ACS Publications. Most Trusted. Most Cited. Most Read
Advanced Hybrid Supercapacitor Based on a Mesoporous Niobium Pentoxide/Carbon as High-Performance Anode
My Activity
    Article

    Advanced Hybrid Supercapacitor Based on a Mesoporous Niobium Pentoxide/Carbon as High-Performance Anode
    Click to copy article linkArticle link copied!

    View Author Information
    School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 790-784, Republic of Korea
    Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 790-784, Republic of Korea
    § Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
    4-3, Agency for Defense Development, Yuseong, P.O. Box 35-4, 305-600 Daejeon, Republic of Korea
    Department of Integrative Engineering, Chung-Ang University, 221, Heukseok-Dong, Dongjak-Gu, Seoul 156-756, Republic of Korea
    # Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Seoul 151-742, Republic of Korea
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2014, 8, 9, 8968–8978
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn501972w
    Published August 19, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Recently, hybrid supercapacitors (HSCs), which combine the use of battery and supercapacitor, have been extensively studied in order to satisfy increasing demands for large energy density and high power capability in energy-storage devices. For this purpose, the requirement for anode materials that provide enhanced charge storage sites (high capacity) and accommodate fast charge transport (high rate capability) has increased. Herein, therefore, a preparation of nanocomposite as anode material is presented and an advanced HSC using it is thoroughly analyzed. The HSC comprises a mesoporous Nb2O5/carbon (m-Nb2O5–C) nanocomposite anode synthesized by a simple one-pot method using a block copolymer assisted self-assembly and commercial activated carbon (MSP-20) cathode under organic electrolyte. The m-Nb2O5–C anode provides high specific capacity with outstanding rate performance and cyclability, mainly stemming from its enhanced pseudocapacitive behavior through introduction of a carbon-coated mesostructure within a voltage range from 3.0 to 1.1 V (vs Li/Li+). The HSC using the m-Nb2O5–C anode and MSP-20 cathode exhibits excellent energy and power densities (74 W h kg–1 and 18 510 W kg–1), with advanced cycle life (capacity retention: ∼90% at 1000 mA g–1 after 1000 cycles) within potential range from 1.0 to 3.5 V. In particular, we note that the highest power density (18 510 W kg–1) of HSC is achieved at 15 W h kg–1, which is the highest level among similar HSC systems previously reported. With further study, the HSCs developed in this work could be a next-generation energy-storage device, bridging the performance gap between conventional batteries and supercapacitors.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The further characterization of Nb2O5 samples such as BET, SEM, and electrochemical data (cyclic voltammetry, galvanostatic charge–discharge curves, etc.). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 393 publications.

    1. Xuhuan Xiao, Shusheng Tao, Huimin Lian, Ye Tian, Wentao Deng, Hongshuai Hou, Guoqiang Zou, Xiaobo Ji. Unveiling the Microscopic Origin of Ultrahigh Initial Coulombic Efficiency of High-Entropy Metal–Organic Frameworks for Sodium Storage. ACS Nano 2024, 18 (41) , 28444-28455. https://doi.org/10.1021/acsnano.4c11401
    2. Juncheng Qi, Haoyan Duan, Zhiling Peng, Jun Wang, Boxiang Ma, Zehui Yuan, Huifang Zhang. Cobalt–Nickel Mixed Metal Sulfide Hollow Nanocages with Enhanced Surface-Induced Capacitive Storage for Hybrid Supercapacitor. Energy & Fuels 2024, 38 (14) , 13379-13389. https://doi.org/10.1021/acs.energyfuels.4c01428
    3. Suvani Subhadarshini, N. K. Peyada, Dipak K. Goswami, Narayan Ch. Das. Review of Battery-type Transition Metal (Cu, Co, and Ni) Oxide Based Electrodes: From Fundamental Science to Fabrication of a Hybrid Supercapacitor Device. Energy & Fuels 2024, 38 (13) , 11455-11493. https://doi.org/10.1021/acs.energyfuels.4c01460
    4. Minkyeong Ban, Dongyoon Woo, Jongkook Hwang, Seongseop Kim, Jinwoo Lee. Spinodal Decomposition-Driven Structural Hierarchy of Mesoporous Inorganic Materials for Energy Applications. Accounts of Chemical Research 2023, 56 (23) , 3428-3440. https://doi.org/10.1021/acs.accounts.3c00524
    5. Chenglin Zhang, Pankaj Chandan Solanki, Dawei Cao, Huaping Zhao, Yong Lei. Integration of Cointercalation and Adsorption Enabling Superior Rate Performance of Carbon Anodes for Symmetric Sodium-Ion Capacitors. ACS Applied Materials & Interfaces 2023, 15 (20) , 24459-24469. https://doi.org/10.1021/acsami.3c02404
    6. Wenlei Xu, Yaolin Xu, Thorsten Schultz, Yan Lu, Norbert Koch, Nicola Pinna. Heterostructured and Mesoporous Nb2O5@TiO2 Core-Shell Spheres as the Negative Electrode in Li-Ion Batteries. ACS Applied Materials & Interfaces 2023, 15 (1) , 795-805. https://doi.org/10.1021/acsami.2c15124
    7. Fang Liu, Zhu Zhu, Yuanguo Chen, Jiashen Meng, Hong Wang, Ruohan Yu, Xufeng Hong, Jinsong Wu. Dense T-Nb2O5/Carbon Microspheres for Ultrafast-(Dis)charge and High-Loading Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2022, 14 (44) , 49865-49874. https://doi.org/10.1021/acsami.2c15697
    8. Shu-Ang He, Qian Liu, Wei Luo, Zhe Cui, Rujia Zou. Constructing a Micrometer-Sized Structure through an Initial Electrochemical Process for Ultrahigh-Performance Li+ Storage. ACS Applied Materials & Interfaces 2022, 14 (31) , 35522-35533. https://doi.org/10.1021/acsami.2c06818
    9. Doha M. Sayed, Kholoud E. Salem, Nageh K. Allam. Optimized Lithography-Free Fabrication of Sub-100 nm Nb2O5 Nanotube Films as Negative Supercapacitor Electrodes: Tuned Oxygen Vacancies and Cationic Intercalation. ACS Applied Materials & Interfaces 2022, 14 (22) , 25545-25555. https://doi.org/10.1021/acsami.2c05320
    10. Junfeng Huang, Teng Sun, Meiyi Ma, Zhong Xu, Yuchen Wang, Yanting Xie, Xiang Chu, Xinglin Jiang, Yongbin Wang, Shenglong Wang, Weiqing Yang, Haitao Zhang. 2D-Nb2CTz-Supported, 3D-Carbon-Encapsulated, Oxygen-Deficient Nb2O5 for an Advanced Li-Ion Battery. ACS Applied Energy Materials 2022, 5 (2) , 2121-2129. https://doi.org/10.1021/acsaem.1c03680
    11. Ruifeng Qian, Huiying Lu, Tianhao Yao, Fengping Xiao, Jian-Wen Shi, Yonghong Cheng, Hongkang Wang. Hollow TiNb2O7 Nanospheres with a Carbon Coating as High-Efficiency Anode Materials for Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering 2022, 10 (1) , 61-70. https://doi.org/10.1021/acssuschemeng.1c04712
    12. Xuejiao Xu, Fuzhong Wu, Wanliang Yang, Xinyi Dai, Tianhao Wang, Jiawang Zhou, Jing Wang, Dan Guo. Silicon@Natural Nitrogen-Doped Biomass Carbon Composites Derived from “Silicon Tofu” as Green and Efficient Anode Materials for Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering 2021, 9 (39) , 13215-13224. https://doi.org/10.1021/acssuschemeng.1c03879
    13. Tingting Meng, Yimin Xuan, Xiaogang Zhang. A Thermally Chargeable Hybrid Supercapacitor with High Power Density for Directly Converting Heat to Electricity. ACS Applied Energy Materials 2021, 4 (6) , 6055-6061. https://doi.org/10.1021/acsaem.1c00905
    14. T. Kavinkumar, Selvaraj Seenivasan, Amarnath T. Sivagurunathan, Yongchai Kwon, Do-Heyoung Kim. Three-Dimensional Hierarchical Core/shell Electrodes Using Highly Conformal TiO2 and Co3O4 Thin Films for High-Performance Supercapattery Devices. ACS Applied Materials & Interfaces 2021, 13 (24) , 29058-29069. https://doi.org/10.1021/acsami.1c04572
    15. Jun Yuan, Xiang Hu, Junwei Li, Yangjie Liu, Guobao Zhong, Taizhong Huang. V2O3 Nanoparticles Confined in High-Conductivity and High-Throughput Carbon Nanofiber Nanohybrids for Advanced Sodium-Ion Capacitors. ACS Applied Materials & Interfaces 2021, 13 (8) , 10001-10012. https://doi.org/10.1021/acsami.0c21313
    16. Xiangyang Zhou, Runfeng Song, Lin Hou, Herong Xu, Li Shen, Juan Yang, Jingjing Tang. Co@N-Doped Carbon Frameworks Anchored on Graphene as High-Rate and Long-Lifespan Anode Materials for Advanced Li-Ion Hybrid Capacitors. ACS Applied Energy Materials 2021, 4 (1) , 462-469. https://doi.org/10.1021/acsaem.0c02394
    17. Jinwei Kang, Huiwen Zhang, Ziyi Zhan, Yuqi Li, Min Ling, Xuehui Gao. Construction of a Flexible Nb2O5/Carboxyl Multiwalled Carbon Nanotube Film as Anode for Lithium and Sodium Storages. ACS Applied Energy Materials 2020, 3 (12) , 11841-11847. https://doi.org/10.1021/acsaem.0c01988
    18. Hehe Jiang, Dong Shi, Xiucai Sun, Shouzhi Wang, Yanlu Li, Bin Chang, Baoguo Zhang, Yongliang Shao, Yongzhong Wu, Xiaopeng Hao. Boron Carbonitride Lithium-Ion Capacitors with an Electrostatically Expanded Operating Voltage Window. ACS Applied Materials & Interfaces 2020, 12 (42) , 47425-47434. https://doi.org/10.1021/acsami.0c12163
    19. Wei Zhang, Bin Li, Yong-Gang Sun, An-Min Cao, Li-Jun Wan. Spherical Mesoporous Metal Oxides with Tunable Orientation Enabled by Growth Kinetics Control. Journal of the American Chemical Society 2020, 142 (42) , 17897-17902. https://doi.org/10.1021/jacs.0c07938
    20. Xuewen Zhao, Zechen Liu, Wenyue Xiao, Hongyang Huang, Lihui Zhang, Yonghong Cheng, Jinying Zhang. Low Crystalline MoS2 Nanotubes from MoS2 Nanomasks for Lithium Ion Battery Applications. ACS Applied Nano Materials 2020, 3 (8) , 7580-7586. https://doi.org/10.1021/acsanm.0c01212
    21. Sukanya Datta, Changshin Jo, Michael De Volder, Laura Torrente-Murciano. Morphological Control of Nanostructured V2O5 by Deep Eutectic Solvents. ACS Applied Materials & Interfaces 2020, 12 (16) , 18803-18812. https://doi.org/10.1021/acsami.9b17916
    22. Hyun-Jae Kim, Hari Vignesh Ramasamy, Gang-Hyeon Jeong, Vanchiappan Aravindan, Yun-Sung Lee. Deciphering the Structure–Property Relationship of Na–Mn–Co–Mg–O as a Novel High-Capacity Layered–Tunnel Hybrid Cathode and Its Application in Sodium-Ion Capacitors. ACS Applied Materials & Interfaces 2020, 12 (9) , 10268-10279. https://doi.org/10.1021/acsami.9b19288
    23. Joshua P. Pender, Gaurav Jha, Duck Hyun Youn, Joshua M. Ziegler, Ilektra Andoni, Eric J. Choi, Adam Heller, Bruce S. Dunn, Paul S. Weiss, Reginald M. Penner, C. Buddie Mullins. Electrode Degradation in Lithium-Ion Batteries. ACS Nano 2020, 14 (2) , 1243-1295. https://doi.org/10.1021/acsnano.9b04365
    24. Zhaodi Fan, Chaohui Wei, Lianghao Yu, Zhou Xia, Jingsheng Cai, Zhengnan Tian, Guifu Zou, Shi Xue Dou, Jingyu Sun. 3D Printing of Porous Nitrogen-Doped Ti3C2 MXene Scaffolds for High-Performance Sodium-Ion Hybrid Capacitors. ACS Nano 2020, 14 (1) , 867-876. https://doi.org/10.1021/acsnano.9b08030
    25. Jianxin Geng Shang Chen Xin Chen . State-of-the-Art Applications of 2D Nanomaterials in Energy Storage. 2020, 253-293. https://doi.org/10.1021/bk-2020-1353.ch011
    26. Ramkrishna Sahoo, Tae Hoon Lee, Duy Tho Pham, Thi Hoai Thuong Luu, Young Hee Lee. Fast-Charging High-Energy Battery–Supercapacitor Hybrid: Anodic Reduced Graphene Oxide–Vanadium(IV) Oxide Sheet-on-Sheet Heterostructure. ACS Nano 2019, 13 (9) , 10776-10786. https://doi.org/10.1021/acsnano.9b05605
    27. Guanghe Dong, Huanlei Wang, Wei Liu, Jing Shi, Shijiao Sun, Dong Li, Hao Zhang, Yunpeng Yang, Yongpeng Cui. Nitrate Salt Assisted Fabrication of Highly N-Doped Carbons for High-Performance Sodium Ion Capacitors. ACS Applied Energy Materials 2018, 1 (10) , 5636-5645. https://doi.org/10.1021/acsaem.8b01166
    28. Gaurav Jha, Thien Tran, Shaopeng Qiao, Joshua M. Ziegler, Alana F. Ogata, Sheng Dai, Mingjie Xu, Mya Le Thai, Girija Thesma Chandran, Xiaoqing Pan, Reginald M. Penner. Electrophoretic Deposition of Mesoporous Niobium(V)Oxide Nanoscopic Films. Chemistry of Materials 2018, 30 (18) , 6549-6558. https://doi.org/10.1021/acs.chemmater.8b03254
    29. Jia Ding, Wenbin Hu, Eunsu Paek, David Mitlin. Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium. Chemical Reviews 2018, 118 (14) , 6457-6498. https://doi.org/10.1021/acs.chemrev.8b00116
    30. Heng Rong, Tao Chen, Rui Shi, Yuanyuan Zhang, Zhenghua Wang. Hierarchical NiCo2O4@NiCo2S4 Nanocomposite on Ni Foam as an Electrode for Hybrid Supercapacitors. ACS Omega 2018, 3 (5) , 5634-5642. https://doi.org/10.1021/acsomega.8b00742
    31. Simon Fleischmann, Desirée Leistenschneider, Valeria Lemkova, Benjamin Krüner, Marco Zeiger, Lars Borchardt, and Volker Presser . Tailored Mesoporous Carbon/Vanadium Pentoxide Hybrid Electrodes for High Power Pseudocapacitive Lithium and Sodium Intercalation. Chemistry of Materials 2017, 29 (20) , 8653-8662. https://doi.org/10.1021/acs.chemmater.7b02533
    32. Rutao Wang, Shijie Wang, Xiang Peng, Yabin Zhang, Dongdong Jin, Paul K. Chu, and Li Zhang . Elucidating the Intercalation Pseudocapacitance Mechanism of MoS2–Carbon Monolayer Interoverlapped Superstructure: Toward High-Performance Sodium-Ion-Based Hybrid Supercapacitor. ACS Applied Materials & Interfaces 2017, 9 (38) , 32745-32755. https://doi.org/10.1021/acsami.7b09813
    33. Tongye Wei, Gongzheng Yang, and Chengxin Wang . Iso-Oriented NaTi2(PO4)3 Mesocrystals as Anode Material for High-Energy and Long-Durability Sodium-Ion Capacitor. ACS Applied Materials & Interfaces 2017, 9 (37) , 31861-31870. https://doi.org/10.1021/acsami.7b08778
    34. Chun-Han Lai, David Ashby, Melissa Moz, Yury Gogotsi, Laurent Pilon, and Bruce Dunn . Designing Pseudocapacitance for Nb2O5/Carbide-Derived Carbon Electrodes and Hybrid Devices. Langmuir 2017, 33 (37) , 9407-9415. https://doi.org/10.1021/acs.langmuir.7b01110
    35. Ying Zhang, Yan Zhao, Shunsheng Cao, Zhengliang Yin, Li Cheng, and Limin Wu . Design and Synthesis of Hierarchical SiO2@C/TiO2 Hollow Spheres for High-Performance Supercapacitors. ACS Applied Materials & Interfaces 2017, 9 (35) , 29982-29991. https://doi.org/10.1021/acsami.7b08776
    36. Xinlong Ma, Xinyu Song, Guoqing Ning, Liqiang Hou, Yanfang Kan, Zhihua Xiao, Wei Li, Guixuan Ma, Jinsen Gao, and Yongfeng Li . S-Doped Porous Graphene Microspheres with Individual Robust Red-Blood-Cell-Like Microarchitecture for Capacitive Energy Storage. Industrial & Engineering Chemistry Research 2017, 56 (34) , 9524-9532. https://doi.org/10.1021/acs.iecr.7b01953
    37. Dongchang Chen, Jeng-Han Wang, Tsung-Fu Chou, Bote Zhao, Mostafa A. El-Sayed, and Meilin Liu . Unraveling the Nature of Anomalously Fast Energy Storage in T-Nb2O5. Journal of the American Chemical Society 2017, 139 (20) , 7071-7081. https://doi.org/10.1021/jacs.7b03141
    38. Jianmin Luo, Wenkui Zhang, Huadong Yuan, Chengbin Jin, Liyuan Zhang, Hui Huang, Chu Liang, Yang Xia, Jun Zhang, Yongping Gan, and Xinyong Tao . Pillared Structure Design of MXene with Ultralarge Interlayer Spacing for High-Performance Lithium-Ion Capacitors. ACS Nano 2017, 11 (3) , 2459-2469. https://doi.org/10.1021/acsnano.6b07668
    39. Min Yeong Song, Na Rae Kim, Hyeon Ji Yoon, Se Youn Cho, Hyoung-Joon Jin, and Young Soo Yun . Long-Lasting Nb2O5-Based Nanocomposite Materials for Li-Ion Storage. ACS Applied Materials & Interfaces 2017, 9 (3) , 2267-2274. https://doi.org/10.1021/acsami.6b11444
    40. Hyun Deog Yoo, Sang-Don Han, Ryan D. Bayliss, Andrew A. Gewirth, Bostjan Genorio, Nav Nidhi Rajput, Kristin A. Persson, Anthony K. Burrell, and Jordi Cabana . “Rocking-Chair”-Type Metal Hybrid Supercapacitors. ACS Applied Materials & Interfaces 2016, 8 (45) , 30853-30862. https://doi.org/10.1021/acsami.6b08367
    41. Wei Luo, Tao Zhao, Yuhui Li, Jing Wei, Pengcheng Xu, Xinxin Li, Youwei Wang, Wenqing Zhang, Ahmed A. Elzatahry, Abdulaziz Alghamdi, Yonghui Deng, Lianjun Wang, Wan Jiang, Yong Liu, Biao Kong, and Dongyuan Zhao . A Micelle Fusion–Aggregation Assembly Approach to Mesoporous Carbon Materials with Rich Active Sites for Ultrasensitive Ammonia Sensing. Journal of the American Chemical Society 2016, 138 (38) , 12586-12595. https://doi.org/10.1021/jacs.6b07355
    42. Hongsen Li, Lele Peng, Yue Zhu, Xiaogang Zhang, and Guihua Yu . Achieving High-Energy–High-Power Density in a Flexible Quasi-Solid-State Sodium Ion Capacitor. Nano Letters 2016, 16 (9) , 5938-5943. https://doi.org/10.1021/acs.nanolett.6b02932
    43. Litao Yan, Gen Chen, Swagotom Sarker, Stephanie Richins, Huiqiang Wang, Weichuan Xu, Xianhong Rui, and Hongmei Luo . Ultrafine Nb2O5 Nanocrystal Coating on Reduced Graphene Oxide as Anode Material for High Performance Sodium Ion Battery. ACS Applied Materials & Interfaces 2016, 8 (34) , 22213-22219. https://doi.org/10.1021/acsami.6b06516
    44. Raquel Fiz, Linus Appel, Antonio Gutiérrez-Pardo, Joaquín Ramírez-Rico, and Sanjay Mathur . Electrochemical Energy Storage Applications of CVD Grown Niobium Oxide Thin Films. ACS Applied Materials & Interfaces 2016, 8 (33) , 21423-21430. https://doi.org/10.1021/acsami.6b03945
    45. Hongsen Li, Yue Zhu, Shengyang Dong, Laifa Shen, Zhijie Chen, Xiaogang Zhang, and Guihua Yu . Self-Assembled Nb2O5 Nanosheets for High Energy–High Power Sodium Ion Capacitors. Chemistry of Materials 2016, 28 (16) , 5753-5760. https://doi.org/10.1021/acs.chemmater.6b01988
    46. Kent J. Griffith, Alexander C. Forse, John M. Griffin, and Clare P. Grey . High-Rate Intercalation without Nanostructuring in Metastable Nb2O5 Bronze Phases. Journal of the American Chemical Society 2016, 138 (28) , 8888-8899. https://doi.org/10.1021/jacs.6b04345
    47. Chuanfang Zhang, Majid Beidaghi, Michael Naguib, Maria R. Lukatskaya, Meng-Qiang Zhao, Boris Dyatkin, Kevin M. Cook, Seon Joon Kim, Brandon Eng, Xu Xiao, Donghui Long, Wenming Qiao, Bruce Dunn, and Yury Gogotsi . Synthesis and Charge Storage Properties of Hierarchical Niobium Pentoxide/Carbon/Niobium Carbide (MXene) Hybrid Materials. Chemistry of Materials 2016, 28 (11) , 3937-3943. https://doi.org/10.1021/acs.chemmater.6b01244
    48. K. Karthick, U. Nithiyanantham, S. R. Ede, and Subrata Kundu . DNA Aided Formation of Aggregated Nb2O5 Nanoassemblies as Anode Material for Dye Sensitized Solar Cell (DSSC) and Supercapacitor Applications. ACS Sustainable Chemistry & Engineering 2016, 4 (6) , 3174-3188. https://doi.org/10.1021/acssuschemeng.6b00200
    49. Kyungbae Kim, Moon-Soo Kim, Pil-Ryung Cha, Soon Hyung Kang, and Jae-Hun Kim . Structural Modification of Self-Organized Nanoporous Niobium Oxide via Hydrogen Treatment. Chemistry of Materials 2016, 28 (5) , 1453-1461. https://doi.org/10.1021/acs.chemmater.5b04845
    50. Fan Zhang, Yongbing Tang, Hui Liu, Hongyi Ji, Chunlei Jiang, Jing Zhang, Xiaolong Zhang, and Chun-Sing Lee . Uniform Incorporation of Flocculent Molybdenum Disulfide Nanostructure into Three-Dimensional Porous Graphene as an Anode for High-Performance Lithium Ion Batteries and Hybrid Supercapacitors. ACS Applied Materials & Interfaces 2016, 8 (7) , 4691-4699. https://doi.org/10.1021/acsami.5b11705
    51. Lingping Kong, Chuanfang Zhang, Jitong Wang, Wenming Qiao, Licheng Ling, and Donghui Long . Free-Standing T-Nb2O5/Graphene Composite Papers with Ultrahigh Gravimetric/Volumetric Capacitance for Li-Ion Intercalation Pseudocapacitor. ACS Nano 2015, 9 (11) , 11200-11208. https://doi.org/10.1021/acsnano.5b04737
    52. Eunho Lim, Changshin Jo, Haegyeom Kim, Mok-Hwa Kim, Yeongdong Mun, Jinyoung Chun, Youngjin Ye, Jongkook Hwang, Kyoung-Su Ha, Kwang Chul Roh, Kisuk Kang, Songhun Yoon, and Jinwoo Lee . Facile Synthesis of Nb2O5@Carbon Core–Shell Nanocrystals with Controlled Crystalline Structure for High-Power Anodes in Hybrid Supercapacitors. ACS Nano 2015, 9 (7) , 7497-7505. https://doi.org/10.1021/acsnano.5b02601
    53. Changshin Jo, Yuwon Park, Jooyoung Jeong, Kyu Tae Lee, and Jinwoo Lee . Structural Effect on Electrochemical Performance of Ordered Porous Carbon Electrodes for Na-Ion Batteries. ACS Applied Materials & Interfaces 2015, 7 (22) , 11748-11754. https://doi.org/10.1021/acsami.5b03186
    54. Henri-Louis Girard, Hainan Wang, Anna d’Entremont, and Laurent Pilon . Physical Interpretation of Cyclic Voltammetry for Hybrid Pseudocapacitors. The Journal of Physical Chemistry C 2015, 119 (21) , 11349-11361. https://doi.org/10.1021/acs.jpcc.5b00641
    55. Jongkook Hwang, Changshin Jo, Min Gyu Kim, Jinyoung Chun, Eunho Lim, Seongseop Kim, Sanha Jeong, Youngsik Kim, and Jinwoo Lee . Mesoporous Ge/GeO2/Carbon Lithium-Ion Battery Anodes with High Capacity and High Reversibility. ACS Nano 2015, 9 (5) , 5299-5309. https://doi.org/10.1021/acsnano.5b00817
    56. Chongjun Zhao, Yingying Rong, Tenghui Huang, Yanyu Guo, Puqi Geng, Chunhua Zhao. Hierarchical porous carbon composite derived from corn stalk/sodium alginate for high performance supercapacitor. Journal of Energy Storage 2025, 121 , 116602. https://doi.org/10.1016/j.est.2025.116602
    57. Yedluri Anil Kumar, Shanmugam Vignesh, Tholkappiyan Ramachandran, Ahmed M. Fouda, H.H. Hegazy, Md Moniruzzaman, Tae Hwan Oh. Advancements in novel electrolyte materials: Pioneering the future of supercapacitive energy storage. Journal of Industrial and Engineering Chemistry 2025, 145 , 191-215. https://doi.org/10.1016/j.jiec.2024.11.018
    58. Patricia Rocio Durañona Aznar, Mateus Beltrami, Marielen Longhi, Heitor Luiz Ornaghi Júnior, Ademir José Zattera, Lílian Vanessa Rossa Beltrami. Review: aerogel electrodes for supercapacitor application using metal additives. Journal of Materials Science 2025, 60 (17) , 7141-7172. https://doi.org/10.1007/s10853-025-10881-y
    59. Lin Liu, Tianyi Wang, Hong Gao, Chengyin Wang, Guoxiu Wang. Hybrid Capacitor. 2025, 263-298. https://doi.org/10.1002/9783527834815.ch10
    60. Manisha, M. Taqi Qaeemy, Monika Dhanda, Suman Lata, Harish Kumar, Anshu Sharma. Optimization of Nb2O5/g-C3N4/PPy as an electrode material for prevailing electrochemical performance. Frontiers in Energy Research 2025, 13 https://doi.org/10.3389/fenrg.2025.1511271
    61. Eunho Lim. Anode Material Research Trends: From Lithium-Ion to Next-Generation Potassium-Ion Hybrid Supercapacitors. Korean Journal of Chemical Engineering 2025, 311 https://doi.org/10.1007/s11814-025-00391-7
    62. Yi Liu, Hedong Jiang, Pingchun Guo, Jiake Li, Hua Zhu, Xueyun Fan, Liqun Huang, Jian Sun, Zhonghua Cao, Yanxiang Wang. Progress and prospects of lithium-ion capacitors: a review. Journal of Materials Science 2025, 60 (4) , 1767-1796. https://doi.org/10.1007/s10853-024-10586-8
    63. Lukman O. Animasahun, Bidini A. Taleatu, Saheed A. Adewinbi, Abdulmajeed Abdullah Alayyaf, S.K. Mosa, Vusani Maphiri, Haekyonug Kim, Adeniyi Y. Fasasi. Pseudocapacitive Na ion storage in binder-less, carbon additive-free Nb2O5-x electrode synthesised via solvothermal-assisted electro-coating with enhanced areal capacitance and lowered impedance parameters. Journal of Physics and Chemistry of Solids 2025, 196 , 112336. https://doi.org/10.1016/j.jpcs.2024.112336
    64. S.A. Beknalkar, A.M. Teli, T.S. Bhat, R.U. Amate, P.J. Morankar, S.U. Baik, Y.H. Wu, J.H. Lee, H.H. Kim, J.C. Shin. A brief review on niobium oxide for supercapacitors: Unveiling fundamentals, recent breakthroughs, and promising future horizons. Journal of Alloys and Compounds 2025, 1010 , 177473. https://doi.org/10.1016/j.jallcom.2024.177473
    65. Haiqiu Fang, Dezhi Li, Mingyao Zhao, Yang Zhang, Junwei Yang, Kai Wang. Research progress and prospect of hybrid supercapacitors as boosting the performance. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2024, 46 (1) , 5849-5866. https://doi.org/10.1080/15567036.2022.2033887
    66. R. Priya, S. Sonia. Green Supercapacitors. 2024, 73-96. https://doi.org/10.1002/9781394237920.ch3
    67. Onkar C. Pore, Akash V. Fulari, Digambar S. Sawant, Abhijit S. Shelake, Vijay J. Fulari, Gaurav M. Lohar. Benchmarking Electrode Materials for Supercapacitors, Pseudocapacitors, and Hybrid Capacitors. 2024, 859-890. https://doi.org/10.1002/9783527838851.ch24
    68. Abdul Kareem Sultan Sheik Mohamed Riyaz, Andikkadu Masilamani Shanmugharaj, Mahendradas Dharmendira Kumar, Ranjith Krishna Pai. Advances in Lithium‐Ion and Sodium‐Ion‐Based Supercapacitors: Prospects and Challenges. 2024, 1293-1342. https://doi.org/10.1002/9783527838851.ch35
    69. Chunyu Zhao, Shuyu Yao, Chen Li, Yabin An, Shasha Zhao, Xianzhong Sun, Kai Wang, Xiong Zhang, Yanwei Ma. Recent advances in transition metal oxides as anode materials for high-performance lithium-ion capacitors. Chemical Engineering Journal 2024, 497 , 154535. https://doi.org/10.1016/j.cej.2024.154535
    70. Yu Tian, Mai Li, Junxuan Zhang, Hui Liu, Hongran Sun, Huifang Li, Peng Wang, Taeseup Song, Ungyu Paik, Zhiming Liu. Synergetic effects of S, N co-doping and surface concave-pores rich in lotus-leaf-like carbon nanosheets enabled threefold lithium storage mechanisms. Chemical Engineering Journal 2024, 497 , 154559. https://doi.org/10.1016/j.cej.2024.154559
    71. Haisheng Du, Yin Yang, Chen Zhang, Yulong Li, Jiaran Wang, Kai Zhao, Changbo Lu, Dong Sun, Chun Lu, Shengli Chen, Xinlong Ma. Hierarchical porous carbon originated from the directing associated with activation as high-performance electrodes for supercapacitor and Li ion capacitor. Journal of Power Sources 2024, 614 , 234988. https://doi.org/10.1016/j.jpowsour.2024.234988
    72. Alice Marciel, Alexandre Bastos, Luiz Pereira, Suresh Kumar Jakka, Joel Borges, Filipe Vaz, Marco Peres, Katharina Lorenz, Arijeta Bafti, Luka Pavić, Rui Silva, Manuel Graça. Niobium Oxide Thin Films Grown on Flexible ITO-Coated PET Substrates. Coatings 2024, 14 (9) , 1127. https://doi.org/10.3390/coatings14091127
    73. Sehar Shahzadi, Mariam Akhtar, Muhammad Arshad, Muhammad Hammad Ijaz, Muhammad Ramzan Saeed Ashraf Janjua. A review on synthesis of MOF-derived carbon composites: innovations in electrochemical, environmental and electrocatalytic technologies. RSC Advances 2024, 14 (38) , 27575-27607. https://doi.org/10.1039/D4RA05183A
    74. Hao Liu, Zhenjun Luo, Shuaishuai Yan, Qingbin Cao, Chunyi Du, Weili Zhang, Zhan Wang, Tianyou Zeng, Shengzhou Liu, Kun Zhao, Chengbiao Wei, Hongchang Pei. Nano-porous structure architectonics of MoS2 nanosheets with flexible electrode membrane for designing ultrastable sodium-ion hybrid capacitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 695 , 134257. https://doi.org/10.1016/j.colsurfa.2024.134257
    75. Zahra Roohi, Frej Mighri, Ze Zhang. Conductive Polymer-Based Electrodes and Supercapacitors: Materials, Electrolytes, and Characterizations. Materials 2024, 17 (16) , 4126. https://doi.org/10.3390/ma17164126
    76. M. Revathi, R.Biju Bennie, C. Joel, K. Narayanan, Mohd Shahnawaz Khan, Yedluri Anil Kumar. Single-pot synthesis of Nb2O5-V2O5 nanocomposite for advanced charge storage applications: Unveiling morphological, structural and electrochemical insights. Electrochimica Acta 2024, 483 , 144006. https://doi.org/10.1016/j.electacta.2024.144006
    77. Wen Siong Poh, Wen Jie Yiang, Wee-Jun Ong, Pau Loke Show, Chuan Yi Foo. Enhancing MXene-based supercapacitors: Role of synthesis and 3D architectures. Journal of Energy Chemistry 2024, 91 , 1-26. https://doi.org/10.1016/j.jechem.2023.11.020
    78. Animesh Acharjee, Bidyut Saha. Organic electrolytes in electrochemical supercapacitors: Applications and developments. Journal of Molecular Liquids 2024, 400 , 124487. https://doi.org/10.1016/j.molliq.2024.124487
    79. Ya Zheng, Xiaocheng Li, Juan Liu, Xiaoyu Zhao, Nengwen Ding, Qian Zhang, Shengwen Zhong. Honeycomb-like micro-/nano-hierarchical porous germanium for high-performance lithium-ion battery anodes. New Journal of Chemistry 2024, 48 (13) , 5627-5635. https://doi.org/10.1039/D4NJ00224E
    80. Jianjian Zhong, Jianling Li. Copper Phosphide Nanostructures Covalently Modified Ti 3 C 2 T x for Fast Lithium‐Ion Storage by Enhanced Kinetics and Pesudocapacitance. Small 2024, 20 (9) https://doi.org/10.1002/smll.202306241
    81. Qiang Guo, Peiying Fan, Yuhan Zhang, Li Guan, Han Wang, Anna Croft, George Zheng Chen. Alkali and alkaline earth metals in liquid salts for supercapatteries. RSC Sustainability 2024, 2 (1) , 101-124. https://doi.org/10.1039/D3SU00197K
    82. Muhammad Nasir Hussain, Abdul Naveed, Abid Inayat, Muhammad Bilal, Ali Haider, Syed Mujtaba Shah. Investigating the Impact of Ag Nanoparticles on N and S Co‐Doped TiO 2 for Battery‐Type Supercapacitor Application. ChemistrySelect 2023, 8 (48) https://doi.org/10.1002/slct.202303224
    83. A. Nazir, A. Kasbe, H. Sharma, S. Motevalian, S. Mohanty, K. K. Sahu. New Developments in Low-carbon Supercapacitors for Emerging Applications: A Critical Review. 2023, 426-461. https://doi.org/10.1039/BK9781837672479-00426
    84. Jörg G. Werner, Yuanzhi Li, Ulrich Wiesner. Block‐Copolymer‐Architected Materials in Electrochemical Energy Storage. Small Science 2023, 3 (12) https://doi.org/10.1002/smsc.202300074
    85. Rui Pang, Zhiqiang Wang, Jinkai Li, Kunfeng Chen. Polymorphs of Nb2O5 Compound and Their Electrical Energy Storage Applications. Materials 2023, 16 (21) , 6956. https://doi.org/10.3390/ma16216956
    86. Aviraj M. Teli, Sonali A. Beknalkar, Rutuja U. Amte, Pritam J. Morankar, Manesh A. Yewale, Vishal V. Burungale, Chan-Wook Jeon, Harry Efstathiadis, Jae Cheol Shin. Investigating into the intricacies of charge storage kinetics in NbMn-oxide composite electrodes for asymmetric supercapacitor and HER applications. Journal of Alloys and Compounds 2023, 965 , 171305. https://doi.org/10.1016/j.jallcom.2023.171305
    87. Shaoning Zhang, Jinkwang Hwang, Quan Manh Phung, Kazuhiko Matsumoto, Rika Hagiwara, Ji‐Young Shin. Sufficiently Enriched Dual‐Ion Batteries with Ferrocenyl Substituted Nickel(II) Norcorrole Organic Electrodes. Advanced Energy Materials 2023, 13 (40) https://doi.org/10.1002/aenm.202301443
    88. Govind Kumar Sharma, Prashant Govind Harel, Nirmala Rachel James. Flexible N-doped carbon nanofiber containing Nb2O5 nanoparticle and its polydimethylsiloxane composite for electromagnetic interference shielding. Carbon 2023, 214 , 118367. https://doi.org/10.1016/j.carbon.2023.118367
    89. Shibsankar Dutta, Shreyasi Pal, Nashiruddin Ahammed, Soumili Sahoo, Souvik Chatterjee, Sukanta De. Enhanced Electrochemical Performance of BiOCl Nanoflower-RGO Based Supercapacitor in the Presence of Redox Additive Electrolyte. ECS Journal of Solid State Science and Technology 2023, 12 (9) , 091002. https://doi.org/10.1149/2162-8777/acf2c4
    90. Binbin Yang, Wei Zhang, Weitao Zheng. Unlocking the full energy densities of carbon-based supercapacitors. Materials Research Letters 2023, 11 (7) , 517-546. https://doi.org/10.1080/21663831.2023.2183783
    91. Uchhwas Banik, MD Tanvir Uddin Malik, S. M. Sultan Mahmud Rahat, Abul K. Mallik. Performance enhancement of ruthenium‐based supercapacitors: A review. Energy Storage 2023, 5 (3) https://doi.org/10.1002/est2.380
    92. Arindam Dutta, Shirsendu Mitra, Mitali Basak, Tamal Banerjee. A comprehensive review on batteries and supercapacitors: Development and challenges since their inception. Energy Storage 2023, 5 (1) https://doi.org/10.1002/est2.339
    93. Yue Lian, Yujing Zheng, Zhifeng Wang, Yongfeng Hu, Jing Zhao, Huaihao Zhang. Hollow ppy@Ti2Nb10O29-x@NC bowls: A stress–release structure with vacancy defects and coating interface for Li capacitor. Chemical Engineering Journal 2023, 454 , 140287. https://doi.org/10.1016/j.cej.2022.140287
    94. Jianming Wang, Lu Chen, Bo Zhao, Chunyong Liang, Hongshui Wang, Yongguang Zhang. Porous Nb2O5 Formed by Anodic Oxidation as the Sulfur Host for Enhanced Performance Lithium-Sulfur Batteries. Nanomaterials 2023, 13 (4) , 777. https://doi.org/10.3390/nano13040777
    95. Rui Yang, Johnbosco Yesuraj, Jinsun Kim, Kibum Kim. Spinel-structured CuCo2O4 with a mixed 1D/2D morphology for asymmetric supercapacitor and oxygen evolution electrocatalyst applications. Electrochimica Acta 2023, 437 , 141507. https://doi.org/10.1016/j.electacta.2022.141507
    96. Lok Kumar Shrestha, Rekha Goswami Shrestha, Sabina Shahi, Chhabi Lal Gnawali, Mandira Pradhananga Adhikari, Biswa Nath Bhadra, Katsuhiko Ariga. Biomass Nanoarchitectonics for Supercapacitor Applications. Journal of Oleo Science 2023, 72 (1) , 11-32. https://doi.org/10.5650/jos.ess22377
    97. Neha Taneja, Ashwani Kumar, Pallavi Gupta, Meenal Gupta, Pushpa Singh, Bharti, Namrata Agrawal, Patrizia Bocchetta, Yogesh Kumar. Advancements in liquid and solid electrolytes for their utilization in electrochemical systems. Journal of Energy Storage 2022, 56 , 105950. https://doi.org/10.1016/j.est.2022.105950
    98. Xuhuan Xiao, Xinglan Deng, Ye Tian, Shusheng Tao, Zirui Song, Wentao Deng, Hongshuai Hou, Guoqiang Zou, Xiaobo Ji. Ultrathin two-dimensional nanosheet metal-organic frameworks with high-density ligand active sites for advanced lithium-ion capacitors. Nano Energy 2022, 103 , 107797. https://doi.org/10.1016/j.nanoen.2022.107797
    99. Siqi Jing, Xiaohui Yan, Taibai Li, Yige Xiong, Tao Hu, Zhongjie Wang, Xiang Ge. A conjugately configured supercapacitor based on pairs of pre-lithiated Nb2O5/TiO2 with optimized retained energy upon aging enabled by suppressed self-discharge. Journal of Power Sources 2022, 549 , 232141. https://doi.org/10.1016/j.jpowsour.2022.232141
    100. Chanrong Lei, Shengyang Huang, Xue Qin, Zixiang Guo, Tianyu Wei, Yuzhe Zhang. Reduced Graphene Oxide/Glucose Co‐Assisted Micro Titanium Niobium Oxide Hybrid Anodes for Lithium‐Ion Batteries. ChemElectroChem 2022, 9 (17) https://doi.org/10.1002/celc.202200495
    Load more citations

    ACS Nano

    Cite this: ACS Nano 2014, 8, 9, 8968–8978
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn501972w
    Published August 19, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    9177

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.