ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Living Polymerization of 2-Ethylthio-2-oxazoline and Postpolymerization Diversification

Cite this: J. Am. Chem. Soc. 2019, 141, 32, 12498–12501
Publication Date (Web):July 31, 2019
https://doi.org/10.1021/jacs.9b06009

Copyright © 2019 American Chemical Society. This publication is licensed under CC-BY-NC-ND.

  • Open Access

Article Views

7193

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (1 MB)
Supporting Info (1)»

Abstract

The postpolymerization modification of polymers produced by living polymerization is an attractive method to create precision nanomaterials. We describe the living cationic ring-opening polymerization of a 2-alkylthio-2-oxazoline to furnish a polythiocarbamate. The polythiocarbamate is activated toward substitution by N- and S-nucleophiles via oxidation of the S to an SO2. Mild substitution conditions provide broad functional group tolerance, constituting a versatile postpolymerization modification platform with access to a diversity of polyureas and polythiocarbamates. We further demonstrate the utility of this strategy by synthesizing and functionalizing block copolymers.

The ability to tailor chemical functionalities of polymers dictates their practical applications. The development of new functional polymers is often limited by the polymerization reaction, and small changes in monomers can compromise access to controllable compositions and molecular weights. (1,2) Postpolymerization modification (PPM) can address these challenges, wherein functional groups that would be incompatible with a polymerization can be used for the diversification of polymer structures. (1,2) Furthermore, in situ PPM within complex systems can confer stimuli-responsive properties, with implications in sensing, drug delivery, and dynamic materials. (3−6)

PPM platforms ideally utilize modification chemistries that are mild and specific, such as click chemistry or nucleophilic substitution of activated leaving groups. (1,7−10) PPM methods often employ polymers created by radical polymerization, whereas compatibility with cationic polymerizations constrains the available platforms for PPM. (2) Among the most extensively investigated monomers for cationic ring-opening polymerization (CROP) are cyclic imino ethers, such as oxazolines. (11,12) The living character of oxazoline polymerization enables controlled molecular weight and dispersity, as well as access to complex architectures such as block and graft copolymers. (13) Polyoxazolines have wide utility in biomedical and materials applications as a result of their desirable features including robust polymerization, biocompatibility, and chemical versatility. (14−16) Critical to these applications is the incorporation of functional groups that tailor the chemical, biological, thermomechanical, and other properties of the polymers (Figure 1). To this end, polyoxazolines with pendant alkenes and alkynes have been reported, allowing functionalization via click chemistries such as thiol–ene addition and azide–alkyne cycloaddition (Figure 1a). (5,17,18) Direct substitution by nucleophiles is often a more straightforward and versatile PPM method. Methyl ester-containing polyoxazolines undergo amidation with primary amines, but this method has limited scope, and to avoid harsh conditions additional manipulations were undertaken to convert the methyl ester to an activated ester (Figure 1a). (19−22) As such, the development of more general, versatile, and robust PPM strategies warrants further attention.

Figure 1

Figure 1. PPM strategies based on CROP of oxazoline derivatives. (a) Elaboration of polyoxazolines with pendant alkenes and alkynes by click chemistries, or with pendant esters by amidation (refs (17−22)). (b) Polymerization of 2-alkoxy-2-oxazolines (ref (25)). (c) This work: Living CROP of 2-ethylthio-2-oxazoline and postpolymerization functionalization.

Investigations of oxazolines beyond those with C-based substituents at the 2-position are limited. Miyamoto et al. disclosed the polymerization of cyclic amine-substituted oxazolines (i.e., pseudoureas), but the polymerization was hindered by substituents larger than pyrrolidinyl, and living character was not demonstrated. (23,24) The same group investigated the polymerization of 2-alkoxy-2-oxazolines (i.e., cyclic iminocarbonates) and found that pervasive chain transfer occurred as a result of nucleophilic attack of the monomer on the alkoxy group of the active chain end (Figure 1b), unless the monomer contained a bulky neopentoxy group. (25)

We were encouraged to explore the polymerization of novel oxazolines by reports of nucleophilic diversification of carbamates by displacement of the O-substituent. (26−28) Nonetheless, the substitution is particularly challenging for N,N-disubstituted carbamates and requires a highly activated leaving group (e.g., 4-nitrophenolate) or activation by a Lewis acid (e.g., AlMe3). (26,28) In these cases, however, the corresponding cyclic imino ether monomers are synthetically difficult to access and polymerize, and substitution conditions are harsh.

Our approach to create oxazolines for PPM was inspired by biological studies showing that thiocarbamate-based pesticides are oxidized to the sulfinyl or sulfonyl species in cells, upon which they act as potent S-carbamoylating agents. (29−33) As a result, we set out to create similar structures by the CROP of a 2-alkylthio-2-oxazoline (Figure 1c). We hypothesized that the alkylthio side chain would suppress chain transfer processes relative to the alkoxy side chain owing to the diminished driving force of the ensuing C═S vs C═O bond formation. Subsequently, postpolymerization activation of the thiocarbamates by oxidation would enable substitution by moderate nucleophiles. This scheme constitutes a versatile and atom-economical platform to access 2-substituted polyoxazolines—alternatively viewed as N,N-linked polyureas and polythiocarbamates—with broad functional group tolerance (Figure 1c).

The 2-ethylthio-2-oxazoline monomer (1) was synthesized in two steps from ethanolamine (34,35) and purified by distillation from CaH2 under reduced pressure. Monomer 1 was polymerized at 90 °C in PhCN using MeOTs as the initiator to yield polythiocarbamate P1 (Figure 2a). The polymerization was terminated at 8 h using N-phenylpiperazine, and 1H NMR end group analysis supports successful end-capping (Figure S3). We note that, based on the kinetics data in Figure 2e, monomer conversion is near completion (97%) at 8 h; when the terminating agent was added at 16 h instead of 8 h, end groups were not observed by 1H NMR, suggesting that chain-terminating side reactions do occur after prolonged heating at high monomer conversions. The structure of P1 was confirmed by 1H and 13C NMR, FT–IR, and MALDI–TOF MS analyses (Figures S12, S13, and S71 of the Supporting Information and 2b).

Figure 2

Figure 2. (a) CROP of 1 to give P1. (b) MALDI–TOF MS of a low-molecular weight, piperidine-terminated sample of P1. (c) Mn and Đ of P1 at various [M]/[I]. (d) Monitoring of Mn and Đ of P1 at increasing monomer conversion. (e) First-order kinetic analysis of the polymerization of 1. Mn and Đ determined by SEC with polystyrene standards; monomer conversion determined by NMR.

Paralleling the well-known CROP of 2-alkyl-2-oxazolines, the polymerization of 1 is living. To demonstrate this behavior, we polymerized 1 at various monomer-to-initiator ratios ([M]/[I]). The size exclusion chromatography (SEC) traces are monomodal and narrow (Figure S4), and Mn increased linearly with [M]/[I] while Đ remained low (≤1.3) and largely insensitive to Mn (Figure 2c). A single polymerization reaction monitored at various monomer conversion values displayed linear Mn vs conversion (Figure 2d). Additionally, the consumption of the monomer exhibited first-order kinetics (Figure 2e). These observations are consistent with a low incidence of chain transfer, which was anticipated with the alkylthio substituent.

The activation and substitution steps for PPM were developed using a small-molecule analog of polymer P1, wherein we found that the sulfoxide and sulfone are neatly generated with the respective addition of 1 or 2 equiv of m-CPBA (Scheme S1). (31) The substitution step was probed by reacting the sulfone with benzylamine as the nucleophile. Reaction with the sulfone at room temperature gave the corresponding urea in 97% isolated yield, whereas the sulfoxide required mild heating to 35 °C to reach full conversion within the same reaction time (Scheme S2). Notably, we found that the thiocarbamate sulfoxide and sulfone groups are hydrolytically stable, which allowed all reactions to be performed in wet solvents under open flask conditions.

Polythiocarbamate P1 is converted by m-CPBA to sulfonyl polymer P2, which enables substitution by various N- and S-nucleophiles (Scheme 1). We first assessed the substitution with benzylamine, a primary alkylamine, to provide polyurea P3a. 1H NMR spectra of P1, P2, and P3a, shown in Figure 3, confirm the high efficiencies of both the oxidation and substitution reactions. SEC traces of the polymers remained monomodal and narrow and retention times remained mostly unchanged (Figures S6 and S7), which indicates that polymer degradation or cross-linking does not occur.

Scheme 1

Scheme 1. Activation of P1 by Oxidation and Substitution Scope of P2a

aIsolated yields reported. Full conversion observed in all cases.

bMn = 21.2 kDa, Đ = 1.26. See SI for full SEC characterization.

c0.1 mmol scale.

d0.9 g, 5 mmol scale.

eDMF used as solvent.

f2 equiv of DBU added.

gAmine added as HCl salt.

h3 equiv of DIPEA (N(Et)(i-Pr)2) added.

iNH3(aq) (5 equiv), TFE.

jDMF/MeOH used as solvent.

kl-Cysteine methyl ester HCl (3 equiv), Et3N (3 equiv), DMF/MeOH; then LiOH/H2O, 2 h.

l1.5 equiv of each amine was used. Substitution ratio determined by 1H NMR.

Figure 3

Figure 3. 1H NMR spectra of (a) P1, (b) P2, and (c) P3a.

The scope of the explored functionalization is reported in Scheme 1. Substitution proceeded smoothly and selectively with secondary alkylamines (P3b, c) in addition to primary alkylmines, with no observed cross-reactivity with nucleophilic alcohols (P3c), thioethers (P3d), pyridines (P3e), and tertiary amines (P3f). Arylamines were unreactive under these conditions (P3g, n). Electrophilic groups such as alkyl chlorides (P3h) and esters (P3i, m) were tolerated as well. The installation of alkynyl (P3j) and norbornenyl (P3k) groups provides opportunities for further functionalization via azide–alkyne cycloaddition or ring-opening metathesis, respectively. Substitution by ammonia produced an intriguing polyurea (P3l), which is only soluble in fluorinated alcohols (TFE and HFIP). High isolated yields and full conversion of the sulfonyl groups were achieved in all cases, and products were purified by precipitation, dialysis, or preparative SEC, depending on solubility and scale.

Aliphatic (P3m) and aryl (P3n) thiols proved to be competent substitution partners with the addition of an amine base such as DIPEA (Scheme 1). Following this observation, we evaluated the competitive reactivity of thiol vs amine groups. Treatment of P2 with cysteamine resulted in exclusive reactivity at the thiol to give polythiocarbamate P3o, while the amine remained unaffected. The S-selectivity was corroborated by NMR analysis of model compound reactions as well as FT–IR characterization of the polymer (Figures S1 and S2) and is consistent with literature reports in aqueous systems at pH 8. (31) Lastly, substitution by l-cysteine methyl ester, followed by one-pot hydrolysis with the addition of LiOH/H2O, provided zwitterionic poly(amino acid) P3p.

In addition to homopolymers, random copolymers were produced by substitution of P2 with multiple nucleophiles in one pot. A mixture of an electron-rich and an electron-poor benzylamine was used (Scheme 1, P3q). Unsurprisingly, the nucleophilicities of the amines influenced their relative substitution rates and thus the final composition of the copolymer. This heterofunctionalization strategy opens the door to multifunctional polymers with tunable compositions.

Although arylamines were unreactive toward substitution under the aforementioned conditions, we hypothesized that the addition of a strong, hindered base would generate highly nucleophilic anilides by deprotonation. In this case, direct substitution of the relatively inert polythiocarbamate P1 should be possible, obviating the need for the oxidative activation step. Gratifyingly, with the use of LiHDMS as the base in THF, the substitution of P1 proceeded smoothly with arylamines containing an electron-withdrawing chloro substituent (P3r) or an electron-donating methoxy substituent (P3s), as well as with a secondary alkylarylamine (P3t) and a polycyclic arylamine (P3u) (Scheme 2). In addition to expanding the scope to encompass arylamines, these results highlight the range of reactions achievable with this polymer system.

Scheme 2

Scheme 2. Substitution of P1 by Arylaminesa

aIsolated yields reported. Full conversion observed in all cases.

In order to further demonstrate the utility of the living CROP and mild functionalization conditions, we synthesized a block copolymer P5 from monomers 1 and 2-ethyl-2-oxazoline (4) via sequential monomer addition (Figure 4a). Samples taken after the first and second block formation were each analyzed by SEC, which showed a clear shift in retention time after the addition and reaction of 4, while Đ remained low (<1.3) (Figure 4b). The small high-molecular weight shoulder and low-molecular weight tail in the SEC trace of the diblock copolymer (Figure 4b, purple) are likely due to chain coupling and transfer processes known to occur in the polymerization of 2-ethyl-2-oxazoline. (36) Subsequently, the same procedure was employed for the activation of the thiocarbamate groups in the block polymer (P6), followed by substitution with benzylamine (P7, Figure 4a). Using this mild method, the amide groups were unaffected while additional functionalities were installed, as confirmed by NMR (Figures S57–S62).

Figure 4

Figure 4. (a) Polymerization, activation, and substitution of block copolymer. (i) PhCN, 90 °C, 4 h. (ii) 90 °C, 12 h. (iii) Piperidine, 1 h, 74% yield. (iv) m-CPBA, DCM, rt, 5 h. 96% yield. (v) BnNH2, CHCl3, rt, 16 h. 95% yield. (b) SEC traces of block copolymer P5 sampled after step (i) (green) and (iii) (purple).

In conclusion, we have demonstrated an efficient, general procedure to access diverse polyureas and polythiocarbamates via CROP of 2-ethylthio-2-oxazoline. The living polymerization enables the construction of precise, complex polymer architectures. The mild conditions and broad functional group tolerance of postpolymerization substitution provide a platform for the divergent synthesis of functional polymers.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.9b06009.

  • Experimental details, model compound studies, and characterization data (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

Acknowledgments

ARTICLE SECTIONS
Jump To

This work was supported by the U.S. Army Research Laboratory (ARL) and the U.S. Army Research Office through the Institute for Soldier Nanotechnologies (ISN), under Cooperative Agreement number W911-NF-18-2-0048.

References

ARTICLE SECTIONS
Jump To

This article references 36 other publications.

  1. 1
    Blasco, E.; Sims, M. B.; Goldmann, A. S.; Sumerlin, B. S.; Barner-Kowollik, C. Macromolecules 2017, 50, 52155252,  DOI: 10.1021/acs.macromol.7b00465
  2. 2
    Gauthier, M. A.; Gibson, M. I.; Klok, H.-A. Angew. Chem., Int. Ed. 2009, 48, 4858,  DOI: 10.1002/anie.200801951
  3. 3
    Zeininger, L.; Nagelberg, S.; Harvey, K. S.; Savagatrup, S.; Herbert, M. B.; Yoshinaga, K.; Capobianco, J. A.; Kolle, M.; Swager, T. M. ACS Cent. Sci. 2019, DOI: 10.1021/acscentsci.9b00059 .
  4. 4
    Yu, J.; Zhang, Y.; Ye, Y.; DiSanto, R.; Sun, W.; Ranson, D.; Ligler, F. S.; Buse, J. B.; Gu, Z. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 82608265,  DOI: 10.1073/pnas.1505405112
  5. 5
    Estabrook, D. A.; Ennis, A. F.; Day, R. A.; Sletten, E. M. Chem. Sci. 2019, 10, 39944003,  DOI: 10.1039/C8SC05735D
  6. 6
    Wei, M.; Gao, Y.; Li, X.; Serpe, M. Polym. Chem. 2017, 8, 127143,  DOI: 10.1039/C6PY01585A
  7. 7
    Larsen, M. B.; Herzog, S. E.; Quilter, H. C.; Hillmyer, M. A. ACS Macro Lett. 2018, 7, 122126,  DOI: 10.1021/acsmacrolett.7b00896
  8. 8
    Larsen, M. B.; Wang, S.-J.; Hillmyer, M. A. J. Am. Chem. Soc. 2018, 140, 1191111915,  DOI: 10.1021/jacs.8b07542
  9. 9
    Kubo, T.; Swartz, J. L.; Scheutz, G. M.; Sumerlin, B. S. Macromol. Rapid Commun. 2019, 40, 1800590,  DOI: 10.1002/marc.201800590
  10. 10
    Agar, S.; Baysak, E.; Hizal, G.; Tunca, U.; Durmaz, H. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 11811198,  DOI: 10.1002/pola.29004
  11. 11
    Kobayashi, S.; Uyama, H. J. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 192209,  DOI: 10.1002/pola.10090
  12. 12
    Bloksma, M. M.; Schubert, U. S.; Hoogenboom, R. Macromol. Rapid Commun. 2011, 32, 14191441,  DOI: 10.1002/marc.201100138
  13. 13
    Verbraeken, B.; Monnery, B. D.; Lava, K.; Hoogenboom, R. Eur. Polym. J. 2017, 88, 451469,  DOI: 10.1016/j.eurpolymj.2016.11.016
  14. 14
    Lorson, T.; Lübtow, M. M.; Wegener, E.; Haider, M. S.; Borova, S.; Nahm, D.; Jordan, R.; Sokolski-Papkov, M.; Kabanov, A. V.; Luxenhofer, R. Biomaterials 2018, 178, 204280,  DOI: 10.1016/j.biomaterials.2018.05.022
  15. 15
    Nam, S.; Seo, J.; Woo, S.; Kim, W. H.; Kim, H.; Bradley, D. D. C.; Kim, Y. Nat. Commun. 2015, 6,  DOI: 10.1038/ncomms9929 .
  16. 16
    Glassner, M.; Vergaelen, M.; Hoogenboom, R. Polym. Int. 2018, 67, 3245,  DOI: 10.1002/pi.5457
  17. 17
    Luxenhofer, R.; Jordan, R. Macromolecules 2006, 39, 35093516,  DOI: 10.1021/ma052515m
  18. 18
    Gress, A.; Völkel, A.; Schlaad, H. Macromolecules 2007, 40, 79287933,  DOI: 10.1021/ma071357r
  19. 19
    Mees, M. A.; Hoogenboom, R. Macromolecules 2015, 48, 35313538,  DOI: 10.1021/acs.macromol.5b00290
  20. 20
    Vancoillie, G.; Brooks, W. L. A.; Mees, M. A.; Sumerlin, B. S.; Hoogenboom, R. Polym. Chem. 2016, 7, 67256734,  DOI: 10.1039/C6PY01437B
  21. 21
    Van Guyse, J. F. R.; Mees, M. A.; Vergaelen, M.; Baert, M.; Verbraeken, B.; Martens, P. J.; Hoogenboom, R. Polym. Chem. 2019, 10, 954962,  DOI: 10.1039/C9PY00014C
  22. 22
    Glassner, M.; Verbraeken, B.; Jerca, V. V.; Van Hecke, K.; Tsanaktsidis, J.; Hoogenboom, R. Polym. Chem. 2018, 9, 48404847,  DOI: 10.1039/C8PY01037D
  23. 23
    Miyamoto, M.; Aoi, K.; Yamaga, S.; Saegusa, T. Macromolecules 1992, 25, 51115114,  DOI: 10.1021/ma00045a044
  24. 24
    Miyamoto, M.; Shimakura, M.; Tsutsui, K.; Hasegawa, K.; Aoi, K.; Yamaga, S.; Saegusa, T. Macromolecules 1993, 26, 71167124,  DOI: 10.1021/ma00078a002
  25. 25
    Miyamoto, M.; Aoi, K.; Morimoto, M.; Chujo, Y.; Saegusa, T. Macromolecules 1992, 25, 58785885,  DOI: 10.1021/ma00048a004
  26. 26
    Bridgeman, E.; Tomkinson, N. C. Synlett 2006, No. 2, 243246,  DOI: 10.1055/s-2005-923584
  27. 27
    Gallou, I.; Eriksson, M.; Zeng, X.; Senanayake, C.; Farina, V. J. Org. Chem. 2005, 70, 69606963,  DOI: 10.1021/jo0507643
  28. 28
    Lee, S.-H.; Matsushita, H.; Clapham, B.; Janda, K. D. Tetrahedron 2004, 60, 34393443,  DOI: 10.1016/j.tet.2004.02.034
  29. 29
    Casida, J. E.; Gray, R. A.; Tilles, H. Science 1974, 184, 573574,  DOI: 10.1126/science.184.4136.573
  30. 30
    Zimmerman, L. J.; Valentine, H. L.; Valentine, W. M. Chem. Res. Toxicol. 2004, 17, 258267,  DOI: 10.1021/tx034209c
  31. 31
    Erve, J. C. L.; Jensen, O. N.; Valentine, H. S.; Amarnath, V.; Valentine, W. M. Chem. Res. Toxicol. 2000, 13, 237244,  DOI: 10.1021/tx990191n
  32. 32
    Melnyk, O.; Ollivier, N.; Besret, S.; Melnyk, P. Bioconjugate Chem. 2014, 25, 629639,  DOI: 10.1021/bc500052r
  33. 33
    Hwang, Y.; Thompson, P. R.; Wang, L.; Jiang, L.; Kelleher, N. L.; Cole, P. A. Angew. Chem., Int. Ed. 2007, 46, 76217624,  DOI: 10.1002/anie.200702485
  34. 34
    Long, L.; Clapp, R. C.; Bissett, F. H.; Hasselstrom, T. J. Org. Chem. 1961, 26, 8588,  DOI: 10.1021/jo01060a020
  35. 35
    Perez, C.; Monserrat, J.-P.; Chen, Y.; Cohen, S. M. Chem. Commun. 2015, 51, 71167119,  DOI: 10.1039/C4CC09921D
  36. 36
    Monnery, B. D.; Jerca, V. V.; Sedlacek, O.; Verbraeken, B.; Cavill, R.; Hoogenboom, R. Angew. Chem., Int. Ed. 2018, 57, 1540015404,  DOI: 10.1002/anie.201807796

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 18 publications.

  1. Hayden E. Houck, Kate A. McConnell, Conner J. Klingler, Adelle L. Koenig, Grace K. Himka, Michael B. Larsen. Postpolymerization Modification by Nucleophilic Addition to Styrenic Carbodiimides. ACS Macro Letters 2023, 12 (8) , 1112-1117. https://doi.org/10.1021/acsmacrolett.3c00382
  2. Farzaneh Soleymani Movahed, Siong Wan Foo, Shogo Mori, Saeko Ogawa, Susumu Saito. Phosphorus-Based Organocatalysis for the Dehydrative Cyclization of N-(2-Hydroxyethyl)amides into 2-Oxazolines. The Journal of Organic Chemistry 2022, 87 (1) , 243-257. https://doi.org/10.1021/acs.joc.1c02318
  3. Erdin Dalkılıç, Yakup Güneş. Solvent Effect on Base-Free Synthesis 4-Substituted 2-Oxazolines via Intramolecular Cyclodemesylation. Synlett 2023, 64 https://doi.org/10.1055/s-0042-1751491
  4. Yao Ling, Jie Liu, Yu Dong, Yuanyuan Chen, Jiamao Chen, Xiaolan Yu, Baoshuai Liang, Xiaocheng Zhang, Wei An, Donghui Wang, Shiyu Feng, Weiguo Huang. Conventional Non‐Fluorescent Polymers: Unconventional Security Inks for Data Storage and Multidimensional Photonic Cryptography. Advanced Materials 2023, 35 (39) https://doi.org/10.1002/adma.202303641
  5. Ahmad Altiti, Mingzhu He, Sonya VanPatten, Kai Fan Cheng, Umair Ahmed, Pui Yan Chiu, Ibrahim T. Mughrabi, Bayan Al Jabari, Ronald M. Burch, Kirk R. Manogue, Kevin J. Tracey, Betty Diamond, Christine N. Metz, Huan Yang, LaQueta K. Hudson, Stavros Zanos, Myoungsun Son, Barbara Sherry, Thomas R. Coleman, Yousef Al-Abed. Thiocarbazate building blocks enable the construction of azapeptides for rapid development of therapeutic candidates. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-34712-9
  6. Tao Yang, Chengjie Huang, Jingyang Jia, Fan Wu, Feng Ni. A Facile Synthesis of 2-Oxazolines via Dehydrative Cyclization Promoted by Triflic Acid. Molecules 2022, 27 (24) , 9042. https://doi.org/10.3390/molecules27249042
  7. Pengfei Ma, Christopher M. Plummer, Wenjun Luo, Jiyan Pang, Yongming Chen, Le Li. Exhaustive Baeyer–Villiger oxidation: a tailor-made post-polymerization modification to access challenging poly(vinyl acetate) copolymers. Chemical Science 2022, 13 (40) , 11746-11754. https://doi.org/10.1039/D2SC03492A
  8. Karen Hakobyan, Jiangtao Xu, Markus Müllner. The challenges of controlling polymer synthesis at the molecular and macromolecular level. Polymer Chemistry 2022, 13 (38) , 5431-5446. https://doi.org/10.1039/D1PY01581H
  9. Richard Hoogenboom. The future of poly(2-oxazoline)s. European Polymer Journal 2022, 179 , 111521. https://doi.org/10.1016/j.eurpolymj.2022.111521
  10. Somdeb Jana, Richard Hoogenboom. Poly(2‐oxazoline)s: a comprehensive overview of polymer structures and their physical properties—an update. Polymer International 2022, 71 (8) , 935-949. https://doi.org/10.1002/pi.6426
  11. Solomiia Borova, Christine Schlutt, Joachim Nickel, Robert Luxenhofer. A Transient Initiator for Polypeptoids Postpolymerization α ‐Functionalization via Activation of a Thioester Group. Macromolecular Chemistry and Physics 2022, 223 (3) https://doi.org/10.1002/macp.202100331
  12. Jipeng Zhu, Min Zhou, Weinan Jiang, Yang Zhou, Gonghua Song, Runhui Liu. Facile one-pot synthesis of 2-oxazoline. Tetrahedron Letters 2022, 91 , 153637. https://doi.org/10.1016/j.tetlet.2022.153637
  13. Kevin A. Waibel, Dennis Barther, Triantafillia Malliaridou, Dafni Moatsou, Michael A. R. Meier. One‐Pot Synthesis of Thiocarbamates. European Journal of Organic Chemistry 2021, 2021 (31) , 4508-4516. https://doi.org/10.1002/ejoc.202100858
  14. Sètuhn Jimaja, Yujie Xie, Jeffrey C. Foster, Daniel Taton, Andrew P. Dove, Rachel K. O'Reilly. Functional nanostructures by NiCCo-PISA of helical poly(aryl isocyanide) copolymers. Polymer Chemistry 2021, 12 (1) , 105-112. https://doi.org/10.1039/D0PY00791A
  15. Jong-Ryul Park, Mariah Sarwat, Eleonore C. L. Bolle, Melody A. de Laat, Joachim F. R. Van Guyse, Annelore Podevyn, Richard Hoogenboom, Tim R. Dargaville. Drug–polymer conjugates with dynamic cloud point temperatures based on poly(2-oxazoline) copolymers. Polymer Chemistry 2020, 11 (32) , 5191-5199. https://doi.org/10.1039/D0PY00602E
  16. Min Zhou, Yuxin Qian, Jiayang Xie, Wenjing Zhang, Weinan Jiang, Ximian Xiao, Sheng Chen, Chengzhi Dai, Zihao Cong, Zhemin Ji, Ning Shao, Longqiang Liu, Yuequn Wu, Runhui Liu. Poly(2‐Oxazoline)‐Based Functional Peptide Mimics: Eradicating MRSA Infections and Persisters while Alleviating Antimicrobial Resistance. Angewandte Chemie 2020, 132 (16) , 6474-6481. https://doi.org/10.1002/ange.202000505
  17. Min Zhou, Yuxin Qian, Jiayang Xie, Wenjing Zhang, Weinan Jiang, Ximian Xiao, Sheng Chen, Chengzhi Dai, Zihao Cong, Zhemin Ji, Ning Shao, Longqiang Liu, Yuequn Wu, Runhui Liu. Poly(2‐Oxazoline)‐Based Functional Peptide Mimics: Eradicating MRSA Infections and Persisters while Alleviating Antimicrobial Resistance. Angewandte Chemie International Edition 2020, 59 (16) , 6412-6419. https://doi.org/10.1002/anie.202000505
  18. Ondrej Sedlacek, Richard Hoogenboom. Drug Delivery Systems Based on Poly(2‐Oxazoline)s and Poly(2‐Oxazine)s. Advanced Therapeutics 2020, 3 (1) https://doi.org/10.1002/adtp.201900168
  • Abstract

    Figure 1

    Figure 1. PPM strategies based on CROP of oxazoline derivatives. (a) Elaboration of polyoxazolines with pendant alkenes and alkynes by click chemistries, or with pendant esters by amidation (refs (17−22)). (b) Polymerization of 2-alkoxy-2-oxazolines (ref (25)). (c) This work: Living CROP of 2-ethylthio-2-oxazoline and postpolymerization functionalization.

    Figure 2

    Figure 2. (a) CROP of 1 to give P1. (b) MALDI–TOF MS of a low-molecular weight, piperidine-terminated sample of P1. (c) Mn and Đ of P1 at various [M]/[I]. (d) Monitoring of Mn and Đ of P1 at increasing monomer conversion. (e) First-order kinetic analysis of the polymerization of 1. Mn and Đ determined by SEC with polystyrene standards; monomer conversion determined by NMR.

    Scheme 1

    Scheme 1. Activation of P1 by Oxidation and Substitution Scope of P2a

    aIsolated yields reported. Full conversion observed in all cases.

    bMn = 21.2 kDa, Đ = 1.26. See SI for full SEC characterization.

    c0.1 mmol scale.

    d0.9 g, 5 mmol scale.

    eDMF used as solvent.

    f2 equiv of DBU added.

    gAmine added as HCl salt.

    h3 equiv of DIPEA (N(Et)(i-Pr)2) added.

    iNH3(aq) (5 equiv), TFE.

    jDMF/MeOH used as solvent.

    kl-Cysteine methyl ester HCl (3 equiv), Et3N (3 equiv), DMF/MeOH; then LiOH/H2O, 2 h.

    l1.5 equiv of each amine was used. Substitution ratio determined by 1H NMR.

    Figure 3

    Figure 3. 1H NMR spectra of (a) P1, (b) P2, and (c) P3a.

    Scheme 2

    Scheme 2. Substitution of P1 by Arylaminesa

    aIsolated yields reported. Full conversion observed in all cases.

    Figure 4

    Figure 4. (a) Polymerization, activation, and substitution of block copolymer. (i) PhCN, 90 °C, 4 h. (ii) 90 °C, 12 h. (iii) Piperidine, 1 h, 74% yield. (iv) m-CPBA, DCM, rt, 5 h. 96% yield. (v) BnNH2, CHCl3, rt, 16 h. 95% yield. (b) SEC traces of block copolymer P5 sampled after step (i) (green) and (iii) (purple).

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 36 other publications.

    1. 1
      Blasco, E.; Sims, M. B.; Goldmann, A. S.; Sumerlin, B. S.; Barner-Kowollik, C. Macromolecules 2017, 50, 52155252,  DOI: 10.1021/acs.macromol.7b00465
    2. 2
      Gauthier, M. A.; Gibson, M. I.; Klok, H.-A. Angew. Chem., Int. Ed. 2009, 48, 4858,  DOI: 10.1002/anie.200801951
    3. 3
      Zeininger, L.; Nagelberg, S.; Harvey, K. S.; Savagatrup, S.; Herbert, M. B.; Yoshinaga, K.; Capobianco, J. A.; Kolle, M.; Swager, T. M. ACS Cent. Sci. 2019, DOI: 10.1021/acscentsci.9b00059 .
    4. 4
      Yu, J.; Zhang, Y.; Ye, Y.; DiSanto, R.; Sun, W.; Ranson, D.; Ligler, F. S.; Buse, J. B.; Gu, Z. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 82608265,  DOI: 10.1073/pnas.1505405112
    5. 5
      Estabrook, D. A.; Ennis, A. F.; Day, R. A.; Sletten, E. M. Chem. Sci. 2019, 10, 39944003,  DOI: 10.1039/C8SC05735D
    6. 6
      Wei, M.; Gao, Y.; Li, X.; Serpe, M. Polym. Chem. 2017, 8, 127143,  DOI: 10.1039/C6PY01585A
    7. 7
      Larsen, M. B.; Herzog, S. E.; Quilter, H. C.; Hillmyer, M. A. ACS Macro Lett. 2018, 7, 122126,  DOI: 10.1021/acsmacrolett.7b00896
    8. 8
      Larsen, M. B.; Wang, S.-J.; Hillmyer, M. A. J. Am. Chem. Soc. 2018, 140, 1191111915,  DOI: 10.1021/jacs.8b07542
    9. 9
      Kubo, T.; Swartz, J. L.; Scheutz, G. M.; Sumerlin, B. S. Macromol. Rapid Commun. 2019, 40, 1800590,  DOI: 10.1002/marc.201800590
    10. 10
      Agar, S.; Baysak, E.; Hizal, G.; Tunca, U.; Durmaz, H. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 11811198,  DOI: 10.1002/pola.29004
    11. 11
      Kobayashi, S.; Uyama, H. J. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 192209,  DOI: 10.1002/pola.10090
    12. 12
      Bloksma, M. M.; Schubert, U. S.; Hoogenboom, R. Macromol. Rapid Commun. 2011, 32, 14191441,  DOI: 10.1002/marc.201100138
    13. 13
      Verbraeken, B.; Monnery, B. D.; Lava, K.; Hoogenboom, R. Eur. Polym. J. 2017, 88, 451469,  DOI: 10.1016/j.eurpolymj.2016.11.016
    14. 14
      Lorson, T.; Lübtow, M. M.; Wegener, E.; Haider, M. S.; Borova, S.; Nahm, D.; Jordan, R.; Sokolski-Papkov, M.; Kabanov, A. V.; Luxenhofer, R. Biomaterials 2018, 178, 204280,  DOI: 10.1016/j.biomaterials.2018.05.022
    15. 15
      Nam, S.; Seo, J.; Woo, S.; Kim, W. H.; Kim, H.; Bradley, D. D. C.; Kim, Y. Nat. Commun. 2015, 6,  DOI: 10.1038/ncomms9929 .
    16. 16
      Glassner, M.; Vergaelen, M.; Hoogenboom, R. Polym. Int. 2018, 67, 3245,  DOI: 10.1002/pi.5457
    17. 17
      Luxenhofer, R.; Jordan, R. Macromolecules 2006, 39, 35093516,  DOI: 10.1021/ma052515m
    18. 18
      Gress, A.; Völkel, A.; Schlaad, H. Macromolecules 2007, 40, 79287933,  DOI: 10.1021/ma071357r
    19. 19
      Mees, M. A.; Hoogenboom, R. Macromolecules 2015, 48, 35313538,  DOI: 10.1021/acs.macromol.5b00290
    20. 20
      Vancoillie, G.; Brooks, W. L. A.; Mees, M. A.; Sumerlin, B. S.; Hoogenboom, R. Polym. Chem. 2016, 7, 67256734,  DOI: 10.1039/C6PY01437B
    21. 21
      Van Guyse, J. F. R.; Mees, M. A.; Vergaelen, M.; Baert, M.; Verbraeken, B.; Martens, P. J.; Hoogenboom, R. Polym. Chem. 2019, 10, 954962,  DOI: 10.1039/C9PY00014C
    22. 22
      Glassner, M.; Verbraeken, B.; Jerca, V. V.; Van Hecke, K.; Tsanaktsidis, J.; Hoogenboom, R. Polym. Chem. 2018, 9, 48404847,  DOI: 10.1039/C8PY01037D
    23. 23
      Miyamoto, M.; Aoi, K.; Yamaga, S.; Saegusa, T. Macromolecules 1992, 25, 51115114,  DOI: 10.1021/ma00045a044
    24. 24
      Miyamoto, M.; Shimakura, M.; Tsutsui, K.; Hasegawa, K.; Aoi, K.; Yamaga, S.; Saegusa, T. Macromolecules 1993, 26, 71167124,  DOI: 10.1021/ma00078a002
    25. 25
      Miyamoto, M.; Aoi, K.; Morimoto, M.; Chujo, Y.; Saegusa, T. Macromolecules 1992, 25, 58785885,  DOI: 10.1021/ma00048a004
    26. 26
      Bridgeman, E.; Tomkinson, N. C. Synlett 2006, No. 2, 243246,  DOI: 10.1055/s-2005-923584
    27. 27
      Gallou, I.; Eriksson, M.; Zeng, X.; Senanayake, C.; Farina, V. J. Org. Chem. 2005, 70, 69606963,  DOI: 10.1021/jo0507643
    28. 28
      Lee, S.-H.; Matsushita, H.; Clapham, B.; Janda, K. D. Tetrahedron 2004, 60, 34393443,  DOI: 10.1016/j.tet.2004.02.034
    29. 29
      Casida, J. E.; Gray, R. A.; Tilles, H. Science 1974, 184, 573574,  DOI: 10.1126/science.184.4136.573
    30. 30
      Zimmerman, L. J.; Valentine, H. L.; Valentine, W. M. Chem. Res. Toxicol. 2004, 17, 258267,  DOI: 10.1021/tx034209c
    31. 31
      Erve, J. C. L.; Jensen, O. N.; Valentine, H. S.; Amarnath, V.; Valentine, W. M. Chem. Res. Toxicol. 2000, 13, 237244,  DOI: 10.1021/tx990191n
    32. 32
      Melnyk, O.; Ollivier, N.; Besret, S.; Melnyk, P. Bioconjugate Chem. 2014, 25, 629639,  DOI: 10.1021/bc500052r
    33. 33
      Hwang, Y.; Thompson, P. R.; Wang, L.; Jiang, L.; Kelleher, N. L.; Cole, P. A. Angew. Chem., Int. Ed. 2007, 46, 76217624,  DOI: 10.1002/anie.200702485
    34. 34
      Long, L.; Clapp, R. C.; Bissett, F. H.; Hasselstrom, T. J. Org. Chem. 1961, 26, 8588,  DOI: 10.1021/jo01060a020
    35. 35
      Perez, C.; Monserrat, J.-P.; Chen, Y.; Cohen, S. M. Chem. Commun. 2015, 51, 71167119,  DOI: 10.1039/C4CC09921D
    36. 36
      Monnery, B. D.; Jerca, V. V.; Sedlacek, O.; Verbraeken, B.; Cavill, R.; Hoogenboom, R. Angew. Chem., Int. Ed. 2018, 57, 1540015404,  DOI: 10.1002/anie.201807796
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.9b06009.

    • Experimental details, model compound studies, and characterization data (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect