromophoric Peptide Hydrogelators and the Impacts on Energy Transport

View Author Information
† ‡ # Department of Chemistry, Krieger School of Arts and Sciences, Institute for NanoBioTechnology, and #Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
§ School of Chemistry, WESTChem, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
Cite this: J. Am. Chem. Soc. 2017, 139, 25, 8685–8692
Publication Date (Web):June 5, 2017
https://doi.org/10.1021/jacs.7b04006

Copyright © 2022 American Chemical Society. This publication is licensed under these Terms of Use.

  • Open Access

Article Views

5648

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (6 MB)
Supporting Info (1)»

Abstract

We report a peptide-based multichromophoric hydrogelator system, wherein π-electron units with different inherent spectral energies are spatially controlled within peptidic 1-D nanostructures to create localized energy gradients in aqueous environments. This is accomplished by mixing different π-conjugated peptides prior to initiating self-assembly through solution acidification. We can vary the kinetics of the assembly and the degree of self-sorting through the choice of the assembly trigger, which changes the kinetics of acidification. The hydrolysis of glucono-δ-lactone (GdL) provides a slow pH drop that allows for stepwise triggering of peptide components into essentially self-sorted nanostructures based on subtle pKa differences, whereas HCl addition leads to a rapid formation of mixed components within a nanostructure. Using 1H NMR spectroscopy and fiber X-ray diffraction, we determine the conditions and peptide mixtures that favor self-sorting or intimate comixing. Photophysical investigations in the solution phase provide insight into the correlation of energy-transport processes occurring within the assemblies to the structural organization of the π-systems.

Introduction

ARTICLE SECTIONS
Jump To

Supramolecular systems can be engineered with dynamic properties as a result of the noncovalent nature of the intermolecular interactions that drive their assembly, so they offer promising materials for mimicking the dynamic nature of physiological environments. (1-3) Multicomponent supramolecular assemblies have been used toward creating artificial light-harvesting complexes, whereby the energy migration from an excited donor to an acceptor occurs within an array of donor–acceptor units. (4-8) There are several examples of multichromophoric assemblies aimed toward applications not only for photosynthetic mimicry but also for excitonic solar cells, (9) light-emitting assemblies, (10-13) and as biophysical molecular rulers. (14) The synthesis details and characterization of energy-transfer events are both equally important for the development of multichromophoric arrays in such applications. For example, Friend, Rowan, and Nolte and co-workers have developed Pt-porphyrin and perylene-bis(dicarboximide) units in polyisocyanopeptides and investigated the sequential energy and electron transfer between the donor and acceptor units. (15) Hodgkiss and Thordarson and co-workers reported a highly efficient multichromophore array based on perylene systems, whereby efficient incoherent energy transfer was reported. (16) Basché and Müllen and co-workers reported terrylene and perylene diimide dyad systems and quantified singlet–singlet annihilation. (17, 18) Ajayaghosh and co-workers extensively investigated a library of oligo(p-phenylenevinylene) organogelators that are capable of excitation energy transfer between specific donor–acceptor systems. (19-24) A system reported on C3-symmetric self-sorted units of oligo(p-phenylenevinylene) and perylene bisimide was even utilized as a sensing platform for volatile aromatic compounds. (25)
Among the biologically relevant supramolecular structures, peptide-based assemblies appended with π-electron systems, both in solution phase and in xerogels, hold promise for potential applications toward energy-harvesting materials under aqueous conditions (26) as well as solution-processable active layers for device applications such as in field-effect transistors (27-29) and biointerfacing (30-34) applications. Tovar and co-workers previously presented a two-component peptide scaffold bearing oligo(p-phenylenevinylene) and quaterthiophene π-electron units that demonstrated excitonic energy transfer. (35) They also demonstrated that quaterthiophene and naphthalenediimide chromophores embedded in the same peptide supported photoinduced electron transfer also under aqueous conditions. (36) Adams and co-workers reported self-sorting among perylene bisimide and stilbene gelators, creating heterojunction arrays with self-sorted fiber networks that led to a photoconductive material. (37) Side-chain functionalization of lysine units with tetraphenylporphyrin and naphthalene diimide was also shown to demonstrate a switch between the H- or J-type of aggregation depending on the protonation state of the porphyrin. (38) In a study that utilized chiral cholesterol moieties, the formation of p-n heterojunctions among self-sorted quaterthiophene- and perylene diimide organogelators was achieved via a heat–cool method, whereby the sequential dissociation and reassembly was governed by the different dissociation constants of each component. (39)
In this report, we combine three distinct π-electron units (oligo(p-phenylenevinylene), quaterthiophene, and naphthalenediimide) within peptidic moieties that form assemblies in aqueous environments under acidic conditions. The combination of photonic donor–acceptor pairs and electron donor–acceptor pairs within one nanostructure enables potentially simultaneous and/or sequential energy- and electron-transfer events and allows for the creation of localized electric fields between the donor and acceptor units that result from charge separation. Moreover, by utilizing different acidification triggers and controlling the kinetics of self-assembly, we aim to control the spatial ordering of the chromophores within the peptidic nanostructure and systematically impact the unique energy-transport processes fostered within these nanostructures.

Results and Discussion

ARTICLE SECTIONS
Jump To

Design Considerations

We compare the photophysical responses of self-sorted and randomly coassembled binary mixtures of peptides bearing different π-electron systems (Figure 1). To achieve such control over the spatial ordering of the binary peptide mixtures, we modulated the rate of acidification. Although there are several studies conducted on controlling the supramolecular polymerization of multicomponent systems, (40) accurate control over the assembly dynamics and spatial ordering is rarely discussed in the context of engineering the optoelectronic function of a material. A previous report on the nonequilibrium hydrogelation of a quaterthiophene (41) demonstrated that the nanoscale morphologies vary depending on the rate of acid diffusion into the peptide solution: the rapid assembly leads to random but dense matted fiber networks, whereas the relatively slower assembly results in a more homogeneous and anisotropic fiber network.

Figure 1

Figure 1. (a) Molecular structures of the peptides studied herein and (b),(c) diagrams of the potential energy (e.g., resonance-energy transfer (RET)) and electron-transfer events occurring within a two-component peptidic nanostructure with three π-electron units for (b) self-sorted and (c) randomly coassembled systems.

Here, we use different assembly triggers that lower the pH of the peptide solutions at different rates in order to have control over the kinetics of assembly and the molecular ordering of binary peptide mixtures. Self-sorting was induced via chemical programming, utilizing the difference in the pKa of the two components as the pH is gradually decreased upon the slow hydrolysis of glucono-δ-lactone (GdL). (42, 43) Thus, as the pH slowly decreases, we expect a greater extent of protonation/charge screening for the higher pKa peptide, triggering it to preferentially assemble first. This should favor the formation of essentially self-sorted structures (Figure 1b). To form the randomly coassembled structures, acid was rapidly added to solutions of essentially dissolved peptide units, whereby global protonation/charge screening of all peptides occurs regardless of the pKa (Figure 1c). The Asp-Val-Val and Lys-Ala-Ala peptide sequences were chosen for the oligo(p-phenylenevinylene)- and quaterthiophene-appended peptides (OPV3 and OT4-NDI), respectively, to establish a difference in the pKa of each component (see below). The 1,4-distyrylbenzene, an oligo(p-phenylenevinylene), serves as an energy donor that upon photoexcitation can funnel the energy to a quaterthiophene unit acceptor. Similarly, the quaterthiophene serves as an excited-state electron donor to the naphthalenediimide in OT4-NDI. A control molecule was also synthesized in which the side-chain amines were acylated instead of bearing naphthalenediimide groups (OT4-Ac). This control molecule allows us to observe photonic energy-transfer events without the associated electron transfer. We investigate the occurrence of energy-transport processes under aqueous environments in the solution phase and whether the components are self-sorted because of the slow GdL hydrolysis or kinetically coassembled by rapid acidification.

Characterization of Assembly Behavior

The apparent pKas of the OPV3donor, the OT4-NDIacceptor, and the OT4-Accontrol acceptor were observed as pH 6.2, 6.5, and 5.4, respectively (Figure S10). The OT4-NDI-containing samples showed buffering regions around pH 12. The gradual titration with aqueous HCl for 1:1 binary mixtures of OPV3/ OT4-NDI and OPV3/ OT4-Ac only showed one apparent pKa rather than a distinct pKa for each component. To initiate the self-sorting behavior within the two-component peptide hydrogels, 30 mg/mL of GdL was added to the peptide solutions that contained 5 mg/mL of each component. In previous studies with related peptides appended with π-systems, only 5 to 10 mg/mL of GdL was necessary to form hydrogels from 5 mg/mL one-component or binary-peptide gelator solutions. (42, 43) The necessary higher GdL concentration for the hydrogelation of the systems reported herein can be possibly attributed to the multiple carboxylates (total of four, two from the backbone termini and two from the aspartic acid side chains, for the OPV3 donor units) that need to be protonated to favor the self-assembly process. To further monitor the self-assembly process with GdL, we followed the disappearance of 1H NMR peaks corresponding to the assembly of each gelator component together with the in situ measurement of pH. (44) The assembly is correlated to the disappearance of unique NMR peaks of each component over time, and the results showed a sequential assembly for the 1:1 OPV3 and OT4-Ac mixture (Figure 2a), whereby OPV3 assembles first. Alternatively, the 1:1 OPV3 and OT4-NDI mixture (Figure S11) did not show any peaks for OT4-NDI even at the beginning of the measurement (before the addition of GdL), suggesting that the assembly might have already started for this component even at higher pH conditions (ca. pH 8). This observation of assembly formation at higher pH was analogous to a previously reported hydrophobic oligo(p-phenylenevinylene) dipeptide, which favors the formation of wormlike micelles. (45) All homoassemblies (one-component samples) and 1:1 mixed assemblies successfully formed self-supporting gels, as confirmed by the rheology measurements (Figure 2b and S14; the storage modulus G′ for any given composition was an order of magnitude larger than the loss modulus respective G″ at the end of the time-sweep measurements). The storage moduli values for these hydrogels spanned from 0.02 to 2.5 kPa, with the 1:1 OPV3 and OT4-NDI mixed assemblies having the lowest G′ values and the 1:1 OPV3 and OT4 mixed assemblies having the highest G′ values. For the 1:1 OPV3 and OT4-NDI mixed assembled hydrogel (with a total of 10 mg/mL peptide content) the G′ is even lower than its individual components at 5 mg/mL, which demonstrates the complex and nonlinear nature of the mechanical properties of two-component supramolecular systems. These mechanical properties were also observed in another related binary system composed of dipeptide components appended with naphthalene units. (46) Considering the apparent pKa values from the titration experiments and the spectral information from time-resolved NMR measurements, OT4-NDI assembles first, followed by OPV3 and then OT4-Ac. The rheology plots show that the OT4-Ac forms the hydrogel the fastest, followed by OPV3 and then OT4-NDI (Figure S14). Correlating the 1H NMR results, which probe molecular aggregation events, to the time frame of gelation observed from rheological measurements, it is observed that the aggregation time does not coincide with the amount of time required to observe the inflection points for G′ and G″ plots for this peptidic system. These plots suggest that for this material and the conditions imposed upon assembly the kinetics of aggregation of the individual components do not directly correlate to the rate at which the fibrillar network reaches the critical fiber-network density to form a hydrogel. Furthermore, because the fiber network density is linked to the bulk mechanical property of hydrogels, there is also no direct correlation that can be made between the kinetics of assembly formation and hydrogel stiffness for these systems.

Figure 2

Figure 2. Monitoring of peptide assembly and hydrogel formation for 1:1 OPV3 and OT4-Ac solutions prepared with 30 mg/mL GdL via (a) 1H NMR and (b) rheology (G′ = solid circles; G″ = smaller circles). Each peptide component is at 5 mg/mL (total of 10 mg/mL peptides for the 1:1 mixed sample).

Further monitoring of the GdL hydrolysis-triggered gelation process via fiber X-ray diffraction supports the occurrence of self-sorting based on the presence of distinct signals from the individual components (Figure 3). No diffraction pattern was observed for OT4-NDI as a result of the difficulty in aligning the weaker gels (G′ < 100 Pa) between the capillaries used for the measurements. The persistence of diffraction signals from pure OPV3 (9.3 Å and 4.61/4.69 Å, Figure 3a) and pure OT4-Ac (5.6 and 4.61 Å, Figure 3b) in the mixed-peptide assemblies prepared with GdL indicates the self-sorted nature of the nanostructures (Figure 3c,d). (42) From these characterization techniques, we determined the chronology of aggregation and the onset of peptide gelation, and we established that self-sorting occurs when hydrogels are prepared with GdL for both OPV3/OT4-Ac and OPV3/OT4-NDI systems.

Figure 3

Figure 3. Fiber X-ray diffraction data for hydrogels prepared with 30 mg/mL GdL, composed of one peptide component ((a) OPV3 only; (b) OT4-Ac only) and two peptide components ((c) OPV3/OT4-NDI; (d) OPV3/OT4-Ac; both 1:1). Each peptide component is at 5 mg/mL (total of 10 mg/mL peptides for the 1:1 mixed samples).

TEM was used to visualize the nanostructures resulting from GdL or HCl addition (ca. 3 μM peptide concentration for each component). Under such dilute conditions, 10 mg/mL GdL was enough to observe nanostructure formation. For the OPV3 and OT4-Ac homoassemblies (Figure S15), both methods of triggering assembly resulted in the same type of 1-D morphologies. For the OT4-NDI peptides, rapid acidification with HCl shows some evidence of micellar-shaped random aggregates, whereas the addition of GdL results in structures with 1-D morphology coexisting with these micellar structures. The predominantly micellar nature of nanostructures formed by OT4-NDI with GdL and HCl further supports the formation of relatively weaker gels than for the other peptides because such low-aspect-ratio structures generally have a lower propensity to form cross-links among the nanostructures. For the OPV3 and OT4-NDI mixed assemblies, both the rapid acidification with HCl and the addition of GdL result in the formation of micellar structures along with 1-D nanostructures (Figure 4a,b). In contrast, the mixed assemblies of OPV3 and OT4-Ac (Figure 4c,d) both show 1-D nanostructures with high aspect ratios.

Figure 4

Figure 4. TEM images of 1:1 mixed assemblies (3 μM peptide concentration for each component) of OPV3 with (a),(b) OT4-NDI or (c),(d) OT4-Ac (1:1) assembled via (a),(c) HCl addition and (b),(d) GdL (10 mg/mL) hydrolysis.

Photophysical Characterization

We utilized the π-electron units embedded in the peptidic moieties, each with unique spectroscopic signatures, as reporters to obtain more information about the spatial organization occurring within the nanostructures under HCl or GdL assembly conditions. The steady-state photophysical spectra of the homoassemblies and mixed assemblies triggered to assemble via HCl and GdL in the aqueous solution phase (Figures 5, 6, and S16) consistently showed trends for H-like aggregation. Namely, this included blue-shifted, quenched absorption and red-shifted, quenched photoluminescence (PL) of the assembled samples as compared to their molecularly dissolved states. The recorded spectra from these aqueous solutions should be treated as ensemble averages of the response from polydisperse solutions of peptide assemblies. The spectra for HCl-triggered solutions were recorded immediately after acidification (i.e., within 1 h) whereas the GdL-triggered samples were measured at 20 h to allow enough time for the lactone to hydrolyze and produce enough acid to achieve the same pH as the HCl-triggered solutions. The HCl-assembled samples were then aged for the same amount of time that the GdL was allowed to hydrolyze, after which the absorption and PL spectra were then remeasured. For this multichromophoric system, the spectral overlap between the emission of the oligo(p-phenylenevinylene) donor with the absorption of quaterthiophene or naphthalenediimide acceptors encourages energy transfer via exciton migration or resonance-energy transfer (RET) from the donor to these acceptors, with a better spectral overlap with quaterthiophene. For quaterthiophene and naphthalenediimide, their relative HOMO and LUMO levels encourage excited-state electron transfer and inhibit energy transfer upon photoexcitation as previously reported. (36) As a point of reference, the spectral properties of the homoassemblies prepared via GdL- and HCl-mediated assembly showed no apparent differences in the maximum absorption peaks except for some slight intensity variations (Figure 5a–c). The aged HCl-assembled samples more closely resemble the absorption spectra of the GdL-assembled samples, suggesting the presence of kinetically trapped structures formed by rapid acidification. They also suggest the dynamic nature of these assemblies, which allow some extent of reorganization over time.

Figure 5

Figure 5. Solution-phase UV–vis absorption (a–c) and steady-state emission (d–f) spectra for GdL- (10 mg/mL) or HCl-assembled peptide homoassemblies of (a) OPV3 (blue), (b) OT4-Ac (red), and (c) OT4-NDI (black); solutions measured under different conditions: molecularly dissolved samples (---), (a),(d) with GdL (empty circles), (b),(e) with HCl (—), and (c),(f) with HCl, aged (...); [peptide] = 3 μM; X= Raman scatter of water.

Figure 6

Figure 6. Solution-phase steady-state PL spectra for mixed peptide structures of OPV3 with OT4-Ac (red) and with OT4-NDI (black) prepared with GdL (10 mg/mL) or HCl, measured under different conditions: (a–c) λexc= 350 nm; (d–f) λexc= 430 nm; (a) with GdL (empty circles), (b) with HCl (—), and (c) with HCl, aged (...); [OPV3] = 3 μM.

The PL spectra for the homoassemblies of OPV3, OT4-Ac, and OT4-NDI all showed different features when assembled via GdL hydrolysis or via rapid HCl addition (Figure 5d–f). The HCl-assembled OPV3 shows a broad emission with λmax = 470 nm, whereas the aged HCl- and GdL-triggered assemblies show blue-shifted peaks with more resolved vibronic bands at 420, 440, and 470 nm, suggesting a different packing pattern than for the initially trapped HCl assemblies. These bands can be assigned to strong exciton coupling and are consistent with those that we have observed for the thermally annealed structures of other OPV3 tetrapeptides. (35) These results support that the slower hydrolysis of GdL could be achieving a more thermodynamically favored structure that is accessed after a dynamic rearrangement due to heating or aging of the kinetically trapped structures formed after rapid acidification. (47-49) For OT4-Ac and OT4-NDI excited at 370 and 350 nm (maximum absorption for assembled OT4-Ac and OPV3, respectively; naphthalenediimide has minimal absorption at 350 nm), the PL peak of the aged HCl-assembled solutions does not vary from the early time-point measurements. The OT4-NDI peptide excited at 350 nm shows an emission profile that corresponds to minimal PL contributions from naphthalenediimide. However, for excitation at 430 nm, which corresponds to the quaterthiophene component of OT4-NDI, the GdL-assembled and aged HCl samples both show a very weak 510 nm peak similar to the maximum PL peak for a monomeric quaterthiophene peptide. The aged HCl-assembled sample shows a completely quenched spectrum (430 nm excitation), with the Raman peak from water at 500 nm as the only apparent feature. Figure 5e,f show signals with very weak intensities and apparent Raman scattering peaks for water. The weak signals are expected from the weakly fluorescent quaterthiophene assemblies but can also be a consequence of the electron transfer from quaterthiophene to naphthalenediimide units.
For the mixed assemblies, analogous to the observations in our previous study for an oligo(p-phenylenevinylene)-based donor–acceptor system, (50) it is expected that the photophysical behavior will reflect the spatial organization of the π-electron units, whether it is self-sorted via GdL-triggered assembly or randomly coassembled via HCl-triggered assembly. The absorption profiles are dominated by the OPV3 signals, which have the highest extinction coefficient among the three chromophores studied, even at 50 mol % of the acceptor units (Figure S16). At 10 and 50 mol %, higher-intensity shoulders at 450 nm are more evident for the HCl-assembled than for the GdL-assembled comixtures. For the PL spectra of mixed assemblies, the samples were excited at 350 nm (where oligo(p-phenylenevinylene) has the strongest absorption among the three chromophores) and at 430 nm (where only the quaterthiophene component absorbs). The 10 and 50 mol % OT4-Ac in OPV3 and OT4-NDI in OPV3 are compared under different assembly conditions. In all cases, the PL peak intensities of these mixed-peptide solutions under acidic conditions are lower than that of the OPV3 homoassemblies as shown in Figure 5d. The 10 and 50 mol % OT4-Ac in OPV3 GdL self-sorted assemblies excited at 350 nm (Figure 6a) both show quenched emission peaks in the OPV3 region with bimodal peaks around 490 and 520 nm resembling assembled oligothiophene emission in more hydrophobic environments, (51-54) demonstrating some extent of energy transfer. The self-sorted OT4-NDI and OPV3 GdL-assembled samples showed less OPV3 peak quenching than did the OT4-Ac and OPV3 self-sorted assemblies but maintained the OPV3 vibronic progression. The HCl-assembled samples (Figure 6b) showed a similar trend for quaterthiophene PL signatures but with less-resolved spectral features. Compared to the GdL-assembled samples, the OPV3 emission region was completely quenched, and the peak was further red-shifted to 540 nm at 50 mol %, showing a higher efficiency of energy transfer, which is expected from a more intimate comixing for HCl-assembled samples. Upon aging (Figure 6c), the HCl-assembled samples show more vibronic features in the OPV3 region but are still more quenched than the self-sorted assemblies prepared with GdL. Furthermore, comparing the OT4-Ac and OT4-NDI coassemblies with OPV3 prepared with HCl, the intensities (i.e., relative quantum yields) of the OT4-NDI coassemblies are much lower than those of the OT4-Ac coassemblies with OPV3, verifying the complete energy funneling from oligo(p-phenylenevinylene) to quaterthiophene, to relatively spectrally dark naphthalenediimide in the OT4-NDI/OPV3 coassemblies. This is indicative that energy transfer is still more efficient in the aged HCl-assembled samples than in the GdL-assembled samples, showing that the reorganization that occurs in the kinetically trapped structures formed upon rapid acidification does not achieve the complete self-sorting that is induced with GdL hydrolysis.
For the mixed assemblies excited at 430 nm (Figure 6d–f), the emission spectra provide information on any energy-transfer events that occur from quaterthiophene. The PL signals for self-sorted OT4-Ac and OPV3 mixed assemblies prepared with GdL coincide with the emission of assembled OT4-Ac homoassemblies, which is consistent with self-sorting. For the HCl-assemblies at 50 mol % OT4-Ac, the PL spectrum has a maximum emission peak at ca. 540 nm, which coincides with what was previously reported for quaterthiophene peptides, (29, 51) whereas the maximum emission peak for 10 mol % OT4-Ac at 510 nm is reminiscent of molecularly dissolved samples prepared under basic conditions. At 10 mol %, where OT4-Ac is a minority component in the comixture, the similarity of the PL profile to molecularly dissolved samples suggests that most of the OT4-Ac units are isolated within 90 mol % OPV3 1-D nanostructures. Upon aging of the HCl-assembled samples, the 50 mol % OT4-Ac sample showed a similar bimodal peak to that observed in GdL-assembled samples, whereas the 10 mol % sample showed a broader quenched peak. For the OT4-NDI/ OPV3 HCl-triggered mixed assemblies, the quaterthiophene PL region showed a significant quenching as compared to the OT4-Ac and OPV3 samples, which are prepared with the same concentration of quaterthiophene units.
These results support the idea that the selective electron transfer from quaterthiophene to naphthalenediimide upon excitation at 430 nm efficiently occurs without preference as to the assembly method used. For the mixed assemblies excited at 350 nm, the steady-state emission behavior supports that the sequential and/or concerted energy/electron transfer events from OPV3 to OT4-Ac/OT4-NDI occur more efficiently when the components are randomly mixed (prepared with HCl) than self-sorted (prepared with GdL). These data demonstrate the dependence of the photophysical behavior on the choice of assembly trigger (GdL vs HCl) for solution-phase assembly. Hence, the spatial organization of the chromophores within the peptide nanostructures coincides with the structural information obtained for these samples in the gel phase via 1H NMR and fiber XRD (Figures 2a and 3).
Circular dichroism (CD) measurements confirm that both the HCl and GdL-assembled peptide nanostructures maintain similar chirality in both pure and mixed assemblies, except for OT4-NDI (Figure S17). Low-intensity CD signals were recorded for OT4-NDI homoassemblies corresponding to the naphthalenediimide region of absorption but not for quaterthiophene. Bisignate signals within the region of chromophore absorption corresponding to an exciton-coupled Cotton band were observed for all other peptide nanostructures prepared under both assembly conditions, which is indicative of the local chiral environment of the π-systems undergoing exciton coupling. The CD signals within the high-energy region that distinguish the structural motifs for conventional peptides were not observed for GdL-assembled samples because of a high intensity signal from chiral GdL and gluconic acid as well as interference from sample scattering (Figure S18). For the HCl-assembled samples, the broad peak with minima at ∼250 nm corresponds to a red-shifted β-sheet signal, which is correlated to local twisting within individual assembly units. (55, 56)

Conclusions

ARTICLE SECTIONS
Jump To

A two-component peptide hydrogelator system with multichromophoric units can be spatially engineered on the basis of the choice of the assembly trigger. The slow hydrolysis of GdL provides access to self-sorted structures if each of the components has a different pKa. However, rapid addition of HCl to the peptide solutions favors the random comixing of two components within the same nanostructure, which can reorganize upon aging. Both methods of assembly led to the formation of self-supporting hydrogels. 1H NMR spectroscopy and fiber XRD support that self-sorting behavior is induced when GdL is added to the binary peptide mixtures. Correlating the 1H NMR spectra and rheology profiles, aggregation occurs the fastest for OT4-NDI, but the fastest gelation was achieved with OT4-Ac. Thus, aggregation can start earlier in one component, but the propagation of the supramolecular polymerization leading to entangled networks that can support a hydrogel structure can occur at a different rate. Whether the two components were randomly coassembled or self-sorted, the chirality within the nanostructures was maintained as evidenced by the exciton-coupled CD bands within the region of the peptide-embedded chromophore absorptions. Both randomly coassembled and self-sorted peptide nanostructures showed evidence for energy and electron transfer. Selectively exciting OPV3 initiates exciton migration and resonance energy transfer, which both occur more efficiently if the chromophores are randomly coassembled within one nanostructure. However, the excited-state electron transfer from quaterthiophene to napthelenediimide does not require any specific comixing. This work provides new insights into the photophysical behavior of multichromophoric peptide assemblies whether the components are self-sorted, which is useful for establishing p-n heterojunctions, or randomly comixed, which is useful for creating photosynthetic mimics that require high energy-transfer efficiency. The observation of multiple energy-transport processes in completely aqueous environments, along with the ability to spatially control the distribution of π-electron units within peptidic nanostructures, is an important step in the continued engineering of functional bioelectronic materials.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b04006.

  • General synthesis procedures and experimental conditions; characterization data for peptides (1H NMR, ESI-MS, HPLC traces); pH titration curves; 1NMR stacked plots and data for monitoring OPV3 and OT4-NDI assembly with GdL; supplementary rheology data, TEM images, UV–vis absorption spectra, and CD spectra (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Authors
    • Dave J. Adams - School of Chemistry, WESTChem, University of Glasgow, Glasgow, G12 8QQ, United KingdomOrcidhttp://orcid.org/0000-0002-3176-1350 Email: [email protected]
    • John D. Tovar - †Department of Chemistry, Krieger School of Arts and Sciences, ‡Institute for NanoBioTechnology, and #Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United StatesSchool of Chemistry, WESTChem, University of Glasgow, Glasgow, G12 8QQ, United KingdomSchool of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United KingdomDepartment of Chemistry, University of Liverpool, Liverpool L69 7ZD, United KingdomOrcidhttp://orcid.org/0000-0002-9650-2210 Email: [email protected]
  • Authors
    • Herdeline Ann M. Ardoña - †Department of Chemistry, Krieger School of Arts and Sciences, ‡Institute for NanoBioTechnology, and #Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United StatesSchool of Chemistry, WESTChem, University of Glasgow, Glasgow, G12 8QQ, United KingdomSchool of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United KingdomDepartment of Chemistry, University of Liverpool, Liverpool L69 7ZD, United KingdomOrcidhttp://orcid.org/0000-0003-0640-1262
    • Emily R. Draper - School of Chemistry, WESTChem, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
    • Francesca Citossi - School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
    • Matthew Wallace - Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
    • Louise C. Serpell - School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United KingdomOrcidhttp://orcid.org/0000-0001-9335-7751
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

ARTICLE SECTIONS
Jump To

We thank Johns Hopkins University and the NSF DMR Biomaterials program (1407493). H.A.M.A. is thankful for the generous support from Howard Hughes Medical Institute (International Student Research Fellowship) and Schlumberger Foundation (Faculty for the Future Fellowship). We also thank the Center for Molecular Biophysics (JHU) where circular dichroism measurements were conducted. The NMR spectrometer used for the aggregation time measurements was funded by the EPSRC (EP/C005643/1 and EP/K039687/1). D.J.A. thanks the EPSRC for a Fellowship, which also funded E.R.D. (EP/L021978/1). M.W. thanks Unilever for a Case Award and the EPSRC for funding a DTA. We thank Dr. Laura L. E. Mears for the discussions regarding the structural characterizations of these peptide nanomaterials and for her insightful comments on the manuscript. We dedicate this paper to Professor Samuel I. Stupp (Northwestern University) in recognition of his 40 years of leadership in self-assembling materials.

References

ARTICLE SECTIONS
Jump To

This article references 56 other publications.

  1. 1
    Aida, T.; Meijer, E. W.; Stupp, S. I. Science 2012, 335 (6070) 813 817 DOI: 10.1126/science.1205962
  2. 2
    Webber, M. J.; Appel, E. A.; Meijer, E. W.; Langer, R. Nat. Mater. 2015, 15 (1) 13 26 DOI: 10.1038/nmat4474
  3. 3
    Tovar, J. D. Acc. Chem. Res. 2013, 46 (7) 1527 1537 DOI: 10.1021/ar3002969
  4. 4
    Jenkins, R. D.; Andrews, D. L. J. Chem. Phys. 2003, 118 (8) 3470 3479 DOI: 10.1063/1.1538611
  5. 5
    Kelley, R. F.; Shin, W. S.; Rybtchinski, B.; Sinks, L. E.; Wasielewski, M. R. J. Am. Chem. Soc. 2007, 129 (11) 3173 3181 DOI: 10.1021/ja0664741
  6. 6
    Peng, H.-Q.; Niu, L.-Y.; Chen, Y.-Z.; Wu, L.-Z.; Tung, C.-H.; Yang, Q.-Z. Chem. Rev. 2015, 115 (15) 7502 7542 DOI: 10.1021/cr5007057
  7. 7
    Ahrens, M. J.; Sinks, L. E.; Rybtchinski, B.; Liu, W.; Jones, B. A.; Giaimo, J. M.; Gusev, A. V.; Goshe, A. J.; Tiede, D. M.; Wasielewski, M. R. J. Am. Chem. Soc. 2004, 126 (26) 8284 8294 DOI: 10.1021/ja039820c
  8. 8
    Ziessel, R.; Ulrich, G.; Haefele, A.; Harriman, A. J. Am. Chem. Soc. 2013, 135 (30) 11330 11344 DOI: 10.1021/ja4049306
  9. 9
    Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2009, 42 (12) 1890 1898 DOI: 10.1021/ar900209b
  10. 10
    Praveen, V. K.; Ranjith, C.; Armaroli, N. Angew. Chem., Int. Ed. 2014, 53 (2) 365 368 DOI: 10.1002/anie.201306787
  11. 11
    Vijayakumar, C.; Praveen, V. K.; Ajayaghosh, A. Adv. Mater. 2009, 21 (20) 2059 2063 DOI: 10.1002/adma.200802932
  12. 12
    Abbel, R.; van der Weegen, R.; Pisula, W.; Surin, M.; Leclère, P.; Lazzaroni, R.; Meijer, E. W.; Schenning, A. P. H. J. Chem. - Eur. J. 2009, 15 (38) 9737 9746 DOI: 10.1002/chem.200900620
  13. 13
    Giansante, C.; Schafer, C.; Raffy, G.; Del Guerzo, A. J. Phys. Chem. C 2012, 116 (41) 21706 21716 DOI: 10.1021/jp3073188
  14. 14
    Sapsford, K. E.; Berti, L.; Medintz, I. L. Angew. Chem., Int. Ed. 2006, 45 (28) 4562 4589 DOI: 10.1002/anie.200503873
  15. 15
    Huang, Y.-S.; Yang, X.; Schwartz, E.; Lu, L. P.; Albert-Seifried, S.; Finlayson, C. E.; Koepf, M.; Kitto, H. J.; Ulgut, B.; Otten, M. B. J.; Cornelissen, J. J. L. M.; Nolte, R. J. M.; Rowan, A. E.; Friend, R. H. J. Phys. Chem. B 2011, 115 (7) 1590 1600 DOI: 10.1021/jp1071605
  16. 16
    Webb, J. E. A.; Chen, K.; Prasad, S. K. K.; Wojciechowski, J. P.; Falber, A.; Thordarson, P.; Hodgkiss, J. M. Phys. Chem. Chem. Phys. 2016, 18 (3) 1712 1719 DOI: 10.1039/C5CP06953J
  17. 17
    Fuckel, B.; Hinze, G.; Nolde, F.; Müllen, K.; Basché, T. J. Phys. Chem. A 2010, 114 (29) 7671 7676 DOI: 10.1021/jp103738a
  18. 18
    Stappert, S.; Li, C.; Müllen, K.; Basché, T. Chem. Mater. 2016, 28 (3) 906 914 DOI: 10.1021/acs.chemmater.5b04602
  19. 19
    Ghosh, S.; Praveen, V. K.; Ajayaghosh, A. Annu. Rev. Mater. Res. 2016, 46 (1) 235 262 DOI: 10.1146/annurev-matsci-070115-031557
  20. 20
    Praveen, V. K.; Ranjith, C.; Bandini, E.; Ajayaghosh, A.; Armaroli, N. Chem. Soc. Rev. 2014, 43 (12) 4222 4242 DOI: 10.1039/c3cs60406c
  21. 21
    Babu, S. S.; Praveen, V. K.; Ajayaghosh, A. Chem. Rev. 2014, 114 (4) 1973 2129 DOI: 10.1021/cr400195e
  22. 22
    Ajayaghosh, A.; Praveen, V. K.; Vijayakumar, C.; George, S. J. Angew. Chem., Int. Ed. 2007, 46 (33) 6260 6265 DOI: 10.1002/anie.200701925
  23. 23
    Ajayaghosh, A.; Praveen, V. K.; Vijayakumar, C. Chem. Soc. Rev. 2008, 37 (1) 109 122 DOI: 10.1039/B704456A
  24. 24
    Vijayakumar, C.; Praveen, V. K.; Kartha, K. K.; Ajayaghosh, A. Phys. Chem. Chem. Phys. 2011, 13 (11) 4942 4949 DOI: 10.1039/c0cp02110e
  25. 25
    Sandeep, A.; Praveen, V. K.; Kartha, K. K.; Karunakaran, V.; Ajayaghosh, A. Chem. Sci. 2016, 7 (7) 4460 4467 DOI: 10.1039/C6SC00629A
  26. 26
    Krieg, E.; Bastings, M. M. C.; Besenius, P.; Rybtchinski, B. Chem. Rev. 2016, 116 (4) 2414 2477 DOI: 10.1021/acs.chemrev.5b00369
  27. 27
    Sanders, A. M.; Dawidczyk, T. J.; Katz, H. E.; Tovar, J. D. ACS Macro Lett. 2012, 1 (11) 1326 1329 DOI: 10.1021/mz3004665
  28. 28
    Besar, K.; Ardoña, H. A. M.; Tovar, J. D.; Katz, H. E. ACS Nano 2015, 9 (12) 12401 12409 DOI: 10.1021/acsnano.5b05752
  29. 29
    Wall, B. D.; Diegelmann, S. R.; Zhang, S.; Dawidczyk, T. J.; Wilson, W. L.; Katz, H. E.; Mao, H.-Q.; Tovar, J. D. Adv. Mater. 2011, 23 (43) 5009 5014 DOI: 10.1002/adma.201102963
  30. 30
    Liyanage, W.; Ardoña, H. A. M.; Mao, H. Q.; Tovar, J. D. Bioconjugate Chem. 2017, 28 (3) 751 759 DOI: 10.1021/acs.bioconjchem.6b00593
  31. 31
    Du, X.; Zhou, J.; Shi, J.; Xu, B. Chem. Rev. 2015, 115 (24) 13165 13307 DOI: 10.1021/acs.chemrev.5b00299
  32. 32
    Boekhoven, J.; Stupp, S. I. Adv. Mater. 2014, 26 (11) 1642 1659 DOI: 10.1002/adma.201304606
  33. 33
    Arslan, E.; Garip, I. C.; Gulseren, G.; Tekinay, A. B.; Guler, M. O. Adv. Healthcare Mater. 2014, 3 (9) 1357 1376 DOI: 10.1002/adhm.201300491
  34. 34
    Loo, Y.; Goktas, M.; Tekinay, A. B.; Guler, M. O.; Hauser, C. A. E.; Mitraki, A. Adv. Healthcare Mater. 2015, 4 (16) 2557 2586 DOI: 10.1002/adhm.201500402
  35. 35
    Ardoña, H. A. M.; Tovar, J. D. Chem. Sci. 2015, 6 (2) 1474 1484 DOI: 10.1039/C4SC03122A
  36. 36
    Sanders, A. M.; Magnanelli, T. J.; Bragg, A. E.; Tovar, J. D. J. Am. Chem. Soc. 2016, 138 (10) 3362 3370 DOI: 10.1021/jacs.5b12001
  37. 37
    Draper, E. R.; Lee, J. R.; Wallace, M.; Jäckel, F.; Cowan, A. J.; Adams, D. J. Chem. Sci. 2016, 7 (10) 6499 6505 DOI: 10.1039/C6SC02644C
  38. 38
    Nakayama, T.; Tashiro, K.; Takei, T.; Yamamoto, Y. Chem. Lett. 2017, 46 (4) 423 425 DOI: 10.1246/cl.161112
  39. 39
    Sugiyasu, K.; Kawano, S.-i.; Fujita, N.; Shinkai, S. Chem. Mater. 2008, 20 (9) 2863 2865 DOI: 10.1021/cm800043b
  40. 40
    Besenius, P. J. Polym. Sci., Part A: Polym. Chem. 2017, 55 (1) 34 78 DOI: 10.1002/pola.28385
  41. 41
    Li, B.; Li, S.; Zhou, Y.; Ardoña, H. A. M.; Valverde, L. R.; Wilson, W. L.; Tovar, J. D.; Schroeder, C. M. ACS Appl. Mater. Interfaces 2017, 9 (4) 3977 3984 DOI: 10.1021/acsami.6b15068
  42. 42
    Morris, K. L.; Chen, L.; Raeburn, J.; Sellick, O. R.; Cotanda, P.; Paul, A.; Griffiths, P. C.; King, S. M.; O’Reilly, R. K.; Serpell, L. C.; Adams, D. J. Nat. Commun. 2013, 4, 1 6 DOI: 10.1038/ncomms2499
  43. 43
    Draper, E. R.; Eden, E. G. B.; McDonald, T. O.; Adams, D. J. Nat. Chem. 2015, 7 (10) 848 852 DOI: 10.1038/nchem.2347
  44. 44
    Wallace, M.; Iggo, J. A.; Adams, D. J. Soft Matter 2015, 11 (39) 7739 7747 DOI: 10.1039/C5SM01760B
  45. 45
    Castilla, A. M.; Wallace, M.; Mears, L. L. E.; Draper, E. R.; Doutch, J.; Rogers, S.; Adams, D. J. Soft Matter 2016, 12 (37) 7848 7854 DOI: 10.1039/C6SM01194B
  46. 46
    Draper, E. R.; Wallace, M.; Schweins, R.; Poole, R. J.; Adams, D. J. Langmuir 2017, 33 (9) 2387 2395 DOI: 10.1021/acs.langmuir.7b00326
  47. 47
    Korevaar, P. A.; Newcomb, C. J.; Meijer, E. W.; Stupp, S. I. J. Am. Chem. Soc. 2014, 136 (24) 8540 8543 DOI: 10.1021/ja503882s
  48. 48
    Tantakitti, F.; Boekhoven, J.; Wang, X.; Kazantsev, R. V.; Yu, T.; Li, J.; Zhuang, E.; Zandi, R.; Ortony, J. H.; Newcomb, C. J.; Palmer, L. C.; Shekhawat, G. S.; de la Cruz, M. O.; Schatz, G. C.; Stupp, S. I. Nat. Mater. 2016, 15 (4) 469 476 DOI: 10.1038/nmat4538
  49. 49
    Raeburn, J.; Cardoso, A. Z.; Adams, D. J. Chem. Soc. Rev. 2013, 42 (12) 5143 5156 DOI: 10.1039/c3cs60030k
  50. 50
    Ajayaghosh, A.; Vijayakumar, C.; Praveen, V. K.; Babu, S. S.; Varghese, R. J. Am. Chem. Soc. 2006, 128 (22) 7174 7175 DOI: 10.1021/ja0621905
  51. 51
    Ardoña, H. A. M.; Besar, K.; Togninalli, M.; Katz, H. E.; Tovar, J. D. J. Mater. Chem. C 2015, 3 (25) 6505 6514 DOI: 10.1039/C5TC00100E
  52. 52
    Pratihar, P.; Ghosh, S.; Stepanenko, V.; Patwardhan, S.; Grozema, F. C.; Siebbeles, L. D. A.; Würthner, F. Beilstein J. Org. Chem. 2010, 6 (1) 1070 1078 DOI: 10.3762/bjoc.6.122
  53. 53
    Guo, Z.; Song, Y.; Gong, R.; Mu, Y.; Jiang, Y.; Li, M.; Wan, X. Supramol. Chem. 2014, 26 (5–6) 383 391 DOI: 10.1080/10610278.2013.844810
  54. 54
    Stone, D. A.; Hsu, L.; Stupp, S. I. Soft Matter 2009, 5 (10) 1990 1993 DOI: 10.1039/b904326h
  55. 55
    Aggeli, A.; Nyrkova, I. A.; Bell, M.; Harding, R.; Carrick, L.; McLeish, T. C. B.; Semenov, A. N.; Boden, N. Proc. Natl. Acad. Sci. U. S. A. 2001, 98 (21) 11857 11862 DOI: 10.1073/pnas.191250198
  56. 56
    Manning, M. C.; Illangasekare, M.; Woody, R. W. Biophys. Chem. 1988, 31 (1–2) 77 86 DOI: 10.1016/0301-4622(88)80011-5

Cited By

This article is cited by 96 publications.

  1. Paul Hoschtettler, Guillaume Pickaert, Alain Carvalho, Marie-Christine Averlant-Petit, Loïc Stefan. Highly Synergistic Properties of Multicomponent Hydrogels Thanks to Cooperative Nucleopeptide Assemblies. Chemistry of Materials 2023, 35 (11) , 4259-4275. https://doi.org/10.1021/acs.chemmater.3c00308
  2. Jessie P. Dibble, Scott R. Deboer, Mahlet Mersha, Thomas J. Robinson, Ryan J. Felling, Steven R. Zeiler, John D. Tovar. In Vivo Formation and Tracking of π-Peptide Nanostructures. ACS Applied Materials & Interfaces 2023, 15 (21) , 25091-25097. https://doi.org/10.1021/acsami.2c04598
  3. William R. Hollingsworth, Anna R. Johnston, Manping Jia, Le Luo, Yunjeong Park, Walter Meier, Jack Palmer, Marco Rolandi, Alexander L. Ayzner. Influence of Backbone Regioregularity on the Optoelectronic and Mechanical Response of Conjugated Polyelectrolyte-Based Hydrogels. The Journal of Physical Chemistry B 2023, 127 (10) , 2277-2285. https://doi.org/10.1021/acs.jpcb.3c00152
  4. Andrew L. Ferguson, John D. Tovar. Evolution of π-Peptide Self-Assembly: From Understanding to Prediction and Control. Langmuir 2022, 38 (50) , 15463-15475. https://doi.org/10.1021/acs.langmuir.2c02399
  5. Gregory M. Pitch, Levi N. Matsushima, Yannick Kraemer, Eric A. Dailing, Alexander L. Ayzner. Energy Transfer in Aqueous Light Harvesting Antennae Based on Brush-like Inter-Conjugated Polyelectrolyte Complexes. Macromolecules 2022, 55 (23) , 10302-10311. https://doi.org/10.1021/acs.macromol.2c01291
  6. Sajena K. Saraswathi, Joshy Joseph. Thymine-Induced Dynamic Switching of Self-Assembled Nanofibers in Diaminotriazine-Functionalized Tetraphenylethylene Derivatives: Implications for One-Dimensional Molecular Devices. ACS Applied Nano Materials 2022, 5 (2) , 3018-3027. https://doi.org/10.1021/acsanm.2c00310
  7. Tomoyuki Koga, Aika Ikejiri, Nobuyuki Higashi. Narcissistic Self-Sorting of Amphiphilic Collagen-Inspired Peptides in Supramolecular Vesicular Assembly. Langmuir 2022, 38 (7) , 2294-2300. https://doi.org/10.1021/acs.langmuir.1c02978
  8. Kong M. Wong, Alicia S. Robang, Annabelle H. Lint, Yiming Wang, Xin Dong, Xingqing Xiao, Dillon T. Seroski, Renjie Liu, Qing Shao, Gregory A. Hudalla, Carol K. Hall, Anant K. Paravastu. Engineering β-Sheet Peptide Coassemblies for Biomaterial Applications. The Journal of Physical Chemistry B 2021, 125 (50) , 13599-13609. https://doi.org/10.1021/acs.jpcb.1c04873
  9. Fahmeed Sheehan, Deborah Sementa, Ankit Jain, Mohit Kumar, Mona Tayarani-Najjaran, Daniela Kroiss, Rein V. Ulijn. Peptide-Based Supramolecular Systems Chemistry. Chemical Reviews 2021, 121 (22) , 13869-13914. https://doi.org/10.1021/acs.chemrev.1c00089
  10. Dong Yang, Jianlei Han, Yutao Sang, Tonghan Zhao, Minghua Liu, Pengfei Duan. Steering Triplet–Triplet Annihilation Upconversion through Enantioselective Self-Assembly in a Supramolecular Gel. Journal of the American Chemical Society 2021, 143 (33) , 13259-13265. https://doi.org/10.1021/jacs.1c05927
  11. Kousik Gayen, Subir Paul, Soumyajit Hazra, Arindam Banerjee. Solvent-Directed Transformation of the Self-assembly and Optical Property of a Peptide-Appended Core-Substituted Naphthelenediimide and Selective Detection of Nitrite Ions in an Aqueous Medium. Langmuir 2021, 37 (31) , 9577-9587. https://doi.org/10.1021/acs.langmuir.1c01486
  12. Jessie P. Dibble, Clara Troyano-Valls, John D. Tovar. A Tale of Three Hydrophobicities: Impact of Constitutional Isomerism on Nanostructure Evolution and Electronic Communication in π-Conjugated Peptides. Macromolecules 2020, 53 (17) , 7263-7273. https://doi.org/10.1021/acs.macromol.0c01492
  13. Chuan Liu, Kaixuan Liu, Arindam Mukhopadhyay, Victor Paulino, Brianna Bernard, Jean-Hubert Olivier. Butadiyne-Bridged (Porphinato)Zinc(II) Chromophores Assemble into Free-Standing Nanosheets. Organometallics 2020, 39 (16) , 2984-2990. https://doi.org/10.1021/acs.organomet.0c00345
  14. Huda Shaikh, Xu-Hui Jin, Robert L. Harniman, Robert M. Richardson, George R. Whittell, Ian Manners. Solid-State Donor–Acceptor Coaxial Heterojunction Nanowires via Living Crystallization-Driven Self-Assembly. Journal of the American Chemical Society 2020, 142 (31) , 13469-13480. https://doi.org/10.1021/jacs.0c04975
  15. Santanu Panja, Ana M. Fuentes-Caparrós, Emily R. Cross, Leide Cavalcanti, Dave J. Adams. Annealing Supramolecular Gels by a Reaction Relay. Chemistry of Materials 2020, 32 (12) , 5264-5271. https://doi.org/10.1021/acs.chemmater.0c01483
  16. Edward R. Jira, Kirill Shmilovich, Tejaswini S. Kale, Andrew Ferguson, John D. Tovar, Charles M. Schroeder. Effect of Core Oligomer Length on the Phase Behavior and Assembly of π-Conjugated Peptides. ACS Applied Materials & Interfaces 2020, 12 (18) , 20722-20732. https://doi.org/10.1021/acsami.0c02095
  17. Koushik Acharyya, Soumalya Bhattacharyya, Hajar Sepehrpour, Shubhadip Chakraborty, Shuai Lu, Bingbing Shi, Xiaopeng Li, Partha Sarathi Mukherjee, Peter J. Stang. Self-Assembled Fluorescent Pt(II) Metallacycles as Artificial Light-Harvesting Systems. Journal of the American Chemical Society 2019, 141 (37) , 14565-14569. https://doi.org/10.1021/jacs.9b08403
  18. Kingshuk Basu, Biplab Mondal, Ayon Das Mahapatra, Nibedita Nandi, Durga Basak, Arindam Banerjee. Modulation of Semiconducting Behavior and a Change in Morphology upon Gelation of a Peptide Appended Naphthalenediimide. The Journal of Physical Chemistry C 2019, 123 (33) , 20558-20566. https://doi.org/10.1021/acs.jpcc.9b04414
  19. Chakkooth Vijayakumar, Kalathil K. Kartha, Bijitha Balan, Susanna Poulose, Masayuki Takeuchi. Protein-Assisted Supramolecular Control over Fluorescence Resonance Energy Transfer in Aqueous Medium. The Journal of Physical Chemistry C 2019, 123 (20) , 13141-13146. https://doi.org/10.1021/acs.jpcc.9b02002
  20. René P. M. Lafleur, Sandra M. C. Schoenmakers, Pranav Madhikar, Davide Bochicchio, Björn Baumeier, Anja R. A. Palmans, Giovanni M. Pavan, E. W. Meijer. Insights into the Kinetics of Supramolecular Comonomer Incorporation in Water. Macromolecules 2019, 52 (8) , 3049-3055. https://doi.org/10.1021/acs.macromol.9b00300
  21. Zhaoqianqi Feng, Huaimin Wang, Bing Xu. Instructed Assembly of Peptides for Intracellular Enzyme Sequestration. Journal of the American Chemical Society 2018, 140 (48) , 16433-16437. https://doi.org/10.1021/jacs.8b10542
  22. Rachael A. Mansbach, Andrew L. Ferguson. Patchy Particle Model of the Hierarchical Self-Assembly of π-Conjugated Optoelectronic Peptides. The Journal of Physical Chemistry B 2018, 122 (44) , 10219-10236. https://doi.org/10.1021/acs.jpcb.8b05781
  23. William R. Hollingsworth, Timothy J. Magnanelli, Carmen Segura, Jamie D. Young, Arthur E. Bragg, Alexander L. Ayzner. Polyion Charge Ratio Determines Transition between Bright and Dark Excitons in Donor/Acceptor-Conjugated Polyelectrolyte Complexes. The Journal of Physical Chemistry C 2018, 122 (39) , 22280-22293. https://doi.org/10.1021/acs.jpcc.8b06195
  24. Mathieu Arribat, Emmanuelle Rémond, Sébastien Clément, Arie Van Der Lee, and Florine Cavelier . Phospholyl(borane) Amino Acids and Peptides: Stereoselective Synthesis and Fluorescent Properties with Large Stokes Shift. Journal of the American Chemical Society 2018, 140 (3) , 1028-1034. https://doi.org/10.1021/jacs.7b10954
  25. Bo Li, Lawrence R. Valverde, Fengjiao Zhang, Yuecheng Zhou, Songsong Li, Ying Diao, William L. Wilson, and Charles M. Schroeder . Macroscopic Alignment and Assembly of π-Conjugated Oligopeptides Using Colloidal Microchannels. ACS Applied Materials & Interfaces 2017, 9 (47) , 41586-41593. https://doi.org/10.1021/acsami.7b13978
  26. Zhaoqianqi Feng, Huaimin Wang, Xiaoyi Chen, Bing Xu. Self-Assembling Ability Determines the Activity of Enzyme-Instructed Self-Assembly for Inhibiting Cancer Cells. Journal of the American Chemical Society 2017, 139 (43) , 15377-15384. https://doi.org/10.1021/jacs.7b07147
  27. Stefanie Dobitz, Matthew R. Aronoff, and Helma Wennemers . Oligoprolines as Molecular Entities for Controlling Distance in Biological and Material Sciences. Accounts of Chemical Research 2017, 50 (10) , 2420-2428. https://doi.org/10.1021/acs.accounts.7b00340
  28. Yuecheng Zhou, Bo Li, Songsong Li, Herdeline Ann M. Ardoña, William L. Wilson, John D. Tovar, and Charles M. Schroeder . Concentration-Driven Assembly and Sol–Gel Transition of π-Conjugated Oligopeptides. ACS Central Science 2017, 3 (9) , 986-994. https://doi.org/10.1021/acscentsci.7b00260
  29. Yi Qin, Qing‐Hui Ling, Yu‐Te Wang, Yi‐Xiong Hu, Lianrui Hu, Xiaoli Zhao, Dong Wang, Hai‐Bo Yang, Lin Xu, Ben Zhong Tang. Construction of Covalent Organic Cages with Aggregation‐Induced Emission Characteristics from Metallacages for Mimicking Light‐Harvesting Antenna. Angewandte Chemie 2023, 135 (36) https://doi.org/10.1002/ange.202308210
  30. Yi Qin, Qing‐Hui Ling, Yu‐Te Wang, Yi‐Xiong Hu, Lianrui Hu, Xiaoli Zhao, Dong Wang, Hai‐Bo Yang, Lin Xu, Ben Zhong Tang. Construction of Covalent Organic Cages with Aggregation‐Induced Emission Characteristics from Metallacages for Mimicking Light‐Harvesting Antenna. Angewandte Chemie International Edition 2023, 62 (36) https://doi.org/10.1002/anie.202308210
  31. Chengqian Yuan, Qi Li, Ruirui Xing, Junbai Li, Xuehai Yan. Peptide self-assembly through liquid-liquid phase separation. Chem 2023, 9 (9) , 2425-2445. https://doi.org/10.1016/j.chempr.2023.05.009
  32. Ryou Kubota. Supramolecular–Polymer Composite Hydrogels: from In Situ Network Observation to Functional Properties. Bulletin of the Chemical Society of Japan 2023, https://doi.org/10.1246/bcsj.20230129
  33. Oudjaniyobi Simalou, Kodjo Eloh, Agbekonyi Kokou Agbodan, Ran Lu. Aggregation and Emission Modulations of Two-Component Gel Phase Systems Induced by H-Bonds. Chemistry Africa 2023, 47 https://doi.org/10.1007/s42250-023-00731-2
  34. Ze‐Fan Yao, Yuyao Kuang, Phillip Kohl, Youli Li, Herdeline Ann M. Ardoña. Carbodiimide‐Fueled Assembly of π‐Conjugated Peptides Regulated by Electrostatic Interactions**. ChemSystemsChem 2023, 5 (4) https://doi.org/10.1002/syst.202300003
  35. Yiran Liu, Hanting Wang, Penghui Zhang, Zhixia Wang, Xuan Dong, Menghua Du, Yuanyuan Wang, Lukang Ji. Solvent-regulated energy transfer efficiency and white light emitting in amphiphilic glutamide-cyanostilbene based supramolecular gel. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 655 , 130209. https://doi.org/10.1016/j.colsurfa.2022.130209
  36. Yi-Meng Duan, Kun-Peng Wang, Qi Zhang, Shaojin Chen, Zhi-Qiang Hu. Artificial light-harvesting systems based on self-assembled fluorescent palladium(II)-metallacycle in aqueous solution. Dyes and Pigments 2022, 207 , 110749. https://doi.org/10.1016/j.dyepig.2022.110749
  37. Kirill Shmilovich, Yifan Yao, John D. Tovar, Howard E. Katz, André Schleife, Andrew L. Ferguson. Computational discovery of high charge mobility self-assembling π-conjugated peptides. Molecular Systems Design & Engineering 2022, 7 (5) , 447-459. https://doi.org/10.1039/D2ME00017B
  38. Dongdong Wu, Hai Lei, Xian Xie, Liang Zhou, Peng Zheng, Yi Cao, Yan Zhang. Self-sorting double network hydrogels with photo-definable biochemical cues as artificial synthetic extracellular matrix. Nano Research 2022, 15 (5) , 4294-4301. https://doi.org/10.1007/s12274-022-4089-9
  39. Jack Palmer, Carmen J. Segura, Levi Matsushima, Benjamin Abrams, Hsiau-Wei Lee, Alexander L. Ayzner. Conjugated polyelectrolyte-based ternary exciton funnels via liposome scaffolds. Molecular Systems Design & Engineering 2022, 7 (4) , 392-402. https://doi.org/10.1039/D1ME00139F
  40. Qianwei Liu, Bixin Jin, Qin Li, Huanzhi Yang, Yunjun Luo, Xiaoyu Li. Self-sorting assembly of artificial building blocks. Soft Matter 2022, 18 (13) , 2484-2499. https://doi.org/10.1039/D2SM00153E
  41. Huimin Chen, Tianrui Zhang, Yongqi Tian, Lijun You, Yan Huang, Shaoyun Wang. Novel self-assembling peptide hydrogel with pH-tunable assembly microstructure, gel mechanics and the entrapment of curcumin. Food Hydrocolloids 2022, 124 , 107338. https://doi.org/10.1016/j.foodhyd.2021.107338
  42. Cristina Gila-Vilchez, Mari C. Mañas-Torres, Juan A. González-Vera, Francisco Franco-Montalban, Juan A. Tamayo, Francisco Conejero-Lara, Juan Manuel Cuerva, Modesto T. Lopez-Lopez, Angel Orte, Luis Álvarez de Cienfuegos. Insights into the co-assemblies formed by different aromatic short-peptide amphiphiles. Polymer Chemistry 2021, 12 (47) , 6832-6845. https://doi.org/10.1039/D1PY01366A
  43. Jon Babi, Linglan Zhu, Angela Lin, Azalea Uva, Hana El‐Haddad, Atang Peloewetse, Helen Tran. Self‐assembled free‐floating nanomaterials from sequence‐defined polymers. Journal of Polymer Science 2021, 59 (21) , 2378-2404. https://doi.org/10.1002/pol.20210366
  44. Mingyang Ji, Zhaoyang Liu. Construction of spatially organized, peptide/peptide derivative containing nanocomposites. Materials Advances 2021, 2 (18) , 5803-5823. https://doi.org/10.1039/D1MA00400J
  45. Matthew Mulvee, Natasa Vasiljevic, Stephen Mann, Avinash J. Patil. Stimuli-Responsive Nucleotide–Amino Acid Hybrid Supramolecular Hydrogels. Gels 2021, 7 (3) , 146. https://doi.org/10.3390/gels7030146
  46. Anna Fortunato, Alessandro Sanzone, Sara Mattiello, Luca Beverina, Miriam Mba. The pH- and salt-controlled self-assembly of [1]benzothieno[3,2- b ][1]-benzothiophene–peptide conjugates in supramolecular hydrogels. New Journal of Chemistry 2021, 45 (30) , 13389-13398. https://doi.org/10.1039/D1NJ02294F
  47. Zohar A. Arnon, Topaz Kreiser, Boris Yakimov, Noam Brown, Ruth Aizen, Shira Shaham-Niv, Pandeeswar Makam, Muhammad Nawaz Qaisrani, Emiliano Poli, Antonella Ruggiero, Inna Slutsky, Ali Hassanali, Evgeny Shirshin, Davide Levy, Ehud Gazit. On-off transition and ultrafast decay of amino acid luminescence driven by modulation of supramolecular packing. iScience 2021, 24 (7) , 102695. https://doi.org/10.1016/j.isci.2021.102695
  48. Ryo Ohtani, Yuka Anegawa, Hikaru Watanabe, Yutaro Tajima, Masanao Kinoshita, Nobuaki Matsumori, Kenichi Kawano, Saeko Yanaka, Koichi Kato, Masaaki Nakamura, Masaaki Ohba, Shinya Hayami. Metal Complex Lipids for Fluid–Fluid Phase Separation in Coassembled Phospholipid Membranes. Angewandte Chemie International Edition 2021, 60 (24) , 13603-13608. https://doi.org/10.1002/anie.202102774
  49. Ryo Ohtani, Yuka Anegawa, Hikaru Watanabe, Yutaro Tajima, Masanao Kinoshita, Nobuaki Matsumori, Kenichi Kawano, Saeko Yanaka, Koichi Kato, Masaaki Nakamura, Masaaki Ohba, Shinya Hayami. Metal Complex Lipids for Fluid–Fluid Phase Separation in Coassembled Phospholipid Membranes. Angewandte Chemie 2021, 133 (24) , 13715-13720. https://doi.org/10.1002/ange.202102774
  50. Swathi Vanaja Chandrasekharan, Nithiyanandan Krishnan, Siriki Atchimnaidu, Gowtham Raj, Anusree Krishna P. K., Soumya Sagar, Suresh Das, Reji Varghese. Blue-emissive two-component supergelator with aggregation-induced enhanced emission. RSC Advances 2021, 11 (32) , 19856-19863. https://doi.org/10.1039/D1RA03751J
  51. Charlotte H. Chen, Liam C. Palmer, Samuel I. Stupp. Self-sorting in supramolecular assemblies. Soft Matter 2021, 17 (14) , 3902-3912. https://doi.org/10.1039/D1SM00113B
  52. Gourab Das, Sandeep Cherumukkil, Akhil Padmakumar, Vijay B. Banakar, Vakayil K. Praveen, Ayyappanpillai Ajayaghosh. Tweaking a BODIPY Spherical Self‐Assembly to 2D Supramolecular Polymers Facilitates Excited‐State Cascade Energy Transfer. Angewandte Chemie 2021, 133 (14) , 7930-7938. https://doi.org/10.1002/ange.202015390
  53. Gourab Das, Sandeep Cherumukkil, Akhil Padmakumar, Vijay B. Banakar, Vakayil K. Praveen, Ayyappanpillai Ajayaghosh. Tweaking a BODIPY Spherical Self‐Assembly to 2D Supramolecular Polymers Facilitates Excited‐State Cascade Energy Transfer. Angewandte Chemie International Edition 2021, 60 (14) , 7851-7859. https://doi.org/10.1002/anie.202015390
  54. Kaixuan Liu, Victor Paulino, Arindam Mukhopadhyay, Brianna Bernard, Amar Kumbhar, Chuan Liu, Jean-Hubert Olivier. How to reprogram the excitonic properties and solid-state morphologies of π-conjugated supramolecular polymers. Physical Chemistry Chemical Physics 2021, 23 (4) , 2703-2714. https://doi.org/10.1039/D0CP04819D
  55. Chih-Wei Chu, Christoph A. Schalley. Recent Advances on Supramolecular Gels: From Stimuli-Responsive Gels to Co-Assembled and Self-Sorted Systems. Organic Materials 2021, 03 (01) , 025-040. https://doi.org/10.1055/s-0040-1722263
  56. John D. Tovar. Repurposing aromaticity for organic electronics: Making, breaking, and stacking π‐circuits. Journal of the Chinese Chemical Society 2021, 68 (1) , 51-58. https://doi.org/10.1002/jccs.202000524
  57. Ryou Kubota, Kazutoshi Nagao, Wataru Tanaka, Ryotaro Matsumura, Takuma Aoyama, Kenji Urayama, Itaru Hamachi. Control of seed formation allows two distinct self-sorting patterns of supramolecular nanofibers. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-17984-x
  58. Krishnendu Jalani, Anjali Devi Das, Ranjan Sasmal, Sarit S. Agasti, Subi J. George. Transient dormant monomer states for supramolecular polymers with low dispersity. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-17799-w
  59. Chengqian Yuan, Mengyao Yang, Xiaokang Ren, Qianli Zou, Xuehai Yan. Porphyrin/Ionic‐Liquid Co‐assembly Polymorphism Controlled by Liquid–Liquid Phase Separation. Angewandte Chemie International Edition 2020, 59 (40) , 17456-17460. https://doi.org/10.1002/anie.202007459
  60. Chengqian Yuan, Mengyao Yang, Xiaokang Ren, Qianli Zou, Xuehai Yan. Porphyrin/Ionic‐Liquid Co‐assembly Polymorphism Controlled by Liquid–Liquid Phase Separation. Angewandte Chemie 2020, 132 (40) , 17609-17613. https://doi.org/10.1002/ange.202007459
  61. Anna K. Patterson, David K. Smith. Two-component supramolecular hydrogel for controlled drug release. Chemical Communications 2020, 56 (75) , 11046-11049. https://doi.org/10.1039/D0CC03962D
  62. Ivan R. Sasselli, Zois Syrgiannis. Small Molecules Organic Co‐Assemblies as Functional Nanomaterials. European Journal of Organic Chemistry 2020, 2020 (33) , 5305-5318. https://doi.org/10.1002/ejoc.202000529
  63. Aritra Sarkar, Jonas C. Kölsch, Christian M. Berač, Akhil Venugopal, Ranjan Sasmal, Ronja Otter, Pol Besenius, Subi J. George. Impact of NDI‐Core Substitution on the pH‐Responsive Nature of Peptide‐Tethered Luminescent Supramolecular Polymers. ChemistryOpen 2020, 9 (3) , 346-350. https://doi.org/10.1002/open.202000017
  64. Sanjoy Mondal, Sujoy Das, Arun K. Nandi. A review on recent advances in polymer and peptide hydrogels. Soft Matter 2020, 16 (6) , 1404-1454. https://doi.org/10.1039/C9SM02127B
  65. Huimin Xue, Xianbao Li, Keqing Wang, Wei Cui, Jie Zhao, Jinbo Fei, Junbai Li. Solvent-tunable dipeptide-based nanostructures with enhanced optical-to-electrical transduction. Chemical Communications 2019, 55 (87) , 13136-13139. https://doi.org/10.1039/C9CC07520H
  66. Nabila Mehwish, Xiaoqiu Dou, Chuanliang Feng. Trends in design of C2-symmetric supramolecular chiral gelators. European Polymer Journal 2019, 117 , 236-253. https://doi.org/10.1016/j.eurpolymj.2019.05.034
  67. Rashmi Jyoti Das, Kingsuk Mahata. Mutualistic benefit in the self-sorted co-aggregates of peri -naphthoindigo and a 4-amino-1,8-naphthalimide derivative. Soft Matter 2019, 15 (26) , 5282-5286. https://doi.org/10.1039/C9SM00454H
  68. A. López-Andarias, C. Atienza, J. López-Andarias, W. Matsuda, T. Sakurai, S. Seki, N. Martín. Assembly effect on the charge carrier mobility in quaterthiophene-based n/p-materials. Journal of Materials Chemistry C 2019, 7 (22) , 6649-6655. https://doi.org/10.1039/C9TC00165D
  69. Nellie A. K. Ochs, Urszula Lewandowska, Wojciech Zajaczkowski, Stefano Corra, Stephan Reger, Andreas Herdlitschka, Sylvia Schmid, Wojciech Pisula, Klaus Müllen, Peter Bäuerle, Helma Wennemers. Oligoprolines guide the self-assembly of quaterthiophenes. Chemical Science 2019, 10 (20) , 5391-5396. https://doi.org/10.1039/C8SC05742G
  70. Sung‐ju Choi, Soo hyun Kwon, Yong‐beom Lim. 3D 2 Self‐Assembling Janus Peptide Dendrimers with Tailorable Supermultivalency. Advanced Functional Materials 2019, 29 (9) https://doi.org/10.1002/adfm.201808020
  71. Lukang Ji, Yutao Sang, Guanghui Ouyang, Dong Yang, Pengfei Duan, Yuqian Jiang, Minghua Liu. Cooperative Chirality and Sequential Energy Transfer in a Supramolecular Light‐Harvesting Nanotube. Angewandte Chemie International Edition 2019, 58 (3) , 844-848. https://doi.org/10.1002/anie.201812642
  72. Lukang Ji, Yutao Sang, Guanghui Ouyang, Dong Yang, Pengfei Duan, Yuqian Jiang, Minghua Liu. Cooperative Chirality and Sequential Energy Transfer in a Supramolecular Light‐Harvesting Nanotube. Angewandte Chemie 2019, 131 (3) , 854-858. https://doi.org/10.1002/ange.201812642
  73. Nadav Amdursky, Eric Daniel Głowacki, Paul Meredith. Macroscale Biomolecular Electronics and Ionics. Advanced Materials 2019, 31 (3) https://doi.org/10.1002/adma.201802221
  74. Rahi M. Reja, Rajkumar Misra, Hosahudya N. Gopi. Engineering Two‐Helix Motifs through NDI Linker: A Modular Approach for Charge Transferable Conductive Foldamers Design. ChemNanoMat 2019, 5 (1) , 51-54. https://doi.org/10.1002/cnma.201800366
  75. Jie Li, Xuewen Du, Devon J. Powell, Rong Zhou, Junfeng Shi, Hongjian He, Zhaoqianqi Feng, Bing Xu. Down‐regulating Proteolysis to Enhance Anticancer Activity of Peptide Nanofibers. Chemistry – An Asian Journal 2018, 13 (22) , 3464-3468. https://doi.org/10.1002/asia.201800875
  76. Charles Jarrett‐Wilkins, Xiaoming He, Henry E. Symons, Robert L. Harniman, Charl F. J. Faul, Ian Manners. Living Supramolecular Polymerisation of Perylene Diimide Amphiphiles by Seeded Growth under Kinetic Control. Chemistry – A European Journal 2018, 24 (58) , 15556-15565. https://doi.org/10.1002/chem.201801424
  77. Moran Amit, Sivan Yuran, Ehud Gazit, Meital Reches, Nurit Ashkenasy. Tailor‐Made Functional Peptide Self‐Assembling Nanostructures. Advanced Materials 2018, 30 (41) https://doi.org/10.1002/adma.201707083
  78. Urszula Lewandowska, Stefano Corra, Wojciech Zajaczkowski, Nellie A. K. Ochs, Michal S. Shoshan, Junki Tanabe, Sebastian Stappert, Chen Li, Eiji Yashima, Wojciech Pisula, Klaus Müllen, Helma Wennemers. Positional Isomers of Chromophore–Peptide Conjugates Self‐Assemble into Different Morphologies. Chemistry – A European Journal 2018, 24 (48) , 12623-12629. https://doi.org/10.1002/chem.201801545
  79. Silvio Panettieri, Rein V Ulijn. Energy landscaping in supramolecular materials. Current Opinion in Structural Biology 2018, 51 , 9-18. https://doi.org/10.1016/j.sbi.2018.02.001
  80. Jamie S. Foster, Andrew W. Prentice, Ross S. Forgan, Martin J. Paterson, Gareth O. Lloyd. Targetable Mechanical Properties by Switching between Self‐Sorting and Co‐assembly with In Situ Formed Tripodal Ketoenamine Supramolecular Hydrogels. ChemNanoMat 2018, 4 (8) , 853-859. https://doi.org/10.1002/cnma.201800198
  81. Bryce A. Thurston, Andrew L. Ferguson. Machine learning and molecular design of self-assembling -conjugated oligopeptides. Molecular Simulation 2018, 44 (11) , 930-945. https://doi.org/10.1080/08927022.2018.1469754
  82. Alicia López‐Andarias, Javier López‐Andarias, Carmen Atienza, Francisco J. Chichón, José L. Carrascosa, Nazario Martín. Tuning Optoelectronic and Chiroptic Properties of Peptide‐Based Materials by Controlling the Pathway Complexity. Chemistry – A European Journal 2018, 24 (30) , 7755-7760. https://doi.org/10.1002/chem.201801238
  83. Taku Ogawa, Nobuhiro Yanai, Hironori Kouno, Nobuo Kimizuka. Kinetically controlled crystal growth approach to enhance triplet energy migration-based photon upconversion. Journal of Photonics for Energy 2018, 8 (02) , 1. https://doi.org/10.1117/1.JPE.8.022003
  84. Silvia Bartocci, José Augusto Berrocal, Paola Guarracino, Maxime Grillaud, Lorenzo Franco, Miriam Mba. Peptide‐Driven Charge‐Transfer Organogels Built from Synergetic Hydrogen Bonding and Pyrene–Naphthalenediimide Donor–Acceptor Interactions. Chemistry – A European Journal 2018, 24 (12) , 2920-2928. https://doi.org/10.1002/chem.201704487
  85. Cai-Li Sun, Hui-Qing Peng, Li-Ya Niu, Yu-Zhe Chen, Li-Zhu Wu, Chen-Ho Tung, Qing-Zheng Yang. Artificial light-harvesting supramolecular polymeric nanoparticles formed by pillar[5]arene-based host–guest interaction. Chemical Communications 2018, 54 (9) , 1117-1120. https://doi.org/10.1039/C7CC09315B
  86. Pandeeswar Makam, Ehud Gazit. Minimalistic peptide supramolecular co-assembly: expanding the conformational space for nanotechnology. Chemical Society Reviews 2018, 47 (10) , 3406-3420. https://doi.org/10.1039/C7CS00827A
  87. Elliot Christ, Dominique Collin, Jean-Philippe Lamps, Philippe J. Mésini. Variable temperature NMR of organogelators: the intensities of a single sample describe the full phase diagram. Physical Chemistry Chemical Physics 2018, 20 (14) , 9644-9650. https://doi.org/10.1039/C8CP00009C
  88. Danielle M. Raymond, Bradley L. Nilsson. Multicomponent peptide assemblies. Chemical Society Reviews 2018, 47 (10) , 3659-3720. https://doi.org/10.1039/C8CS00115D
  89. Babatunde O. Okesola, Alvaro Mata. Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design. Chemical Society Reviews 2018, 47 (10) , 3721-3736. https://doi.org/10.1039/C8CS00121A
  90. John D Tovar. Photon management in supramolecular peptide nanomaterials. Bioinspiration & Biomimetics 2018, 13 (1) , 015004. https://doi.org/10.1088/1748-3190/aa9685
  91. Ana M. Castilla, Emily R. Draper, Michael C. Nolan, Christopher Brasnett, Annela Seddon, Laura L. E. Mears, Nathan Cowieson, Dave J. Adams. Self-sorted Oligophenylvinylene and Perylene Bisimide Hydrogels. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-08644-0
  92. Aritra Sarkar, Shikha Dhiman, Aditya Chalishazar, Subi J. George. Visualization of Stereoselective Supramolecular Polymers by Chirality‐Controlled Energy Transfer. Angewandte Chemie International Edition 2017, 56 (44) , 13767-13771. https://doi.org/10.1002/anie.201708267
  93. Aritra Sarkar, Shikha Dhiman, Aditya Chalishazar, Subi J. George. Visualization of Stereoselective Supramolecular Polymers by Chirality‐Controlled Energy Transfer. Angewandte Chemie 2017, 129 (44) , 13955-13959. https://doi.org/10.1002/ange.201708267
  94. Shibaji Basak, Ishwar Singh, Annaleizle Ferranco, Jebreil Syed, Heinz‐Bernhard Kraatz. On the Role of Chirality in Guiding the Self‐Assembly of Peptides. Angewandte Chemie 2017, 129 (43) , 13473-13477. https://doi.org/10.1002/ange.201706162
  95. Shibaji Basak, Ishwar Singh, Annaleizle Ferranco, Jebreil Syed, Heinz‐Bernhard Kraatz. On the Role of Chirality in Guiding the Self‐Assembly of Peptides. Angewandte Chemie International Edition 2017, 56 (43) , 13288-13292. https://doi.org/10.1002/anie.201706162
  96. Holly McEwen, Eric Y. Du, Jitendra P. Mata, Pall Thordarson, Adam D. Martin. Tuning hydrogels through metal-based gelation triggers. Journal of Materials Chemistry B 2017, 5 (47) , 9412-9417. https://doi.org/10.1039/C7TB02140B
  • Abstract

    Figure 1

    Figure 1. (a) Molecular structures of the peptides studied herein and (b),(c) diagrams of the potential energy (e.g., resonance-energy transfer (RET)) and electron-transfer events occurring within a two-component peptidic nanostructure with three π-electron units for (b) self-sorted and (c) randomly coassembled systems.

    Figure 2

    Figure 2. Monitoring of peptide assembly and hydrogel formation for 1:1 OPV3 and OT4-Ac solutions prepared with 30 mg/mL GdL via (a) 1H NMR and (b) rheology (G′ = solid circles; G″ = smaller circles). Each peptide component is at 5 mg/mL (total of 10 mg/mL peptides for the 1:1 mixed sample).

    Figure 3

    Figure 3. Fiber X-ray diffraction data for hydrogels prepared with 30 mg/mL GdL, composed of one peptide component ((a) OPV3 only; (b) OT4-Ac only) and two peptide components ((c) OPV3/OT4-NDI; (d) OPV3/OT4-Ac; both 1:1). Each peptide component is at 5 mg/mL (total of 10 mg/mL peptides for the 1:1 mixed samples).

    Figure 4

    Figure 4. TEM images of 1:1 mixed assemblies (3 μM peptide concentration for each component) of OPV3 with (a),(b) OT4-NDI or (c),(d) OT4-Ac (1:1) assembled via (a),(c) HCl addition and (b),(d) GdL (10 mg/mL) hydrolysis.

    Figure 5

    Figure 5. Solution-phase UV–vis absorption (a–c) and steady-state emission (d–f) spectra for GdL- (10 mg/mL) or HCl-assembled peptide homoassemblies of (a) OPV3 (blue), (b) OT4-Ac (red), and (c) OT4-NDI (black); solutions measured under different conditions: molecularly dissolved samples (---), (a),(d) with GdL (empty circles), (b),(e) with HCl (—), and (c),(f) with HCl, aged (...); [peptide] = 3 μM; X= Raman scatter of water.

    Figure 6

    Figure 6. Solution-phase steady-state PL spectra for mixed peptide structures of OPV3 with OT4-Ac (red) and with OT4-NDI (black) prepared with GdL (10 mg/mL) or HCl, measured under different conditions: (a–c) λexc= 350 nm; (d–f) λexc= 430 nm; (a) with GdL (empty circles), (b) with HCl (—), and (c) with HCl, aged (...); [OPV3] = 3 μM.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 56 other publications.

    1. 1
      Aida, T.; Meijer, E. W.; Stupp, S. I. Science 2012, 335 (6070) 813 817 DOI: 10.1126/science.1205962
    2. 2
      Webber, M. J.; Appel, E. A.; Meijer, E. W.; Langer, R. Nat. Mater. 2015, 15 (1) 13 26 DOI: 10.1038/nmat4474
    3. 3
      Tovar, J. D. Acc. Chem. Res. 2013, 46 (7) 1527 1537 DOI: 10.1021/ar3002969
    4. 4
      Jenkins, R. D.; Andrews, D. L. J. Chem. Phys. 2003, 118 (8) 3470 3479 DOI: 10.1063/1.1538611
    5. 5
      Kelley, R. F.; Shin, W. S.; Rybtchinski, B.; Sinks, L. E.; Wasielewski, M. R. J. Am. Chem. Soc. 2007, 129 (11) 3173 3181 DOI: 10.1021/ja0664741
    6. 6
      Peng, H.-Q.; Niu, L.-Y.; Chen, Y.-Z.; Wu, L.-Z.; Tung, C.-H.; Yang, Q.-Z. Chem. Rev. 2015, 115 (15) 7502 7542 DOI: 10.1021/cr5007057
    7. 7
      Ahrens, M. J.; Sinks, L. E.; Rybtchinski, B.; Liu, W.; Jones, B. A.; Giaimo, J. M.; Gusev, A. V.; Goshe, A. J.; Tiede, D. M.; Wasielewski, M. R. J. Am. Chem. Soc. 2004, 126 (26) 8284 8294 DOI: 10.1021/ja039820c
    8. 8
      Ziessel, R.; Ulrich, G.; Haefele, A.; Harriman, A. J. Am. Chem. Soc. 2013, 135 (30) 11330 11344 DOI: 10.1021/ja4049306
    9. 9
      Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2009, 42 (12) 1890 1898 DOI: 10.1021/ar900209b
    10. 10
      Praveen, V. K.; Ranjith, C.; Armaroli, N. Angew. Chem., Int. Ed. 2014, 53 (2) 365 368 DOI: 10.1002/anie.201306787
    11. 11
      Vijayakumar, C.; Praveen, V. K.; Ajayaghosh, A. Adv. Mater. 2009, 21 (20) 2059 2063 DOI: 10.1002/adma.200802932
    12. 12
      Abbel, R.; van der Weegen, R.; Pisula, W.; Surin, M.; Leclère, P.; Lazzaroni, R.; Meijer, E. W.; Schenning, A. P. H. J. Chem. - Eur. J. 2009, 15 (38) 9737 9746 DOI: 10.1002/chem.200900620
    13. 13
      Giansante, C.; Schafer, C.; Raffy, G.; Del Guerzo, A. J. Phys. Chem. C 2012, 116 (41) 21706 21716 DOI: 10.1021/jp3073188
    14. 14
      Sapsford, K. E.; Berti, L.; Medintz, I. L. Angew. Chem., Int. Ed. 2006, 45 (28) 4562 4589 DOI: 10.1002/anie.200503873
    15. 15
      Huang, Y.-S.; Yang, X.; Schwartz, E.; Lu, L. P.; Albert-Seifried, S.; Finlayson, C. E.; Koepf, M.; Kitto, H. J.; Ulgut, B.; Otten, M. B. J.; Cornelissen, J. J. L. M.; Nolte, R. J. M.; Rowan, A. E.; Friend, R. H. J. Phys. Chem. B 2011, 115 (7) 1590 1600 DOI: 10.1021/jp1071605
    16. 16
      Webb, J. E. A.; Chen, K.; Prasad, S. K. K.; Wojciechowski, J. P.; Falber, A.; Thordarson, P.; Hodgkiss, J. M. Phys. Chem. Chem. Phys. 2016, 18 (3) 1712 1719 DOI: 10.1039/C5CP06953J
    17. 17
      Fuckel, B.; Hinze, G.; Nolde, F.; Müllen, K.; Basché, T. J. Phys. Chem. A 2010, 114 (29) 7671 7676 DOI: 10.1021/jp103738a
    18. 18
      Stappert, S.; Li, C.; Müllen, K.; Basché, T. Chem. Mater. 2016, 28 (3) 906 914 DOI: 10.1021/acs.chemmater.5b04602
    19. 19
      Ghosh, S.; Praveen, V. K.; Ajayaghosh, A. Annu. Rev. Mater. Res. 2016, 46 (1) 235 262 DOI: 10.1146/annurev-matsci-070115-031557
    20. 20
      Praveen, V. K.; Ranjith, C.; Bandini, E.; Ajayaghosh, A.; Armaroli, N. Chem. Soc. Rev. 2014, 43 (12) 4222 4242 DOI: 10.1039/c3cs60406c
    21. 21
      Babu, S. S.; Praveen, V. K.; Ajayaghosh, A. Chem. Rev. 2014, 114 (4) 1973 2129 DOI: 10.1021/cr400195e
    22. 22
      Ajayaghosh, A.; Praveen, V. K.; Vijayakumar, C.; George, S. J. Angew. Chem., Int. Ed. 2007, 46 (33) 6260 6265 DOI: 10.1002/anie.200701925
    23. 23
      Ajayaghosh, A.; Praveen, V. K.; Vijayakumar, C. Chem. Soc. Rev. 2008, 37 (1) 109 122 DOI: 10.1039/B704456A
    24. 24
      Vijayakumar, C.; Praveen, V. K.; Kartha, K. K.; Ajayaghosh, A. Phys. Chem. Chem. Phys. 2011, 13 (11) 4942 4949 DOI: 10.1039/c0cp02110e
    25. 25
      Sandeep, A.; Praveen, V. K.; Kartha, K. K.; Karunakaran, V.; Ajayaghosh, A. Chem. Sci. 2016, 7 (7) 4460 4467 DOI: 10.1039/C6SC00629A
    26. 26
      Krieg, E.; Bastings, M. M. C.; Besenius, P.; Rybtchinski, B. Chem. Rev. 2016, 116 (4) 2414 2477 DOI: 10.1021/acs.chemrev.5b00369
    27. 27
      Sanders, A. M.; Dawidczyk, T. J.; Katz, H. E.; Tovar, J. D. ACS Macro Lett. 2012, 1 (11) 1326 1329 DOI: 10.1021/mz3004665
    28. 28
      Besar, K.; Ardoña, H. A. M.; Tovar, J. D.; Katz, H. E. ACS Nano 2015, 9 (12) 12401 12409 DOI: 10.1021/acsnano.5b05752
    29. 29
      Wall, B. D.; Diegelmann, S. R.; Zhang, S.; Dawidczyk, T. J.; Wilson, W. L.; Katz, H. E.; Mao, H.-Q.; Tovar, J. D. Adv. Mater. 2011, 23 (43) 5009 5014 DOI: 10.1002/adma.201102963
    30. 30
      Liyanage, W.; Ardoña, H. A. M.; Mao, H. Q.; Tovar, J. D. Bioconjugate Chem. 2017, 28 (3) 751 759 DOI: 10.1021/acs.bioconjchem.6b00593
    31. 31
      Du, X.; Zhou, J.; Shi, J.; Xu, B. Chem. Rev. 2015, 115 (24) 13165 13307 DOI: 10.1021/acs.chemrev.5b00299
    32. 32
      Boekhoven, J.; Stupp, S. I. Adv. Mater. 2014, 26 (11) 1642 1659 DOI: 10.1002/adma.201304606
    33. 33
      Arslan, E.; Garip, I. C.; Gulseren, G.; Tekinay, A. B.; Guler, M. O. Adv. Healthcare Mater. 2014, 3 (9) 1357 1376 DOI: 10.1002/adhm.201300491
    34. 34
      Loo, Y.; Goktas, M.; Tekinay, A. B.; Guler, M. O.; Hauser, C. A. E.; Mitraki, A. Adv. Healthcare Mater. 2015, 4 (16) 2557 2586 DOI: 10.1002/adhm.201500402
    35. 35
      Ardoña, H. A. M.; Tovar, J. D. Chem. Sci. 2015, 6 (2) 1474 1484 DOI: 10.1039/C4SC03122A
    36. 36
      Sanders, A. M.; Magnanelli, T. J.; Bragg, A. E.; Tovar, J. D. J. Am. Chem. Soc. 2016, 138 (10) 3362 3370 DOI: 10.1021/jacs.5b12001
    37. 37
      Draper, E. R.; Lee, J. R.; Wallace, M.; Jäckel, F.; Cowan, A. J.; Adams, D. J. Chem. Sci. 2016, 7 (10) 6499 6505 DOI: 10.1039/C6SC02644C
    38. 38
      Nakayama, T.; Tashiro, K.; Takei, T.; Yamamoto, Y. Chem. Lett. 2017, 46 (4) 423 425 DOI: 10.1246/cl.161112
    39. 39
      Sugiyasu, K.; Kawano, S.-i.; Fujita, N.; Shinkai, S. Chem. Mater. 2008, 20 (9) 2863 2865 DOI: 10.1021/cm800043b
    40. 40
      Besenius, P. J. Polym. Sci., Part A: Polym. Chem. 2017, 55 (1) 34 78 DOI: 10.1002/pola.28385
    41. 41
      Li, B.; Li, S.; Zhou, Y.; Ardoña, H. A. M.; Valverde, L. R.; Wilson, W. L.; Tovar, J. D.; Schroeder, C. M. ACS Appl. Mater. Interfaces 2017, 9 (4) 3977 3984 DOI: 10.1021/acsami.6b15068
    42. 42
      Morris, K. L.; Chen, L.; Raeburn, J.; Sellick, O. R.; Cotanda, P.; Paul, A.; Griffiths, P. C.; King, S. M.; O’Reilly, R. K.; Serpell, L. C.; Adams, D. J. Nat. Commun. 2013, 4, 1 6 DOI: 10.1038/ncomms2499
    43. 43
      Draper, E. R.; Eden, E. G. B.; McDonald, T. O.; Adams, D. J. Nat. Chem. 2015, 7 (10) 848 852 DOI: 10.1038/nchem.2347
    44. 44
      Wallace, M.; Iggo, J. A.; Adams, D. J. Soft Matter 2015, 11 (39) 7739 7747 DOI: 10.1039/C5SM01760B
    45. 45
      Castilla, A. M.; Wallace, M.; Mears, L. L. E.; Draper, E. R.; Doutch, J.; Rogers, S.; Adams, D. J. Soft Matter 2016, 12 (37) 7848 7854 DOI: 10.1039/C6SM01194B
    46. 46
      Draper, E. R.; Wallace, M.; Schweins, R.; Poole, R. J.; Adams, D. J. Langmuir 2017, 33 (9) 2387 2395 DOI: 10.1021/acs.langmuir.7b00326
    47. 47
      Korevaar, P. A.; Newcomb, C. J.; Meijer, E. W.; Stupp, S. I. J. Am. Chem. Soc. 2014, 136 (24) 8540 8543 DOI: 10.1021/ja503882s
    48. 48
      Tantakitti, F.; Boekhoven, J.; Wang, X.; Kazantsev, R. V.; Yu, T.; Li, J.; Zhuang, E.; Zandi, R.; Ortony, J. H.; Newcomb, C. J.; Palmer, L. C.; Shekhawat, G. S.; de la Cruz, M. O.; Schatz, G. C.; Stupp, S. I. Nat. Mater. 2016, 15 (4) 469 476 DOI: 10.1038/nmat4538
    49. 49
      Raeburn, J.; Cardoso, A. Z.; Adams, D. J. Chem. Soc. Rev. 2013, 42 (12) 5143 5156 DOI: 10.1039/c3cs60030k
    50. 50
      Ajayaghosh, A.; Vijayakumar, C.; Praveen, V. K.; Babu, S. S.; Varghese, R. J. Am. Chem. Soc. 2006, 128 (22) 7174 7175 DOI: 10.1021/ja0621905
    51. 51
      Ardoña, H. A. M.; Besar, K.; Togninalli, M.; Katz, H. E.; Tovar, J. D. J. Mater. Chem. C 2015, 3 (25) 6505 6514 DOI: 10.1039/C5TC00100E
    52. 52
      Pratihar, P.; Ghosh, S.; Stepanenko, V.; Patwardhan, S.; Grozema, F. C.; Siebbeles, L. D. A.; Würthner, F. Beilstein J. Org. Chem. 2010, 6 (1) 1070 1078 DOI: 10.3762/bjoc.6.122
    53. 53
      Guo, Z.; Song, Y.; Gong, R.; Mu, Y.; Jiang, Y.; Li, M.; Wan, X. Supramol. Chem. 2014, 26 (5–6) 383 391 DOI: 10.1080/10610278.2013.844810
    54. 54
      Stone, D. A.; Hsu, L.; Stupp, S. I. Soft Matter 2009, 5 (10) 1990 1993 DOI: 10.1039/b904326h
    55. 55
      Aggeli, A.; Nyrkova, I. A.; Bell, M.; Harding, R.; Carrick, L.; McLeish, T. C. B.; Semenov, A. N.; Boden, N. Proc. Natl. Acad. Sci. U. S. A. 2001, 98 (21) 11857 11862 DOI: 10.1073/pnas.191250198
    56. 56
      Manning, M. C.; Illangasekare, M.; Woody, R. W. Biophys. Chem. 1988, 31 (1–2) 77 86 DOI: 10.1016/0301-4622(88)80011-5
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b04006.

    • General synthesis procedures and experimental conditions; characterization data for peptides (1H NMR, ESI-MS, HPLC traces); pH titration curves; 1NMR stacked plots and data for monitoring OPV3 and OT4-NDI assembly with GdL; supplementary rheology data, TEM images, UV–vis absorption spectra, and CD spectra (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect