ACS Publications. Most Trusted. Most Cited. Most Read
Wormlike Micelles as “Equilibrium Polyelectrolytes”:  Light and Neutron Scattering Experiments
My Activity
    Research Article

    Wormlike Micelles as “Equilibrium Polyelectrolytes”:  Light and Neutron Scattering Experiments
    Click to copy article linkArticle link copied!

    View Author Information
    Physics Department, University of Fribourg, CH-1700 Fribourg, Switzerland, Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark, Department of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, U.K., Polymer Institute, ETH Zürich, CH-8092 Zürich, Switzerland, and Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
    Other Access Options

    Langmuir

    Cite this: Langmuir 2002, 18, 7, 2495–2505
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la010214+
    Published March 1, 2002
    Copyright © 2002 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    We demonstrate that aqueous solutions of giant polymer-like nonionic micelles “doped” with small amounts of ionic surfactants serve as ideal model systems for “equilibrium polyelectrolytes”. We report systematic light and neutron scattering investigations of the effect of ionic strength, doping level, and total concentration on the static properties of dilute and semidilute micellar solutions. In dilute solutions, we observe a dramatic influence of (intramicellar) electrostatic interactions on the micellar flexibility, and the results are in close agreement with Monte Carlo simulations. We also analyze the effect of electrostatic contributions to intermicellar interactions and micellar growth. In the semidilute regime, strong long-range interactions between micelles occur at low ionic strength and induce liquidlike ordering, and the resulting structure factor peak exhibits the same concentration dependence as previously observed for polyelectrolytes.

    Copyright © 2002 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     University of Fribourg.

     ETH Zürich.

    §

     University of Aarhus.

     The University of Edinburgh.

     Paul Scherrer Institute.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 50 publications.

    1. Hiroki Degaki, Loren Jørgensen, Tsuyoshi Koga, Tetsuharu Narita. Molecular Weight Determination of Kuhn Monomers from a Dynamic Property of Polymers. Macromolecules 2025, 58 (1) , 314-320. https://doi.org/10.1021/acs.macromol.4c02598
    2. Jiamin Zhang, Gregory S. Smith, Patrick T. Corona, Patrick T. Underhill, L. Gary Leal, Matthew E. Helgeson. Self-Consistent Connected-Rod Model for Small-Angle Scattering from Deformed Semiflexible Chains in Flow. Macromolecules 2024, 57 (1) , 201-216. https://doi.org/10.1021/acs.macromol.3c01984
    3. Andrey V. Shibaev, Anton V. Makarov, Alexander I. Kuklin, Ilias Iliopoulos, and Olga E. Philippova . Role of Charge of Micellar Worms in Modulating Structure and Rheological Properties of Their Mixtures with Nonionic Polymer. Macromolecules 2018, 51 (1) , 213-221. https://doi.org/10.1021/acs.macromol.7b02246
    4. Andrey V. Shibaev, Ksenia A. Abrashitova, Alexander I. Kuklin, Anton S. Orekhov, Alexander L. Vasiliev, Ilias Iliopoulos, and Olga E. Philippova . Viscoelastic Synergy and Microstructure Formation in Aqueous Mixtures of Nonionic Hydrophilic Polymer and Charged Wormlike Surfactant Micelles. Macromolecules 2017, 50 (1) , 339-348. https://doi.org/10.1021/acs.macromol.6b02385
    5. Alexander L. Kwiatkowski, Vyacheslav S. Molchanov, Anton S. Orekhov, Alexander L. Vasiliev, and Olga E. Philippova . Impact of Salt Co- and Counterions on Rheological Properties and Structure of Wormlike Micellar Solutions. The Journal of Physical Chemistry B 2016, 120 (49) , 12547-12556. https://doi.org/10.1021/acs.jpcb.6b09817
    6. Ye Huang, He Cheng, and Charles C. Han . Unimer–Aggregate Equilibrium to Large Scale Association of Regioregular Poly(3-hexylthiophene) in THF Solution. Macromolecules 2011, 44 (12) , 5020-5026. https://doi.org/10.1021/ma200273u
    7. C. Oelschlaeger, M. Schopferer, F. Scheffold and N. Willenbacher . Linear-to-Branched Micelles Transition: A Rheometry and Diffusing Wave Spectroscopy (DWS) Study. Langmuir 2009, 25 (2) , 716-723. https://doi.org/10.1021/la802323x
    8. Su Yong Kwon. Length Control in Rigid Cylindrical Nanoassembly by Tuning Molecular Interactions in Aqueous Solutions. Langmuir 2008, 24 (19) , 10674-10679. https://doi.org/10.1021/la801448w
    9. James Bowers,, Katherine E. Amos, and, Duncan W. Bruce, , Richard K. Heenan. Surface and Aggregation Behavior of Aqueous Solutions of Ru(II) Metallosurfactants:  4. Effect of Chain Number and Orientation on the Aggregation of [Ru(bipy)2(bipy‘)]Cl2 Complexes. Langmuir 2005, 21 (13) , 5696-5706. https://doi.org/10.1021/la050241q
    10. Vania Croce,, Terence Cosgrove, and, Cécile A. Dreiss, , Geoff Maitland and, Trevor Hughes. Mixed Spherical and Wormlike Micelles:  A Contrast-Matching Study by Small-Angle Neutron Scattering. Langmuir 2004, 20 (23) , 9978-9982. https://doi.org/10.1021/la048355+
    11. Francesca Baldelli Bombelli,, Debora Berti,, Fabrizio Pini,, Uwe Keiderling, and, Piero Baglioni. Flexibility of Dilauroyl-Phosphatidyl-Nucleoside Wormlike Micelles in Aqueous Solutions. The Journal of Physical Chemistry B 2004, 108 (42) , 16427-16434. https://doi.org/10.1021/jp047816x
    12. Vania Croce,, Terence Cosgrove, and, Cécile A. Dreiss, , Geoff Maitland and, Trevor Hughes, , Göran Karlsson. Impacting the Length of Wormlike Micelles Using Mixed Surfactant Systems. Langmuir 2004, 20 (19) , 7984-7990. https://doi.org/10.1021/la0487500
    13. Eric Buhler and, François Boué. Chain Persistence Length and Structure in Hyaluronan Solutions:  Ionic Strength Dependence for a Model Semirigid Polyelectrolyte. Macromolecules 2004, 37 (4) , 1600-1610. https://doi.org/10.1021/ma0215520
    14. V. Weber,, T. Narayanan,, E. Mendes, and, F. Schosseler. Micellar Growth in Salt-Free Aqueous Solutions of a Gemini Cationic Surfactant: Evidence for a Multimodal Population of Aggregates. Langmuir 2003, 19 (4) , 992-1000. https://doi.org/10.1021/la0205295
    15. Jan Skov Pedersen. Model Fitting and Simulation Techniques in Small-Angle Scattering Data Analysis. 2025, 401-451. https://doi.org/10.1016/B978-0-443-29116-6.00021-7
    16. Hiroki Degaki, Tsuyoshi Koga, Tetsuharu Narita. Characterizing semiflexible network structure of wormlike micelles by dynamic techniques. Soft Matter 2025, 86 https://doi.org/10.1039/D5SM00116A
    17. Anna L. Makarova, Alexander L. Kwiatkowski, Alexander I. Kuklin, Yuri M. Chesnokov, Olga E. Philippova, Andrey V. Shibaev. Dual Semi-Interpenetrating Networks of Water-Soluble Macromolecules and Supramolecular Polymer-like Chains: The Role of Component Interactions. Polymers 2024, 16 (10) , 1430. https://doi.org/10.3390/polym16101430
    18. V. S. Molchanov, O. E. Philippova. Stimuli-Responsive Systems Based on Polymer-like Wormlike Micelles of Ionic Surfactants and Their Modern Applications. Polymer Science, Series C 2023, 65 (1) , 113-127. https://doi.org/10.1134/S1811238223700340
    19. V. S. Molchanov, O. E. Philippova. Stimuli-Responsive Systems Based on Polymer-like Wormlike Micelles of Ionic Surfactants and Their Modern Applications. Высокомолекулярные соединения С 2023, 65 (1) , 122-137. https://doi.org/10.31857/S2308114723700309
    20. Andrey V. Shibaev, Alexander S. Ospennikov, Elizaveta K. Kuznetsova, Alexander I. Kuklin, Teimur M. Aliev, Valentin V. Novikov, Olga E. Philippova. Universal Character of Breaking of Wormlike Surfactant Micelles by Additives of Different Hydrophobicity. Nanomaterials 2022, 12 (24) , 4445. https://doi.org/10.3390/nano12244445
    21. Alexander L. Kwiatkowski, Vyacheslav S. Molchanov, Alexander I. Kuklin, Yuri M. Chesnokov, Olga E. Philippova. Salt-Induced Transformations of Hybrid Micelles Formed by Anionic Surfactant and Poly(4-vinylpyridine). Polymers 2022, 14 (23) , 5086. https://doi.org/10.3390/polym14235086
    22. Andrey V. Shibaev, Alexander I. Kuklin, Vladimir N. Torocheshnikov, Anton S. Orekhov, Sébastien Roland, Guillaume Miquelard-Garnier, Olga Matsarskaia, Ilias Iliopoulos, Olga E. Philippova. Double dynamic hydrogels formed by wormlike surfactant micelles and cross-linked polymer. Journal of Colloid and Interface Science 2022, 611 , 46-60. https://doi.org/10.1016/j.jcis.2021.11.198
    23. Alexander L. Kwiatkowski, Vyacheslav S. Molchanov, Alexander I. Kuklin, Anton S. Orekhov, Natalia A. Arkharova, Olga E. Philippova. Structural transformations of charged spherical surfactant micelles upon solubilization of water-insoluble polymer chains in salt-free aqueous solutions. Journal of Molecular Liquids 2022, 347 , 118326. https://doi.org/10.1016/j.molliq.2021.118326
    24. Sébastien Roland, Guillaume Miquelard-Garnier, Andrey V. Shibaev, Anna L. Aleshina, Alexis Chennevière, Olga Matsarskaia, Cyrille Sollogoub, Olga E. Philippova, Ilias Iliopoulos. Dual Transient Networks of Polymer and Micellar Chains: Structure and Viscoelastic Synergy. Polymers 2021, 13 (23) , 4255. https://doi.org/10.3390/polym13234255
    25. V.S. Molchanov, M.A. Efremova, A.S. Orekhov, N.A. Arkharova, A.V. Rogachev, O.E. Philippova. Soft nanocomposites based on nanoclay particles and mixed wormlike micelles of surfactants. Journal of Molecular Liquids 2020, 314 , 113684. https://doi.org/10.1016/j.molliq.2020.113684
    26. Alexander L. Kwiatkowski, Vyacheslav S. Molchanov, Alexander I. Kuklin, Olga E. Philippova. Opposite effect of salt on branched wormlike surfactant micelles with and without embedded polymer. Journal of Molecular Liquids 2020, 311 , 113301. https://doi.org/10.1016/j.molliq.2020.113301
    27. Emmanuel Trizac, Tongye Shen. Bending stiff charged polymers: The electrostatic persistence length. EPL (Europhysics Letters) 2016, 116 (1) , 18007. https://doi.org/10.1209/0295-5075/116/18007
    28. Durga P. Acharya, Hironobu Kunieda. Micellar Solutions, Worm-Like: Phase and Rheological Behaviors. 2015, 4313-4329. https://doi.org/10.1081/E-ESCS3-120029882
    29. Koichiro Hori, David P. Penaloza, Atsuomi Shundo, Keiji Tanaka. Time-dependent heterogeneity in viscoelastic properties of worm-like micelle solutions. Soft Matter 2012, 8 (28) , 7361. https://doi.org/10.1039/c2sm25549a
    30. Su Yong Kwon, Sang Hyun Lee. Small angle neutron scattering study on the effect of molecular interaction on the structural properties of cationic and nonionic surfactant mixed micelles in aqueous solutions. Current Applied Physics 2011, 11 (4) , 1042-1047. https://doi.org/10.1016/j.cap.2011.01.026
    31. David Lopez-Diaz, Rolando Castillo. Microrheology of solutions embedded with thread-like supramolecular structures. Soft Matter 2011, 7 (13) , 5926. https://doi.org/10.1039/c1sm05274h
    32. M. Niyaz Khan, Chong Teck Fui. Unusual Effects of Pure Nonionic and Mixed Nonionic–Cationic Micelles on the Rate of Alkaline Hydrolysis of N -Hydroxyphthalimide. Journal of Dispersion Science and Technology 2010, 31 (7) , 909-917. https://doi.org/10.1080/01932690903223963
    33. V. A. Andreev, A. I. Victorov. Electric potential and bending rigidity of a wormlike particle in electrolyte solution. The Journal of Chemical Physics 2010, 132 (5) https://doi.org/10.1063/1.3298991
    34. M. Niyaz Khan, Chong Teck Fui. Kinetic study on the effects of mixed nonionic–cationic micelles on the rate of alkaline hydrolysis of N-hydroxyphthalimide. Journal of Molecular Liquids 2009, 147 (3) , 170-177. https://doi.org/10.1016/j.molliq.2009.03.004
    35. F Baldelli Bombelli, F Betti, D Berti, F Pini, M Heinrich, P Baglioni. Structural characterization of Di-C 12 P-uridine worm-like micelles: ionic strength dependence. Journal of Physics: Condensed Matter 2008, 20 (10) , 104213. https://doi.org/10.1088/0953-8984/20/10/104213
    36. J. S. Pedersen. Small-Angle Scattering from Surfactants and Block Copolymer Micelles. 2008, 191-233. https://doi.org/10.1007/978-1-4020-4465-6_4
    37. N. Willenbacher, C. Oelschlaeger, M. Schopferer, P. Fischer, F. Cardinaux, F. Scheffold. Broad Bandwidth Optical and Mechanical Rheometry of Wormlike Micelle Solutions. Physical Review Letters 2007, 99 (6) https://doi.org/10.1103/PhysRevLett.99.068302
    38. Lin Yu, Guangtao Chang, Huan Zhang, Jiandong Ding. Temperature‐induced spontaneous sol–gel transitions of poly( D,L ‐lactic acid‐ co ‐glycolic acid)‐ b ‐poly(ethylene glycol)‐ b ‐poly( D,L ‐lactic acid‐ co ‐glycolic acid) triblock copolymers and their end‐capped derivatives in water. Journal of Polymer Science Part A: Polymer Chemistry 2007, 45 (6) , 1122-1133. https://doi.org/10.1002/pola.21876
    39. V. A. Andreev, A. I. Victorov. A simple analytical approach to electrostatics for nanoparticles with torus-like elements in 1:1 electrolyte solution. Molecular Physics 2007, 105 (2-3) , 239-247. https://doi.org/10.1080/00268970601149306
    40. C?cile A. Dreiss. Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 2007, 3 (8) , 956. https://doi.org/10.1039/b705775j
    41. S. Ezrahi, E. Tuval, A. Aserin. Properties, main applications and perspectives of worm micelles. Advances in Colloid and Interface Science 2006, 128-130 , 77-102. https://doi.org/10.1016/j.cis.2006.11.017
    42. Durga P. Acharya, Hironobu Kunieda. Wormlike micelles in mixed surfactant solutions. Advances in Colloid and Interface Science 2006, 123-126 , 401-413. https://doi.org/10.1016/j.cis.2006.05.024
    43. A. Hohner, J. Bayer, J. O. Rädler. Wormlike lipid/DNA micelles in a non-polar solvent. The European Physical Journal E 2006, 21 (1) , 41-48. https://doi.org/10.1140/epje/i2006-10043-y
    44. Jean-François Berret. Rheology of Wormlike Micelles: Equilibrium Properties and Shear Banding Transitions. 2006, 667-720. https://doi.org/10.1007/1-4020-3689-2_20
    45. Haiyang Yang, Shicheng Zhang, He Liu, Xiaoyun Xu, Jing Zhang, Pingsheng He. Studies on the micellization and intermicellar interaction of CTAB in dilute solution. Journal of Materials Science 2005, 40 (17) , 4645-4648. https://doi.org/10.1007/s10853-005-3923-2
    46. Napaporn Komesvarakul, John F. Scamehorn, Richard W. Taylor. Colloid-Enhanced Ultrafiltration of Chlorophenols in Wastewater: Part II. Apparent Acid Dissociation Constants of Chlorophenols in Colloid Solutions at Different Ionic Strengths and Effect of pH on Solubilization of Phenolic Compounds. Separation Science and Technology 2004, 39 (14) , 3169-3191. https://doi.org/10.1081/SS-200033161
    47. Napaporn Komesvarakul, John F. Scamehorn, Richard W. Taylor. Colloid-Enhanced Ultrafiltration of Chlorophenols in Wastewater: Part III. Effect of Added Salt on Solubilization in Surfactant Solutions and Surfactant–Polymer Mixtures. Separation Science and Technology 2004, 39 (14) , 3193-3214. https://doi.org/10.1081/SS-200033166
    48. Luigi Cannavacciuolo, Jan Skov Pedersen. Moments and distribution function of polyelectrolyte chains. The Journal of Chemical Physics 2004, 120 (18) , 8862-8865. https://doi.org/10.1063/1.1691392
    49. Carsten Svaneborg, Jan Skov Pedersen. Monte Carlo simulations and analysis of scattering from neutral and polyelectrolyte polymer and polymer-like systems. Current Opinion in Colloid & Interface Science 2004, 8 (6) , 507-514. https://doi.org/10.1016/j.cocis.2004.01.001
    50. Luigi Cannavacciuolo, Jan Skov Pedersen. Properties of polyelectrolyte chains from analysis of angular correlation functions. The Journal of Chemical Physics 2002, 117 (19) , 8973-8982. https://doi.org/10.1063/1.1513150

    Langmuir

    Cite this: Langmuir 2002, 18, 7, 2495–2505
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la010214+
    Published March 1, 2002
    Copyright © 2002 American Chemical Society

    Article Views

    475

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.