ACS Publications. Most Trusted. Most Cited. Most Read
Reinforcement of Silica Aerogels Using Silane-End-Capped Polyurethanes
My Activity
    Article

    Reinforcement of Silica Aerogels Using Silane-End-Capped Polyurethanes
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Polymer Engineering, The University of Akron, Akron, Ohio 44325-0301, United States
    Department of Chemistry, The University of Akron, Akron, Ohio 44325-3601, United States
    *E-mail: [email protected] (S.C.J.).
    Other Access OptionsSupporting Information (1)

    Langmuir

    Cite this: Langmuir 2013, 29, 20, 6156–6165
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la4007394
    Published April 23, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Proper selection of silane precursors and polymer reinforcements yields more durable and stronger silica aerogels. This paper focuses on the use of silane-end-capped urethane prepolymer and chain-extended polyurethane for reinforcement of silica aerogels. The silane end groups were expected to participate in silica network formation and uniquely determine the amounts of urethanes incorporated into the aerogel network as reinforcement. The aerogels were prepared by one-step sol–gel process from mixed silane precursors tetraethoxysilane, aminopropyltriethoxysilane (APTES), and APTES-end-capped polyurethanes. The morphology and mechanical and surface properties of the resultant aerogels were investigated in addition to elucidation of chemical structures by solid-state 13C and 29Si nuclear magnetic resonance. Modification by 10 wt % APTES-end-capped chain-extended polyurethane yielded a 5-fold increase in compressive modulus and 60% increase in density. APTES-end-capped chain-extended polyurethane was found to be more effective in enhancement of mechanical properties and reduction of polarity.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional figures. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 94 publications.

    1. Solmaz Karamikamkar, Abdelnasser Abidli, Omid Aghababaei Tafreshi, Shahriar Ghaffari-Mosanenzadeh, Piyapong Buahom, Hani E. Naguib, Chul B. Park. Nanocomposite Aerogel Network Featuring High Surface Area and Superinsulation Properties. Chemistry of Materials 2024, 36 (2) , 642-656. https://doi.org/10.1021/acs.chemmater.3c01391
    2. Mateusz Fijalkowski, Radek Coufal, Azam Ali, Kinga Adach, Stanislav Petrik, Huaitian Bu, Christian W. Karl. Flexible Hybrid and Single-Component Aerogels: Synthesis, Characterization, and Applications. Langmuir 2023, 39 (47) , 16760-16775. https://doi.org/10.1021/acs.langmuir.3c01811
    3. Zhenqiang Zhang, Qingyi Xie, Guoliang Zhang, Chunfeng Ma, Guangzhao Zhang. Surface-Enriched Amphiphilic Polysiloxane Coating with Superior Antifouling Ability and Strong Substrate Adhesion. ACS Applied Polymer Materials 2023, 5 (5) , 3524-3533. https://doi.org/10.1021/acsapm.3c00199
    4. Lingxiao Li, Kai Chen, Junping Zhang. Superelastic Clay/Silicone Composite Sponges and Their Applications for Oil/Water Separation and Solar Interfacial Evaporation. Langmuir 2022, 38 (5) , 1853-1859. https://doi.org/10.1021/acs.langmuir.1c03043
    5. Yuki Nakanishi, Yosuke Hara, Wataru Sakuma, Tsuguyuki Saito, Kazuki Nakanishi, Kazuyoshi Kanamori. Colorless Transparent Melamine–Formaldehyde Aerogels for Thermal Insulation. ACS Applied Nano Materials 2020, 3 (1) , 49-54. https://doi.org/10.1021/acsanm.9b02275
    6. Dangjia Chen, Hongyi Gao, Zhaokui Jin, Junyong Wang, Wenjun Dong, Xiubing Huang, and Ge Wang . Vacuum-Dried Synthesis of Low-Density Hydrophobic Monolithic Bridged Silsesquioxane Aerogels for Oil/Water Separation: Effects of Acid Catalyst and Its Excellent Flexibility. ACS Applied Nano Materials 2018, 1 (2) , 933-939. https://doi.org/10.1021/acsanm.7b00328
    7. Chunhao Zhai and Sadhan C. Jana . Tuning Porous Networks in Polyimide Aerogels for Airborne Nanoparticle Filtration. ACS Applied Materials & Interfaces 2017, 9 (35) , 30074-30082. https://doi.org/10.1021/acsami.7b09345
    8. Lan Jiang, Kazuaki Kato, Koichi Mayumi, Hideaki Yokoyama, and Kohzo Ito . One-Pot Synthesis and Characterization of Polyrotaxane–Silica Hybrid Aerogel. ACS Macro Letters 2017, 6 (3) , 281-286. https://doi.org/10.1021/acsmacrolett.7b00014
    9. Sung Jun Kim, Prasad Raut, Sadhan C. Jana, and George Chase . Electrostatically Active Polymer Hybrid Aerogels for Airborne Nanoparticle Filtration. ACS Applied Materials & Interfaces 2017, 9 (7) , 6401-6410. https://doi.org/10.1021/acsami.6b14784
    10. Xueliang Pei, Wentao Zhai, and Wenge Zheng . Preparation and Characterization of Highly Cross-Linked Polyimide Aerogels Based on Polyimide Containing Trimethoxysilane Side Groups. Langmuir 2014, 30 (44) , 13375-13383. https://doi.org/10.1021/la5026735
    11. Yu Ma, Zhenting Zhu, Huangshuai Zhang, Mohamed Kallel, Zihao Yang, Juanna Ren, Salah M. El‐Bahy, Zhe Chen, Zeinhom M. El‐Bahy, Hang Zhang, Zhanhu Guo. Synthesis of superhydrophobic crack‐free monolithic silica aerogels via a vacuum freeze‐drying process. Journal of the American Ceramic Society 2025, 108 (6) https://doi.org/10.1111/jace.20401
    12. Jinkyu Choi, Se Jun Oh, Sung-Hyeon Baeck, Sang Eun Shim, Yingjie Qian. Multifunctional high fatigue resistant silica aerogel reinforced by polyurethane via ambient pressure drying for improved thermal and sound insulation, water proofing, and vapor permeability. Construction and Building Materials 2025, 460 , 139826. https://doi.org/10.1016/j.conbuildmat.2024.139826
    13. Shristy Verma, Pramod Kumar Sharma, Rishabha Malviya, Sanjita Das. Advances in Aerogels Formulations for Pulmonary Targeted Delivery of Therapeutic Agents: Safety, Efficacy and Regulatory Aspects. Current Pharmaceutical Biotechnology 2024, 25 (15) , 1939-1951. https://doi.org/10.2174/0113892010275613231120031855
    14. Meng-Jie Chang, Wen-Yao Zhu, Jun Liu, Ge Bai, Xin Li, Xiao-Qian Lu, Yu-Hong Lei. Fabrication of elastic SiO2 aerogels with prominent mechanical strength and stability reinforced by SiO2 nanofibers and polyurethane for oil adsorption. Separation and Purification Technology 2024, 341 , 126914. https://doi.org/10.1016/j.seppur.2024.126914
    15. As'ad Zandi, Somayeh Ghasemirad. Silanization as a strategy to design polyurethane-acrylic hybrid pressure-sensitive adhesives. International Journal of Adhesion and Adhesives 2024, 132 , 103686. https://doi.org/10.1016/j.ijadhadh.2024.103686
    16. Sapna Jadhav, Pradip Sarawade. Recent advances and prospective of reinforced silica aerogel Nanocomposites and their applications. European Polymer Journal 2024, 206 , 112766. https://doi.org/10.1016/j.eurpolymj.2024.112766
    17. Mateusz Fijalkowski, Azam Ali, Shafqat Qamer, Radek Coufal, Kinga Adach, Stanislav Petrik. Hybrid and Single-Component Flexible Aerogels for Biomedical Applications: A Review. Gels 2024, 10 (1) , 4. https://doi.org/10.3390/gels10010004
    18. Solmaz Karamikamkar, Ezgi Pinar Yalcintas, Reihaneh Haghniaz, Natan Roberto de Barros, Marvin Mecwan, Rohollah Nasiri, Elham Davoodi, Fatemeh Nasrollahi, Ahmet Erdem, Heemin Kang, Junmin Lee, Yangzhi Zhu, Samad Ahadian, Vadim Jucaud, Hajar Maleki, Mehmet Remzi Dokmeci, Han‐Jun Kim, Ali Khademhosseini. Aerogel‐Based Biomaterials for Biomedical Applications: From Fabrication Methods to Disease‐Targeting Applications. Advanced Science 2023, 10 (23) https://doi.org/10.1002/advs.202204681
    19. Wang Zhan, Le Chen, Qinghong Kong, Lixia Li, Mingyi Chen, Juncheng Jiang, Weixi Li, Fan Shi, Zhiyuan Xu. The Synthesis and Polymer-Reinforced Mechanical Properties of SiO2 Aerogels: A Review. Molecules 2023, 28 (14) , 5534. https://doi.org/10.3390/molecules28145534
    20. Lukai Wang, Junzong Feng, Yonggang Jiang, Di Lu, Jing Men, Yi Luo, Xin Wang, Jian Feng. Ultraviolet-assisted direct-write printing strategy towards polyorganosiloxane-based aerogels with freeform geometry and outstanding thermal insulation performance. Chemical Engineering Journal 2023, 455 , 140818. https://doi.org/10.1016/j.cej.2022.140818
    21. Haixia Yang, Xiandong Yue, Feng Ye. High-temperature microtexture, microstructure evolution, and thermal insulation properties of porous Si3N4/silica aerogel composites produced by impregnation. Journal of Sol-Gel Science and Technology 2022, 104 (1) , 105-115. https://doi.org/10.1007/s10971-022-05908-8
    22. Puttavva Meti, D.B. Mahadik, Kyu-Yeon Lee, Qi Wang, Kazuyoshi Kanamori, Young-Dae Gong, Hyung-Ho Park. Overview of organic–inorganic hybrid silica aerogels: Progress and perspectives. Materials & Design 2022, 222 , 111091. https://doi.org/10.1016/j.matdes.2022.111091
    23. Erin Farrell, Sadhan C. Jana. Surfactant-free oil-in-oil emulsion-templating of polyimide aerogel foams. International Polymer Processing 2022, 37 (4) , 427-441. https://doi.org/10.1515/ipp-2022-4248
    24. Haixia Yang, Feng Ye. Microtexture, microstructure evolution, and thermal insulation properties of Si 3 N 4 /silica aerogel composites at high temperatures. RSC Advances 2022, 12 (19) , 12226-12234. https://doi.org/10.1039/D2RA01336C
    25. O.A. Tafreshi, S.G. Mosanenzadeh, S. Karamikamkar, Z. Saadatnia, C.B. Park, H.E. Naguib. A review on multifunctional aerogel fibers: processing, fabrication, functionalization, and applications. Materials Today Chemistry 2022, 23 , 100736. https://doi.org/10.1016/j.mtchem.2021.100736
    26. Shuo Liu, Mihir Shah, Satyarit Rao, Lu An, Mohammad Moein Mohammadi, Abhishek Kumar, Shenqiang Ren, Mark T. Swihart. Flame aerosol synthesis of hollow alumina nanoshells for application in thermal insulation. Chemical Engineering Journal 2022, 428 , 131273. https://doi.org/10.1016/j.cej.2021.131273
    27. Yuquan Cai, Jieyuan Zheng, Hong Fan. The preparation of cross-linkable polyethylene via coordination copolymerization of ethylene with alkene-derived chlorosilane. European Polymer Journal 2022, 163 , 110941. https://doi.org/10.1016/j.eurpolymj.2021.110941
    28. Sophie Wendels, Deyvid de Souza Porto, Luc Avérous. Synthesis of Biobased and Hybrid Polyurethane Xerogels from Bacterial Polyester for Potential Biomedical Applications. Polymers 2021, 13 (23) , 4256. https://doi.org/10.3390/polym13234256
    29. Sasan Rezaei, Ali M. Zolali, Amirjalal Jalali, Chul B. Park. Strong, highly hydrophobic, transparent, and super-insulative polyorganosiloxane-based aerogel. Chemical Engineering Journal 2021, 413 , 127488. https://doi.org/10.1016/j.cej.2020.127488
    30. Weilin Wang, Zongwei Tong, Ran Li, Dong Su, Huiming Ji. Polysiloxane Bonded Silica Aerogel with Enhanced Thermal Insulation and Strength. Materials 2021, 14 (8) , 2046. https://doi.org/10.3390/ma14082046
    31. Chengdong Li, Zhaofeng Chen, Weifu Dong, Liangliang Lin, Xiangmiao Zhu, Qingsong Liu, Yue Zhang, Ni Zhai, Zihao Zhou, Yuhang Wang, Baoming Chen, Yuexin Ji, Xianqi Chen, Xuechun Xu, Yifan Yang, Heteng Zhang. A review of silicon-based aerogel thermal insulation materials: Performance optimization through composition and microstructure. Journal of Non-Crystalline Solids 2021, 553 , 120517. https://doi.org/10.1016/j.jnoncrysol.2020.120517
    32. Gurjaspreet Singh, Sushma, Akshpreet Singh, Pinky Satija, Shilpy, Mohit, Priyanka, Jandeep Singh, Ashu Khosla. Schiff base derived bis-organosilanes: Immobilization on silica nanosphere and Cu2+ and Fe3+ dual ion sensing. Inorganica Chimica Acta 2021, 514 , 120028. https://doi.org/10.1016/j.ica.2020.120028
    33. Pengchong Li, Zhi Qiao, Zhenchao Qian, Caizhen Zhu, Zhenqiang Yu, Wenxin Fu, Ning Zhao, Jian Xu. Facile synthesis of robust hybrid xerogels by an emulsion assistant method. Chemical Engineering Journal 2020, 401 , 125937. https://doi.org/10.1016/j.cej.2020.125937
    34. Zhongyi Luo, Zichun Yang, Zhifang Fei, Gaohui Su. Investigating mechanical properties of cross-linked SiO2 and polyimide through molecular dynamics simulation. Polymer Bulletin 2020, 77 (10) , 5213-5225. https://doi.org/10.1007/s00289-019-03014-4
    35. Yu Lin, Chunlei Chen, Shani Hu, Dongge Zhang, Guozhang Wu. Facile Fabrication of Mechanically Strong and Thermal Resistant Polyimide Aerogels with an Excess of Cross-Linker. Journal of Materials Research and Technology 2020, 9 (5) , 10719-10731. https://doi.org/10.1016/j.jmrt.2020.07.075
    36. Mina Kateb, Majid Karimi, Gholam‐Reza Nejabat, Seyed Mohammad Mahdi Mortazavi, Saeid Ahmadjo. Synthesis of 1‐hexene/1,7‐octadiene copolymers using coordination polymerization and postfunctionalization with triethoxysilane. Journal of Applied Polymer Science 2020, 137 (31) https://doi.org/10.1002/app.48934
    37. Siqi Huang, Xiaoxu Wu, Zhi Li, Long Shi, Yan Zhang, Qiong Liu. Rapid synthesis and characterization of monolithic ambient pressure dried MTMS aerogels in pure water. Journal of Porous Materials 2020, 27 (4) , 1241-1251. https://doi.org/10.1007/s10934-020-00902-3
    38. Zhi Li, Shanyu Zhao, Matthias M. Koebel, Wim J. Malfait. Silica aerogels with tailored chemical functionality. Materials & Design 2020, 193 , 108833. https://doi.org/10.1016/j.matdes.2020.108833
    39. Cástor Salgado, Marina P. Arrieta, Valentina Sessini, Laura Peponi, Daniel López, Marta Fernández-García. Functional properties of photo-crosslinkable biodegradable polyurethane nanocomposites. Polymer Degradation and Stability 2020, 178 , 109204. https://doi.org/10.1016/j.polymdegradstab.2020.109204
    40. Anoushiravan Mohseni-Bandpei, Akbar Eslami, Hossein Kazemian, Mansur Zarrabi, Tariq J. Al-Musawi. A high density 3-aminopropyltriethoxysilane grafted pumice-derived silica aerogel as an efficient adsorbent for ibuprofen: Characterization and optimization of the adsorption data using response surface methodology. Environmental Technology & Innovation 2020, 18 , 100642. https://doi.org/10.1016/j.eti.2020.100642
    41. Loredana Elena Nita, Alina Ghilan, Alina Gabriela Rusu, Iordana Neamtu, Aurica P. Chiriac. New Trends in Bio-Based Aerogels. Pharmaceutics 2020, 12 (5) , 449. https://doi.org/10.3390/pharmaceutics12050449
    42. Alexandra Fidalgo, José Paulo S. Farinha, José M.G. Martinho, Laura M. Ilharco. Nanohybrid silica/polymer aerogels: The combined influence of polymer nanoparticle size and content. Materials & Design 2020, 189 , 108521. https://doi.org/10.1016/j.matdes.2020.108521
    43. S. Salimian, A. Zadhoush. Water-glass based silica aerogel: unique nanostructured filler for epoxy nanocomposites. Journal of Porous Materials 2019, 26 (6) , 1755-1765. https://doi.org/10.1007/s10934-019-00757-3
    44. Heguang Liu, Yadong Xu, Chaolong Tang, Yuan Li, Nitin Chopra. SiO2 aerogel-embedded carbon foam composite with Co-Enhanced thermal insulation and mechanical properties. Ceramics International 2019, 45 (17) , 23393-23398. https://doi.org/10.1016/j.ceramint.2019.08.041
    45. Lukai Wang, Junzong Feng, Yonggang Jiang, Jian Feng. Polyvinylmethyldimethoxysilane reinforced methyltrimethoxysilane based silica aerogels for thermal insulation with super-high specific surface area. Materials Letters 2019, 256 , 126644. https://doi.org/10.1016/j.matlet.2019.126644
    46. Teresa Linhares, Maria T. Pessoa de Amorim, Luisa Durães. Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications. Journal of Materials Chemistry A 2019, 7 (40) , 22768-22802. https://doi.org/10.1039/C9TA04811A
    47. Xueling Wu, Yu Wu, Wenbing Zou, Xiaodong Wang, Ai Du, Zhihua Zhang, Jun Shen. Synthesis of highly cross-linked uniform polyurea aerogels. The Journal of Supercritical Fluids 2019, 151 , 8-14. https://doi.org/10.1016/j.supflu.2019.04.010
    48. Xinxing Zhou, Qiong Huang, Song Xu, Zepeng Fan. Pore structure and adsorption properties of welan gum modified polyurethane. Materials Research Express 2019, 6 (9) , 095316. https://doi.org/10.1088/2053-1591/ab3099
    49. Lukai Wang, Junzong Feng, Yonggang Jiang, Liangjun Li, Jian Feng. Elastic methyltrimethoxysilane based silica aerogels reinforced with polyvinylmethyldimethoxysilane. RSC Advances 2019, 9 (19) , 10948-10957. https://doi.org/10.1039/C9RA00970A
    50. Dangjia Chen, Hongyi Gao, Panpan Liu, Pei Huang, Xiubing Huang. Directly ambient pressure dried robust bridged silsesquioxane and methylsiloxane aerogels: effects of precursors and solvents. RSC Advances 2019, 9 (15) , 8664-8671. https://doi.org/10.1039/C8RA08646J
    51. Dangjia Chen, Keyi Dong, Hongyi Gao, Tao Zhuang, Xiubing Huang, Ge Wang. Vacuum-dried flexible hydrophobic aerogels using bridged methylsiloxane as reinforcement: performance regulation with alkylorthosilicate or alkyltrimethoxysilane co-precursors. New Journal of Chemistry 2019, 43 (5) , 2204-2212. https://doi.org/10.1039/C8NJ04038A
    52. Kathirvel Ganesan, Tatiana Budtova, Lorenz Ratke, Pavel Gurikov, Victor Baudron, Imke Preibisch, Philipp Niemeyer, Irina Smirnova, Barbara Milow. Review on the Production of Polysaccharide Aerogel Particles. Materials 2018, 11 (11) , 2144. https://doi.org/10.3390/ma11112144
    53. M. F. Bertino. Rapid fabrication of hybrid aerogels and 3D printed porous materials. Journal of Sol-Gel Science and Technology 2018, 86 (2) , 239-254. https://doi.org/10.1007/s10971-018-4649-3
    54. Chen Guangmei, Wu Lixia, Xu Jiahao, Xu Gewen, Huang Yiping. Novel preparation method and the characterization of polyurethane-acrylate/ nano-SiO 2 emulsions. Science and Engineering of Composite Materials 2018, 25 (3) , 603-610. https://doi.org/10.1515/secm-2015-0164
    55. Subramaniam Iswar, Geert M.B.F. Snellings, Shanyu Zhao, Rolf Erni, Yeon Kyoung Bahk, Jing Wang, Marco Lattuada, Matthias M. Koebel, Wim J. Malfait. Reinforced and superinsulating silica aerogel through in situ cross-linking with silane terminated prepolymers. Acta Materialia 2018, 147 , 322-328. https://doi.org/10.1016/j.actamat.2018.01.031
    56. Angel Mary Joseph, Baku Nagendra, P. Shaiju, K. P. Surendran, E. Bhoje Gowd. Aerogels of hierarchically porous syndiotactic polystyrene with a dielectric constant near to air. Journal of Materials Chemistry C 2018, 6 (2) , 360-368. https://doi.org/10.1039/C7TC05102F
    57. Hajar Maleki, Lawrence Whitmore, Nicola Hüsing. Novel multifunctional polymethylsilsesquioxane–silk fibroin aerogel hybrids for environmental and thermal insulation applications. Journal of Materials Chemistry A 2018, 6 (26) , 12598-12612. https://doi.org/10.1039/C8TA02821D
    58. Pan Tian, Zhiguang Guo. Bioinspired silica-based superhydrophobic materials. Applied Surface Science 2017, 426 , 1-18. https://doi.org/10.1016/j.apsusc.2017.07.134
    59. Ye Yuan, Yanyan Zhang, Xiaowei Fu, Weibo Kong, Zhimeng Liu, Kai Hu, Liang Jiang, Jingxin Lei. Molecular design for silane‐terminated polyurethane applied to moisture‐curable pressure‐sensitive adhesive. Journal of Applied Polymer Science 2017, 134 (37) https://doi.org/10.1002/app.45292
    60. Jie Ma, Feng Ye, Chunping Yang, Junjie Ding, Shaojie Lin, Biao Zhang, Qiang Liu. Heat-resistant, strong alumina-modified silica aerogel fabricated by impregnating silicon oxycarbide aerogel with boehmite sol. Materials & Design 2017, 131 , 226-231. https://doi.org/10.1016/j.matdes.2017.06.036
    61. Eun-Ho Song, Seol-Ha Jeong, Ji-Ung Park, Sukwha Kim, Hyoun-Ee Kim, Juha Song. Polyurethane-silica hybrid foams from a one-step foaming reaction, coupled with a sol-gel process, for enhanced wound healing. Materials Science and Engineering: C 2017, 79 , 866-874. https://doi.org/10.1016/j.msec.2017.05.041
    62. Tianyi Zhang, Yan Zhao, Kai Wang. Polyimide Aerogels Cross-Linked with Aminated Ag Nanowires: Mechanically Strong and Tough. Polymers 2017, 9 (10) , 530. https://doi.org/10.3390/polym9100530
    63. Sung Jun Kim, Sadhan C. Jana. Effects of skin layers on air permeability in macroporous polymer aerogels. Polymer 2017, 126 , 432-436. https://doi.org/10.1016/j.polymer.2017.03.039
    64. Peeranut Prakulpawong, Jinjutha Wiriyanantawong, Janista Pornpoonsawat, Supan Yodyingyong, Darapond Triampo. Fabrication Study of Hydrophobic Polyurethane Sponge for Oil Absorption Application. Key Engineering Materials 2017, 751 , 731-737. https://doi.org/10.4028/www.scientific.net/KEM.751.731
    65. Li Yun, Jin Zhao, Xiaoling Kang, Yang Du, Xubo Yuan, Xin Hou. Preparation and properties of monolithic and hydrophobic gelatin–silica composite aerogels for oil absorption. Journal of Sol-Gel Science and Technology 2017, 83 (1) , 197-206. https://doi.org/10.1007/s10971-017-4378-z
    66. Jie Li, Yu Lei, Dingding Xu, Fenghua Liu, Junwan Li, Aihua Sun, Jianjun Guo, Gaojie Xu. Improved mechanical and thermal insulation properties of monolithic attapulgite nanofiber/silica aerogel composites dried at ambient pressure. Journal of Sol-Gel Science and Technology 2017, 82 (3) , 702-711. https://doi.org/10.1007/s10971-017-4359-2
    67. Alireza Dourbash, Cinzia Buratti, Elisa Belloni, Siamak Motahari. Preparation and characterization of polyurethane/silica aerogel nanocomposite materials. Journal of Applied Polymer Science 2017, 134 (8) https://doi.org/10.1002/app.44521
    68. Mingjia Shi, Cunguo Tang, Xudong Yang, Junling Zhou, Fei Jia, Yuxiang Han, Zhenyu Li. Superhydrophobic silica aerogels reinforced with polyacrylonitrile fibers for adsorbing oil from water and oil mixtures. RSC Advances 2017, 7 (7) , 4039-4045. https://doi.org/10.1039/C6RA26831E
    69. Hongli Liu, Peng Chu, Hongyan Li, Haiyuan Zhang, Jiadong Li. Novel three-dimensional halloysite nanotubes/silica composite aerogels with enhanced mechanical strength and low thermal conductivity prepared at ambient pressure. Journal of Sol-Gel Science and Technology 2016, 80 (3) , 651-659. https://doi.org/10.1007/s10971-016-4154-5
    70. Hajar Maleki, Luisa Durães, Carlos A. García-González, Pasquale del Gaudio, António Portugal, Morteza Mahmoudi. Synthesis and biomedical applications of aerogels: Possibilities and challenges. Advances in Colloid and Interface Science 2016, 236 , 1-27. https://doi.org/10.1016/j.cis.2016.05.011
    71. K. Seeni Meera, R. Murali Sankar, S. N. Jaisankar, Asit Baran Mandal. Studies On Biocompatible Surface‐Active Silica Aerogel and Polyurethane−Siloxane Cross‐Linked Structures for Various Surfaces. 2016, 1-16. https://doi.org/10.1002/9781119075691.ch1
    72. Sung Jun Kim, George Chase, Sadhan C. Jana. The role of mesopores in achieving high efficiency airborne nanoparticle filtration using aerogel monoliths. Separation and Purification Technology 2016, 166 , 48-54. https://doi.org/10.1016/j.seppur.2016.04.017
    73. Yannan Duan, Sadhan C. Jana, Bimala Lama, Matthew P. Espe. Hydrophobic silica aerogels by silylation. Journal of Non-Crystalline Solids 2016, 437 , 26-33. https://doi.org/10.1016/j.jnoncrysol.2016.01.016
    74. Shuai Wu, Ai Du, Youlai Xiang, Mingfang Liu, Tiemin Li, Jun Shen, Zhihua Zhang, Conghang Li, Bin Zhou. Silica-aerogel-powders “jammed” polyimide aerogels with excellent hydrophobicity and conversion to ultra-light polyimide aerogel. RSC Advances 2016, 6 (63) , 58268-58278. https://doi.org/10.1039/C6RA11801A
    75. Ye Yuan, Yanyan Zhang, Xiaowei Fu, Liang Jiang, Zhimeng Liu, Kai Hu, Bo Wu, Jinxin Lei, Changlin Zhou. Silane-terminated polyurethane applied to a moisture-curable pressure-sensitive adhesive using triethoxysilane. RSC Advances 2016, 6 (87) , 83688-83696. https://doi.org/10.1039/C6RA19883J
    76. Long Cai, Guorong Shan. Elastic silica aerogel using methyltrimethoxysilane precusor via ambient pressure drying. Journal of Porous Materials 2015, 22 (6) , 1455-1463. https://doi.org/10.1007/s10934-015-0026-6
    77. Sung Jun Kim, George Chase, Sadhan C. Jana. Polymer aerogels for efficient removal of airborne nanoparticles. Separation and Purification Technology 2015, 156 , 803-808. https://doi.org/10.1016/j.seppur.2015.11.005
    78. Haixia Yang, Feng Ye, Qiang Liu, Ye Gao. Microstructure and properties of the Si3N4/silica aerogel composites fabricated by the sol–gel method via ambient pressure drying. Materials & Design 2015, 85 , 438-443. https://doi.org/10.1016/j.matdes.2015.07.041
    79. Xueliang Pei, Wentao Zhai, Wenge Zheng. Preparation of poly(aryl ether ketone ketone)–silica composite aerogel for thermal insulation application. Journal of Sol-Gel Science and Technology 2015, 76 (1) , 98-109. https://doi.org/10.1007/s10971-015-3756-7
    80. Heguang Liu, Tiehu Li, Yachun Shi, Xing Zhao. Thermal Insulation Composite Prepared from Carbon Foam and Silica Aerogel Under Ambient Pressure. Journal of Materials Engineering and Performance 2015, 24 (10) , 4054-4059. https://doi.org/10.1007/s11665-015-1686-8
    81. Zhen Wang, Zhen Dai, Ning Zhao, Xiaoli Zhang, Haixia Dong, Jian Xu. Mechanically robust aerogels derived from an amine-bridged silsesquioxane precursor. Journal of Sol-Gel Science and Technology 2015, 75 (3) , 519-529. https://doi.org/10.1007/s10971-015-3722-4
    82. David A. Schiraldi. Polymer Aerogels. 2015, 1-18. https://doi.org/10.1002/0471440264.pst637
    83. Z. Talebi Mazraeh-shahi, A. Mousavi Shoushtari, A.R. Bahramian. A New Approach for Synthesizing the Hybrid Silica Aerogels. Procedia Materials Science 2015, 11 , 571-575. https://doi.org/10.1016/j.mspro.2015.11.072
    84. L. S. White, M. F. Bertino, G. Kitchen, J. Young, C. Newton, R. Al-Soubaihi, S. Saeed, K. Saoud. Shortened aerogel fabrication times using an ethanol–water azeotrope as a gelation and drying solvent. Journal of Materials Chemistry A 2015, 3 (2) , 762-772. https://doi.org/10.1039/C4TA04633A
    85. Shan Yun, Hongjie Luo, Yanfeng Gao. Low-density, hydrophobic, highly flexible ambient-pressure-dried monolithic bridged silsesquioxane aerogels. Journal of Materials Chemistry A 2015, 3 (7) , 3390-3398. https://doi.org/10.1039/C4TA05271D
    86. Liang Zhong, Xiaohong Chen, Huaihe Song, Kang Guo, Zijun Hu. Highly flexible silica aerogels derived from methyltriethoxysilane and polydimethylsiloxane. New Journal of Chemistry 2015, 39 (10) , 7832-7838. https://doi.org/10.1039/C5NJ01477H
    87. Yannan Duan, Sadhan C. Jana, Bimala Lama, Matthew P. Espe. Self-crosslinkable poly(urethane urea)-reinforced silica aerogels. RSC Advances 2015, 5 (88) , 71551-71558. https://doi.org/10.1039/C5RA11769K
    88. Fangxin Zou, Li Peng, Wenxin Fu, Jianling Zhang, Zhibo Li. Flexible superhydrophobic polysiloxane aerogels for oil–water separation via one-pot synthesis in supercritical CO 2. RSC Advances 2015, 5 (93) , 76346-76351. https://doi.org/10.1039/C5RA13023A
    89. Ning Zhao, Zhen Wang, Chao Cai, Heng Shen, Feiyue Liang, Dong Wang, Chunyan Wang, Tang Zhu, Jing Guo, Yongxin Wang, Xiaofang Liu, Chunting Duan, Hao Wang, Yunzeng Mao, Xin Jia, Haixia Dong, Xiaoli Zhang, Jian Xu. Bioinspired Materials: from Low to High Dimensional Structure. Advanced Materials 2014, 26 (41) , 6994-7017. https://doi.org/10.1002/adma.201401718
    90. Hajar Maleki, Luisa Durães, António Portugal. Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications. Microporous and Mesoporous Materials 2014, 197 , 116-129. https://doi.org/10.1016/j.micromeso.2014.06.003
    91. H. Sardon, L. Irusta, R.H. Aguirresarobe, M.J. Fernández-Berridi. Polymer/silica nanohybrids by means of tetraethoxysilane sol–gel condensation onto waterborne polyurethane particles. Progress in Organic Coatings 2014, 77 (9) , 1436-1442. https://doi.org/10.1016/j.porgcoat.2014.04.032
    92. Sergey A. Lermontov, Nataliya A. Sipyagina, Alena N. Malkova, Alexander V. Yarkov, Alexander E. Baranchikov, Vladimir V. Kozik, Vladimir K. Ivanov. Functionalization of aerogels by the use of pre-constructed monomers: the case of trifluoroacetylated (3-aminopropyl) triethoxysilane. RSC Adv. 2014, 4 (94) , 52423-52429. https://doi.org/10.1039/C4RA06974A
    93. Shan Yun, Hongjie Luo, Yanfeng Gao. Ambient-pressure drying synthesis of large resorcinol–formaldehyde-reinforced silica aerogels with enhanced mechanical strength and superhydrophobicity. Journal of Materials Chemistry A 2014, 2 (35) , 14542. https://doi.org/10.1039/C4TA02195A
    94. Alexandra Fidalgo, José Paulo S. Farinha, José M. G. Martinho, Laura M. Ilharco. Flexible hybrid aerogels prepared under subcritical conditions. Journal of Materials Chemistry A 2013, 1 (39) , 12044. https://doi.org/10.1039/c3ta12431b

    Langmuir

    Cite this: Langmuir 2013, 29, 20, 6156–6165
    Click to copy citationCitation copied!
    https://doi.org/10.1021/la4007394
    Published April 23, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    2610

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.