ACS Publications. Most Trusted. Most Cited. Most Read
Mapping Molecular Orientation with Phase Sensitive Vibrationally Resonant Sum-Frequency Generation Microscopy
My Activity

Figure 1Loading Img
    Article

    Mapping Molecular Orientation with Phase Sensitive Vibrationally Resonant Sum-Frequency Generation Microscopy
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of California at Irvine, Irvine, California 92697-2025, United States
    *E-mail: [email protected]. Tel: 949-824-1263.
    Other Access Options

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2013, 117, 20, 6149–6156
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp4022147
    Published May 15, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We demonstrate a phase sensitive, vibrationally resonant sum-frequency generation (PSVR-SFG) microscope that combines high resolution, fast image acquisition speed, chemical selectivity, and phase sensitivity. Using the PSVR-SFG microscope, we generate amplitude and phase images of the second-order susceptibility of collagen I fibers in rat tail tendon tissue on resonance with the methylene vibrations of the protein. We find that the phase of the second-order susceptibility shows dependence on the effective polarity of the fibril bundles, revealing fibrous collagen domains of opposite orientations within the tissue. The presence of collagen microdomains in tendon tissue may have implications for the interpretation of the mechanical properties of the tissue.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 55 publications.

    1. Amin Yousefi, Dennis K. Hore. Using Structural Information to Fit Vibrational Sum Frequency Spectra. The Journal of Physical Chemistry C 2024, 128 (17) , 7252-7265. https://doi.org/10.1021/acs.jpcc.3c08498
    2. Tong Lin, Rui Xu, Xiaotong Chen, Yuxuan Guan, Mingxing Yao, Junhao Zhang, Xinwei Li, Hanyu Zhu. Subwavelength, Phase-Sensitive Microscopy of Third-Order Nonlinearity in Terahertz Frequencies. ACS Photonics 2024, 11 (1) , 33-41. https://doi.org/10.1021/acsphotonics.3c00787
    3. Andrew P. Carpenter, Patricia Khuu, Tobias Weidner, Colin P. Johnson, Steven J. Roeters, Joe E. Baio. Orientation of the Dysferlin C2A Domain is Responsive to the Composition of Lipid Membranes. The Journal of Physical Chemistry B 2023, 127 (2) , 577-589. https://doi.org/10.1021/acs.jpcb.2c06716
    4. Jackson C. Wagner, Zishan Wu, Haoyuan Wang, Wei Xiong. Imaging Orientation of a Single Molecular Hierarchical Self-Assembled Sheet: The Combined Power of a Vibrational Sum Frequency Generation Microscopy and Neural Network. The Journal of Physical Chemistry B 2022, 126 (37) , 7192-7201. https://doi.org/10.1021/acs.jpcb.2c05876
    5. Haoyuan Wang, Wei Xiong. Revealing the Molecular Physics of Lattice Self-Assembly by Vibrational Hyperspectral Imaging. Langmuir 2022, 38 (10) , 3017-3031. https://doi.org/10.1021/acs.langmuir.1c03313
    6. Tong Zhang, Zhi-Chao Huangfu, Yuqin Qian, Zhou Lu, Hong Gao, Yi Rao. Spectral Phase Measurements of Heterodyne Detection in Interfacial Broadband Electronic Spectroscopy. The Journal of Physical Chemistry C 2022, 126 (5) , 2823-2832. https://doi.org/10.1021/acs.jpcc.1c09692
    7. Hiroaki Maekawa, S. K. Karthick Kumar, Sudipta S. Mukherjee, Nien-Hui Ge. Phase-Sensitive Vibrationally Resonant Sum-Frequency Generation Microscopy in Multiplex Configuration at 80 MHz Repetition Rate. The Journal of Physical Chemistry B 2021, 125 (33) , 9507-9516. https://doi.org/10.1021/acs.jpcb.1c05430
    8. Paulina Koziol, Danuta Liberda, Wojciech M. Kwiatek, Tomasz P. Wrobel. Macromolecular Orientation in Biological Tissues Using a Four-Polarization Method in FT-IR Imaging. Analytical Chemistry 2020, 92 (19) , 13313-13318. https://doi.org/10.1021/acs.analchem.0c02591
    9. Mohamadamin Makarem, Yoshiharu Nishiyama, Xiaoran Xin, Daniel M. Durachko, Ying Gu, Daniel J. Cosgrove, Seong H. Kim. Distinguishing Mesoscale Polar Order (Unidirectional vs Bidirectional) of Cellulose Microfibrils in Plant Cell Walls Using Sum Frequency Generation Spectroscopy. The Journal of Physical Chemistry B 2020, 124 (37) , 8071-8081. https://doi.org/10.1021/acs.jpcb.0c07076
    10. Saman Hosseinpour, Steven J. Roeters, Mischa Bonn, Wolfgang Peukert, Sander Woutersen, Tobias Weidner. Structure and Dynamics of Interfacial Peptides and Proteins from Vibrational Sum-Frequency Generation Spectroscopy. Chemical Reviews 2020, 120 (7) , 3420-3465. https://doi.org/10.1021/acs.chemrev.9b00410
    11. Haoyuan Wang, Wenfan Chen, Jackson C. Wagner, Wei Xiong. Local Ordering of Lattice Self-Assembled SDS@2β-CD Materials and Adsorbed Water Revealed by Vibrational Sum Frequency Generation Microscope. The Journal of Physical Chemistry B 2019, 123 (29) , 6212-6221. https://doi.org/10.1021/acs.jpcb.9b04928
    12. Patrik K. Johansson, David G. Castner. Vibrational Sum-Frequency Scattering as a Sensitive Approach to Detect Structural Changes in Collagen Fibers Treated with Surfactants. Langmuir 2019, 35 (24) , 7848-7857. https://doi.org/10.1021/acs.langmuir.9b00412
    13. Aleksandr A. Pikalov, Dien Ngo, Han Ju Lee, T. Randall Lee, Steven Baldelli. Sum Frequency Generation Imaging Microscopy of Self-Assembled Monolayers on Metal Surfaces: Factor Analysis of Mixed Monolayers. Analytical Chemistry 2019, 91 (2) , 1269-1276. https://doi.org/10.1021/acs.analchem.8b01840
    14. Yunan Gao, Aaron J. Goodman, Pin-Chun Shen, Jing Kong, William A. Tisdale. Phase-Modulated Degenerate Parametric Amplification Microscopy. Nano Letters 2018, 18 (8) , 5001-5006. https://doi.org/10.1021/acs.nanolett.8b01827
    15. Wei-Chen Yang and Dennis K. Hore . Determining the Orientation of Chemical Functional Groups on Metal Surfaces by a Combination of Homodyne and Heterodyne Nonlinear Vibrational Spectroscopy. The Journal of Physical Chemistry C 2017, 121 (50) , 28043-28050. https://doi.org/10.1021/acs.jpcc.7b09730
    16. Haoyuan Wang, Tian Gao, and Wei Xiong . Self-Phase-Stabilized Heterodyne Vibrational Sum Frequency Generation Microscopy. ACS Photonics 2017, 4 (7) , 1839-1845. https://doi.org/10.1021/acsphotonics.7b00411
    17. Kaitlin A. Lovering, Allan K. Bertram, and Keng C. Chou . Transient Phase of Ice Observed by Sum Frequency Generation at the Water/Mineral Interface During Freezing. The Journal of Physical Chemistry Letters 2017, 8 (4) , 871-875. https://doi.org/10.1021/acs.jpclett.6b02920
    18. Yu Ogawa, Christopher M. Lee, Yoshiharu Nishiyama, and Seong H. Kim . Absence of Sum Frequency Generation in Support of Orthorhombic Symmetry of α-Chitin. Macromolecules 2016, 49 (18) , 7025-7031. https://doi.org/10.1021/acs.macromol.6b01583
    19. Christopher M. Lee, Kabindra Kafle, Shixin Huang, and Seong H. Kim . Multimodal Broadband Vibrational Sum Frequency Generation (MM-BB-V-SFG) Spectrometer and Microscope. The Journal of Physical Chemistry B 2016, 120 (1) , 102-116. https://doi.org/10.1021/acs.jpcb.5b10290
    20. Yang Han, Julie Hsu, Nien-Hui Ge, and Eric O. Potma . Polarization-Sensitive Sum-Frequency Generation Microscopy of Collagen Fibers. The Journal of Physical Chemistry B 2015, 119 (8) , 3356-3365. https://doi.org/10.1021/jp511058b
    21. Dennis K. Hore. Phase of the second-order susceptibility in vibrational sum frequency generation spectroscopy: Origins, utility, and measurement techniques. The Journal of Chemical Physics 2024, 161 (6) https://doi.org/10.1063/5.0220817
    22. Baihui Wang, Yimin Bai, Jiahui Peng, Miaomiao Zhang, Weiting Zhang, Hongtao Bian, Yu Fang. Recent advances in analyzing protein and peptide structures at interfaces using vibrational sum-frequency generation. Chinese Journal of Chemical Physics 2024, 37 (3) , 398-410. https://doi.org/10.1063/1674-0068/cjcp2312146
    23. Yryx Y. Luna Palacios, Salile Khandani, Evan P. Garcia, Anabel Chen, Siyang Wang, Khokan Roy, David Knez, Do A. Kim, Israel Rocha-Mendoza, Eric O. Potma. Spectroscopic analysis of the sum-frequency response of the carbon–hydrogen stretching modes in collagen type I. The Journal of Chemical Physics 2024, 160 (18) https://doi.org/10.1063/5.0205685
    24. . Sum‐Frequency Generation Microscopy. 2024, 313-350. https://doi.org/10.1002/9781119814917.ch10
    25. Md. Shafiul Azam, Dennis Hore. The utility of Raman spectra in aiding the interpretation of surface structure at aqueous interfaces. Journal of Raman Spectroscopy 2022, 53 (10) , 1805-1819. https://doi.org/10.1002/jrs.6397
    26. Renlong Zhu, Quanbing Pei, Junjun Tan, Xiaoxuan Zheng, Shuji Ye. Sum frequency generation vibrational spectra of perovskite nanocrystals at the single-nanocrystal and ensemble levels. Chinese Journal of Chemical Physics 2022, 35 (5) , 738-746. https://doi.org/10.1063/1674-0068/cjcp2204070
    27. Jyothsna Konkada Manattayil, Lal Krishna A. S., Rabindra Biswas, Hyunmin Kim, Varun Raghunathan. Focus-engineered sub-diffraction imaging in infrared-sensitive third-order sum frequency generation microscope. Optics Express 2022, 30 (14) , 25612. https://doi.org/10.1364/OE.459620
    28. Haoyuan Wang, Wei Xiong. Vibrational Sum-Frequency Generation Hyperspectral Microscopy for Molecular Self-Assembled Systems. Annual Review of Physical Chemistry 2021, 72 (1) , 279-306. https://doi.org/10.1146/annurev-physchem-090519-050510
    29. Haoyuan Wang, Jackson C. Wagner, Wenfan Chen, Chenglai Wang, Wei Xiong. Spatially dependent H-bond dynamics at interfaces of water/biomimetic self-assembled lattice materials. Proceedings of the National Academy of Sciences 2020, 117 (38) , 23385-23392. https://doi.org/10.1073/pnas.2001861117
    30. Chenglai Wang, Yingmin Li, Wei Xiong. Extracting molecular responses from ultrafast charge dynamics at material interfaces. Journal of Materials Chemistry C 2020, 8 (35) , 12062-12067. https://doi.org/10.1039/D0TC01819H
    31. Dennis K. Hore. Role of Quantum Chemical Calculations in Elucidating Chemical Bond Orientation in Surface Spectroscopy. 2019, 303-325. https://doi.org/10.1002/9783527814596.ch11
    32. Joam M. Marmolejos, Patrick J. Bisson, Mary Jane Shultz. Gold as a standard phase reference in complex sum frequency generation measurements. The Journal of Chemical Physics 2019, 150 (12) https://doi.org/10.1063/1.5081147
    33. Wei-Chen Yang, Dennis K. Hore. Broadband models and their consequences on line shape analysis in vibrational sum-frequency spectroscopy. The Journal of Chemical Physics 2018, 149 (17) https://doi.org/10.1063/1.5053128
    34. Adam M. Hanninen, Richard C. Prince, Raul Ramos, Maksim V. Plikus, Eric O. Potma. High-resolution infrared imaging of biological samples with third-order sum-frequency generation microscopy. Biomedical Optics Express 2018, 9 (10) , 4807. https://doi.org/10.1364/BOE.9.004807
    35. Azhad U. Chowdhury, Fangjie Liu, Brianna R. Watson, Rana Ashkar, John Katsaras, C. Patrick Collier, Daniel A. Lutterman, Ying-Zhong Ma, Tessa R. Calhoun, Benjamin Doughty. Flexible approach to vibrational sum-frequency generation using shaped near-infrared light. Optics Letters 2018, 43 (9) , 2038. https://doi.org/10.1364/OL.43.002038
    36. Adam M. Hanninen, Richard C. Prince, Eric Potma. Triple Modal Coherent Nonlinear Imaging with Vibrational Contrast. IEEE Journal of Selected Topics in Quantum Electronics 2018, 337 , 1-1. https://doi.org/10.1109/JSTQE.2018.2846030
    37. Adam Hanninen, Ming Wai Shu, Eric O. Potma. Hyperspectral imaging with laser-scanning sum-frequency generation microscopy. Biomedical Optics Express 2017, 8 (9) , 4230. https://doi.org/10.1364/BOE.8.004230
    38. David Artigas, David Merino, Christoph Polzer, Pablo Loza-Alvarez. Sub-diffraction discrimination with polarization-resolved two-photon excited fluorescence microscopy. Optica 2017, 4 (8) , 911. https://doi.org/10.1364/OPTICA.4.000911
    39. , , , , Adam M. Hanninen, Eric O. Potma. Rapid hyperspectral, vibrationally resonant sum-frequency generation microscopy. 2017, 100692H. https://doi.org/10.1117/12.2253295
    40. Victor Volkov, Carole C. Perry. Modeling of Infrared–Visible Sum Frequency Generation Microscopy Images of a Giant Liposome. Microscopy and Microanalysis 2016, 22 (6) , 1128-1145. https://doi.org/10.1017/S1431927616011752
    41. Ximeng Y. Dow, Emma L. DeWalt, Shane Z. Sullivan, Paul D. Schmitt, James R.W. Ulcickas, Garth J. Simpson. Imaging the Nonlinear Susceptibility Tensor of Collagen by Nonlinear Optical Stokes Ellipsometry. Biophysical Journal 2016, 111 (7) , 1361-1374. https://doi.org/10.1016/j.bpj.2016.05.055
    42. Victor Volkov, Riccardo Chelli. Resolving capacity of infrared–visible sum frequency generation microscopy to address discrete structural realizations of a protein at interface. Journal of Raman Spectroscopy 2016, 47 (7) , 828-838. https://doi.org/10.1002/jrs.4902
    43. Stéphane Bancelin, Charles-André Couture, Katherine Légaré, Maxime Pinsard, Maxime Rivard, Cameron Brown, François Légaré. Fast interferometric second harmonic generation microscopy. Biomedical Optics Express 2016, 7 (2) , 399. https://doi.org/10.1364/BOE.7.000399
    44. . Miscellaneous topics. 2016, 268-308. https://doi.org/10.1017/CBO9781316162613.013
    45. Charles-André Couture, Stéphane Bancelin, Jarno Van der Kolk, Konstantin Popov, Maxime Rivard, Katherine Légaré, Gabrielle Martel, Hélène Richard, Cameron Brown, Sheila Laverty, Lora Ramunno, François Légaré. The Impact of Collagen Fibril Polarity on Second Harmonic Generation Microscopy. Biophysical Journal 2015, 109 (12) , 2501-2510. https://doi.org/10.1016/j.bpj.2015.10.040
    46. Hui‐Ling Han, Gérôme Melaet, Selim Alayoglu, Gabor A. Somorjai. In Situ Microscopy and Spectroscopy Applied to Surfaces at Work. ChemCatChem 2015, 7 (22) , 3625-3638. https://doi.org/10.1002/cctc.201500642
    47. Hanane Aboulfadl, Jürg Hulliger. Absolute polarity determination of teeth cementum by phase sensitive second harmonic generation microscopy. Journal of Structural Biology 2015, 192 (1) , 67-75. https://doi.org/10.1016/j.jsb.2015.08.011
    48. Sunil Kumar, Tschackad Kamali, Jonathan M. Levitte, Ori Katz, Boris Hermann, Rene Werkmeister, Boris Považay, Wolfgang Drexler, Angelika Unterhuber, Yaron Silberberg. Single-pulse CARS based multimodal nonlinear optical microscope for bioimaging. Optics Express 2015, 23 (10) , 13082. https://doi.org/10.1364/OE.23.013082
    49. Hilton B. de Aguiar, Paulina Gasecka, Sophie Brasselet. Quantitative analysis of light scattering in polarization-resolved nonlinear microscopy. Optics Express 2015, 23 (7) , 8960. https://doi.org/10.1364/OE.23.008960
    50. Yang Han, Julie Hsu, Nien-Hui Ge, Eric O. Potma. Molecular Imaging with Sum-frequency Generation Microscopy. 2015, AW3H.3. https://doi.org/10.1364/CLEO_AT.2015.AW3H.3
    51. Julie Hsu, Adam Haninnen, Nien-Hui Ge, Eric O. Potma. Molecular Imaging with Sum-frequency Generation Microscopy. 2015, NT4C.4. https://doi.org/10.1364/NTM.2015.NT4C.4
    52. Victor Volkov. Tip-induced deformation of a phospholipid bilayer: Theoretical perspective of sum frequency generation imaging. The Journal of Chemical Physics 2014, 141 (15) https://doi.org/10.1063/1.4897987
    53. Victor Volkov. Sum frequency generation image reconstruction: Aliphatic membrane under spherical cap geometry. The Journal of Chemical Physics 2014, 141 (13) https://doi.org/10.1063/1.4896625
    54. C.S. Tian, Y.R. Shen. Recent progress on sum-frequency spectroscopy. Surface Science Reports 2014, 69 (2-3) , 105-131. https://doi.org/10.1016/j.surfrep.2014.05.001
    55. Eun Seong Lee, Sang-Won Lee, Julie Hsu, Eric O. Potma. Vibrationally resonant sum-frequency generation microscopy with a solid immersion lens. Biomedical Optics Express 2014, 5 (7) , 2125. https://doi.org/10.1364/BOE.5.002125

    The Journal of Physical Chemistry B

    Cite this: J. Phys. Chem. B 2013, 117, 20, 6149–6156
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jp4022147
    Published May 15, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    1576

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.