ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Large-Area Monolayer Hexagonal Boron Nitride on Pt Foil

View Author Information
Department of Energy and Materials Engineering and Advanced Energy and Electronic Materials Research Center (AEEMRC), Dongguk University—Seoul, Seoul 100-715, Republic of Korea
Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
§ Departments of Energy Science and Physics, Sungkyunkwan University, Suwon 440-746, Republic of Korea
Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Jeollabuk-Do 565-902, Republic of Korea
Department of Physics, Dongguk University—Seoul, Seoul 100-715, Republic of Korea
# Department of Electrical Engineering and Computer Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
*Address correspondence to [email protected], [email protected]
Cite this: ACS Nano 2014, 8, 8, 8520–8528
Publication Date (Web):August 5, 2014
https://doi.org/10.1021/nn503140y
Copyright © 2014 American Chemical Society

    Article Views

    5977

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Hexagonal boron nitride (h-BN) has recently been in the spotlight due to its numerous applications including its being an ideal substrate for two-dimensional electronics, a tunneling material for vertical tunneling devices, and a growth template for heterostructures. However, to obtain a large area of h-BN film while maintaining uniform thickness is still challenging and has not been realized. Here, we report the systematical study of h-BN growth on Pt foil by using low pressure chemical vapor deposition with a borazine source. The monolayer h-BN film was obtained over the whole Pt foil (2 × 5 cm2) under <100 mTorr, where the size is limited only by the Pt foil size. A borazine source was catalytically decomposed on the Pt surface, leading to the self-limiting growth of the monolayer without the associating precipitation, which is very similar to the growth of graphene on Cu. The orientation of the h-BN domains was largely confined by the Pt domain, which is confirmed by polarizing optical microscopy (POM) assisted by the nematic liquid crystal (LC) film. The total pressure and orientation of the Pt lattice plane are crucial parameters for thickness control. At high pressure (∼0.5 Torr), thick film was grown on Pt (111), and in contrast, thin film was grown on Pt (001). Our advances in monolayer h-BN growth will play an important role to further develop a high quality h-BN film that can be used for vertical tunneling, optoelectronic devices and growth templates for a variety of heterostructures.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    AFM, SEM, atomic-resolution TEM, POM, and EBSD images; XPS and Raman spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 198 publications.

    1. Li-Ping Ding, Yi Jin Guo, Jia Hao Zeng, Zi Ao Guo, Ya-Ru Zhao, Peng Shao. Nucleation Mechanism of h-BN on the Au(111) Surface. The Journal of Physical Chemistry C 2024, 128 (1) , 234-241. https://doi.org/10.1021/acs.jpcc.3c06641
    2. Ransheng Chen, Qiang Li, Qifan Zhang, Jiaxing Li, Zhihao Zhang, Wannian Fang, Lingyan Wang, Feng Yun, Tao Wang, Yue Hao. High-Crystallinity and High-Temperature Stability of the Hexagonal Boron Nitride Film Grown on Sapphire. Crystal Growth & Design 2023, 23 (12) , 8783-8792. https://doi.org/10.1021/acs.cgd.3c00902
    3. Yangtao Fan, Xingyi Liu, Jun Yin, Wei Lin, Jing Li, Binghui Wu, Yaping Wu, Chunmiao Zhang, Junyong Kang. Chemical Potential-Manipulated Growth of Large-Area High-Quality 2D Boron Nitride Films by APCVD. Crystal Growth & Design 2023, 23 (11) , 7789-7797. https://doi.org/10.1021/acs.cgd.3c00599
    4. Zhongyong Zhang, Yongjie Jiao, Saravana Karthikeyan S. K. S, Sankar Ganesh Ramaraj, Fuchun Zhang, Nam Nguyen Dang, Xuesong Qin, Xinghui Liu. First-Principles Calculations to Investigate the Structural, Electronic, Optical, and Elastic Constants; Thermal Conductivity; Raman Scattering; Mulliken Population; and XPS Loss Features of Boron Nitride Polytypes. The Journal of Physical Chemistry C 2023, 127 (34) , 17213-17230. https://doi.org/10.1021/acs.jpcc.3c04086
    5. Ji-Hoon Park, Ang-Yu Lu, Mohammad Mahdi Tavakoli, Na Yeon Kim, Ming-Hui Chiu, Hongwei Liu, Tianyi Zhang, Zhien Wang, Jiangtao Wang, Luiz Gustavo Pimenta Martins, Zhengtang Luo, Miaofang Chi, Jianwei Miao, Jing Kong. Revealing Variable Dependences in Hexagonal Boron Nitride Synthesis via Machine Learning. Nano Letters 2023, 23 (11) , 4741-4748. https://doi.org/10.1021/acs.nanolett.2c04624
    6. Masaya Yamamoto, Hiromasa Murata, Noriyuki Miyata, Hiroshi Takashima, Masayoshi Nagao, Hidenori Mimura, Yoichiro Neo, Katsuhisa Murakami. Low-Temperature Direct Synthesis of Multilayered h-BN without Catalysts by Inductively Coupled Plasma-Enhanced Chemical Vapor Deposition. ACS Omega 2023, 8 (6) , 5497-5505. https://doi.org/10.1021/acsomega.2c06757
    7. Wei-Yu Huang, Ching-Lin Hsieh, Yu-Liang Chien, Chien-Sheng Kao, Hsu-Sheng Tsai, Wei-Yen Woon. Growth Mechanism of High-Quality hBN Monolayers on Cu through Chemical Vapor Deposition with Inductively Coupled Plasma. The Journal of Physical Chemistry C 2022, 126 (50) , 21287-21296. https://doi.org/10.1021/acs.jpcc.2c05977
    8. Kyung Yeol Ma, Minsu Kim, Hyeon Suk Shin. Large-Area Hexagonal Boron Nitride Layers by Chemical Vapor Deposition: Growth and Applications for Substrates, Encapsulation, and Membranes. Accounts of Materials Research 2022, 3 (7) , 748-760. https://doi.org/10.1021/accountsmr.2c00061
    9. Junlei Zhao, Xinyu Wang, Haohao Chen, Zhaofu Zhang, Mengyuan Hua. Two-Dimensional Ferroelectric Ga2O3 Bilayers with Unusual Strain-Engineered Interlayer Interactions. Chemistry of Materials 2022, 34 (8) , 3648-3658. https://doi.org/10.1021/acs.chemmater.1c04245
    10. Md. Mosarof Hossain Sarkar, Md. Sherajul Islam, Abdullah Arafat, A. S. M. Jannatul Islam, Naim Ferdous, Md. Tawabur Rahman, Minhaz Uddin Sohag, Md. Al Imran Fahim, Catherine Stampfl, Jeongwon Park. Effects of the Substrate Structure on the CVD Growth of Two-Dimensional Hexagonal Boron Nitride. The Journal of Physical Chemistry C 2022, 126 (14) , 6373-6384. https://doi.org/10.1021/acs.jpcc.2c01707
    11. Kartikey Thakar, Saurabh Lodha. Multi-Bit Analog Transmission Enabled by Electrostatically Reconfigurable Ambipolar and Anti-Ambipolar Transport. ACS Nano 2021, 15 (12) , 19692-19701. https://doi.org/10.1021/acsnano.1c07032
    12. Ren Jiang, Zhiyuan Shi, Wei Zhao, Boxiang Gao, Tianru Wu, Qinghong Yuan. Vacancy-Assisted Growth Mechanism of Multilayer Hexagonal Boron Nitride on a Fe2B Substrate. The Journal of Physical Chemistry Letters 2020, 11 (20) , 8511-8517. https://doi.org/10.1021/acs.jpclett.0c02289
    13. Jaebeom Lee, Arul V. Ravichandran, Jaidah Mohan, Lanxia Cheng, Antonio T. Lucero, Hui Zhu, Zifan Che, Massimo Catalano, Moon J. Kim, Robert M. Wallace, Archana Venugopal, Woong Choi, Luigi Colombo, Jiyoung Kim. Atomic Layer Deposition of Layered Boron Nitride for Large-Area 2D Electronics. ACS Applied Materials & Interfaces 2020, 12 (32) , 36688-36694. https://doi.org/10.1021/acsami.0c07548
    14. Zhigao Dai, Guangwei Hu, Qingdong Ou, Lei Zhang, Fengnian Xia, Francisco J. Garcia-Vidal, Cheng-Wei Qiu, Qiaoliang Bao. Artificial Metaphotonics Born Naturally in Two Dimensions. Chemical Reviews 2020, 120 (13) , 6197-6246. https://doi.org/10.1021/acs.chemrev.9b00592
    15. Minsu Kim, Sung Wook Moon, Gwangwoo Kim, Seong In Yoon, Kicheol Kim, Seung Kyu Min, Hyeon Suk Shin. Effect of Pt Crystal Surface on Hydrogenation of Monolayer h-BN and Its Conversion to Graphene. Chemistry of Materials 2020, 32 (11) , 4584-4590. https://doi.org/10.1021/acs.chemmater.0c00736
    16. Ben McLean, Grant B. Webber, Alister J. Page. Energy and Charge Transfer at the Boron Nitride Nanotube—Catalyst Growth Interface. The Journal of Physical Chemistry C 2020, 124 (21) , 11662-11668. https://doi.org/10.1021/acs.jpcc.0c00748
    17. Zhenjun Cui, Yanwei He, Hao Tian, Alireza Khanaki, Long Xu, Wenhao Shi, Jianlin Liu. Study of Direct Tunneling and Dielectric Breakdown in Molecular Beam Epitaxial Hexagonal Boron Nitride Monolayers Using Metal–Insulator–Metal Devices. ACS Applied Electronic Materials 2020, 2 (3) , 747-755. https://doi.org/10.1021/acsaelm.9b00816
    18. Yangdi Li, Vincent Garnier, Philippe Steyer, Catherine Journet, Bérangère Toury. Millimeter-Scale Hexagonal Boron Nitride Single Crystals for Nanosheet Generation. ACS Applied Nano Materials 2020, 3 (2) , 1508-1515. https://doi.org/10.1021/acsanm.9b02315
    19. Jiwei Ling, Xianchong Miao, Yangye Sun, Yiqing Feng, Liwu Zhang, Zhengzong Sun, Minbiao Ji. Vibrational Imaging and Quantification of Two-Dimensional Hexagonal Boron Nitride with Stimulated Raman Scattering. ACS Nano 2019, 13 (12) , 14033-14040. https://doi.org/10.1021/acsnano.9b06337
    20. Weijun Wang, Run Shi, Jingwei Wang, Nan Shen, Yu Wang, Haichao Zhang, Bananakere Nanjegowda Chandrashekar, Xiangbin Cai, Weiwei Zhu, Abbas Amini, Ning Wang, Chun Cheng. Free-Molecular-Flow Modulated Synthesis of Hexagonal Boron Nitride Monolayers. Crystal Growth & Design 2019, 19 (12) , 7007-7014. https://doi.org/10.1021/acs.cgd.9b00811
    21. Ben McLean, Grant B. Webber, Alister J. Page. Boron Nitride Nanotube Nucleation via Network Fusion during Catalytic Chemical Vapor Deposition. Journal of the American Chemical Society 2019, 141 (34) , 13385-13393. https://doi.org/10.1021/jacs.9b03484
    22. Dingdong Zhang, Jinhong Du, Yi-Lun Hong, Weimin Zhang, Xiao Wang, Hui Jin, Paul L. Burn, Junsheng Yu, Maolin Chen, Dong-Ming Sun, Meng Li, Lianqing Liu, Lai-Peng Ma, Hui-Ming Cheng, Wencai Ren. A Double Support Layer for Facile Clean Transfer of Two-Dimensional Materials for High-Performance Electronic and Optoelectronic Devices. ACS Nano 2019, 13 (5) , 5513-5522. https://doi.org/10.1021/acsnano.9b00330
    23. Ruizhi Wang, David G. Purdie, Ye Fan, Fabien C.-P. Massabuau, Philipp Braeuninger-Weimer, Oliver J. Burton, Raoul Blume, Robert Schloegl, Antonio Lombardo, Robert S. Weatherup, Stephan Hofmann. A Peeling Approach for Integrated Manufacturing of Large Monolayer h-BN Crystals. ACS Nano 2019, 13 (2) , 2114-2126. https://doi.org/10.1021/acsnano.8b08712
    24. Harry Chou, Sarmita Majumder, Anupam Roy, Massimo Catalano, Pingping Zhuang, Manuel Quevedo-Lopez, Luigi Colombo, Sanjay K. Banerjee. Dependence of h-BN Film Thickness as Grown on Nickel Single-Crystal Substrates of Different Orientations. ACS Applied Materials & Interfaces 2018, 10 (51) , 44862-44870. https://doi.org/10.1021/acsami.8b16816
    25. Tianqi Liu, Kasun Premasiri, Yongkun Sui, Xun Zhan, Haithem A. B. Mustafa, Ozan Akkus, Christian A. Zorman, Xuan P. A. Gao, R. Mohan Sankaran. Direct, Transfer-Free Growth of Large-Area Hexagonal Boron Nitride Films by Plasma-Enhanced Chemical Film Conversion (PECFC) of Printable, Solution-Processed Ammonia Borane. ACS Applied Materials & Interfaces 2018, 10 (50) , 43936-43945. https://doi.org/10.1021/acsami.8b17152
    26. Mengqi Zeng, Yao Xiao, Jinxin Liu, Kena Yang, Lei Fu. Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control. Chemical Reviews 2018, 118 (13) , 6236-6296. https://doi.org/10.1021/acs.chemrev.7b00633
    27. Hyun-Soo Ra, A-Young Lee, Do-Hyun Kwak, Min-Hye Jeong, and Jong-Soo Lee . Dual-Gate Black Phosphorus Field-Effect Transistors with Hexagonal Boron Nitride as Dielectric and Passivation Layers. ACS Applied Materials & Interfaces 2018, 10 (1) , 925-932. https://doi.org/10.1021/acsami.7b16809
    28. Dinh Loc Duong, Seok Joon Yun, and Young Hee Lee . van der Waals Layered Materials: Opportunities and Challenges. ACS Nano 2017, 11 (12) , 11803-11830. https://doi.org/10.1021/acsnano.7b07436
    29. Yijing Y. Stehle, Xiahan Sang, Raymond R. Unocic, Dmitry Voylov, Roderick K. Jackson, Sergei Smirnov, and Ivan Vlassiouk . Anisotropic Etching of Hexagonal Boron Nitride and Graphene: Question of Edge Terminations. Nano Letters 2017, 17 (12) , 7306-7314. https://doi.org/10.1021/acs.nanolett.7b02841
    30. Fei Hui, Wenjing Fang, Wei Sun Leong, Tewa Kpulun, Haozhe Wang, Hui Ying Yang, Marco A. Villena, Gary Harris, Jing Kong, and Mario Lanza . Electrical Homogeneity of Large-Area Chemical Vapor Deposited Multilayer Hexagonal Boron Nitride Sheets. ACS Applied Materials & Interfaces 2017, 9 (46) , 39895-39900. https://doi.org/10.1021/acsami.7b09417
    31. Regis Stephan, Mickael Derivaz, Marie-Christine Hanf, Didier Dentel, Natalia Massara, Ahmed Mehdaoui, Philippe Sonnet, and Carmelo Pirri . Tip-Induced Switch of Germanene Atomic Structure. The Journal of Physical Chemistry Letters 2017, 8 (18) , 4587-4593. https://doi.org/10.1021/acs.jpclett.7b02137
    32. Ren-Jie Chang, Xiaochen Wang, Shanshan Wang, Yuewen Sheng, Ben Porter, Harish Bhaskaran, and Jamie H. Warner . Growth of Large Single-Crystalline Monolayer Hexagonal Boron Nitride by Oxide-Assisted Chemical Vapor Deposition. Chemistry of Materials 2017, 29 (15) , 6252-6260. https://doi.org/10.1021/acs.chemmater.7b01285
    33. Wei-Hsiang Lin, Victor W. Brar, Deep Jariwala, Michelle C. Sherrott, Wei-Shiuan Tseng, Chih-I Wu, Nai-Chang Yeh, and Harry A. Atwater . Atomic-Scale Structural and Chemical Characterization of Hexagonal Boron Nitride Layers Synthesized at the Wafer-Scale with Monolayer Thickness Control. Chemistry of Materials 2017, 29 (11) , 4700-4707. https://doi.org/10.1021/acs.chemmater.7b00183
    34. Jihyung Seo, Junghyun Lee, A-Rang Jang, Yunseong Choi, Ungsoo Kim, Hyeon Suk Shin, and Hyesung Park . Study of Cooling Rate on the Growth of Graphene via Chemical Vapor Deposition. Chemistry of Materials 2017, 29 (10) , 4202-4208. https://doi.org/10.1021/acs.chemmater.6b04432
    35. Gene Siegel, Cristian V. Ciobanu, Badri Narayanan, Michael Snure, and Stefan C. Badescu . Heterogeneous Pyrolysis: A Route for Epitaxial Growth of hBN Atomic Layers on Copper Using Separate Boron and Nitrogen Precursors. Nano Letters 2017, 17 (4) , 2404-2413. https://doi.org/10.1021/acs.nanolett.6b05409
    36. Muhammad Arslan Shehzad, Sajjad Hussain, Junsu Lee, Jongwan Jung, Naesung Lee, Gunn Kim, and Yongho Seo . Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal. Nano Letters 2017, 17 (3) , 1474-1481. https://doi.org/10.1021/acs.nanolett.6b04491
    37. Yoshiaki Hattori, Takashi Taniguchi, Kenji Watanabe, and Kosuke Nagashio . Anisotropic Dielectric Breakdown Strength of Single Crystal Hexagonal Boron Nitride. ACS Applied Materials & Interfaces 2016, 8 (41) , 27877-27884. https://doi.org/10.1021/acsami.6b06425
    38. Min-Kyu Joo, Joonggyu Kim, Ji-Hoon Park, Van Luan Nguyen, Ki Kang Kim, Young Hee Lee, and Dongseok Suh . Large-Scale Graphene on Hexagonal-BN Hall Elements: Prediction of Sensor Performance without Magnetic Field. ACS Nano 2016, 10 (9) , 8803-8811. https://doi.org/10.1021/acsnano.6b04547
    39. Hyunjin Ji, Min-Kyu Joo, Yoojoo Yun, Ji-Hoon Park, Gwanmu Lee, Byoung Hee Moon, Hojoon Yi, Dongseok Suh, and Seong Chu Lim . Suppression of Interfacial Current Fluctuation in MoTe2 Transistors with Different Dielectrics. ACS Applied Materials & Interfaces 2016, 8 (29) , 19092-19099. https://doi.org/10.1021/acsami.6b02085
    40. Justin C. Koepke, Joshua D. Wood, Yaofeng Chen, Scott W. Schmucker, Ximeng Liu, Noel N. Chang, Lea Nienhaus, Jae Won Do, Enrique A. Carrion, Jayan Hewaparakrama, Aniruddh Rangarajan, Isha Datye, Rushabh Mehta, Richard T. Haasch, Martin Gruebele, Gregory S. Girolami, Eric Pop, and Joseph W. Lyding . Role of Pressure in the Growth of Hexagonal Boron Nitride Thin Films from Ammonia-Borane. Chemistry of Materials 2016, 28 (12) , 4169-4179. https://doi.org/10.1021/acs.chemmater.6b00396
    41. Min Su Kim, Changwon Seo, Hyun Kim, Jubok Lee, Dinh Hoa Luong, Ji-Hoon Park, Gang Hee Han, and Jeongyong Kim . Simultaneous Hosting of Positive and Negative Trions and the Enhanced Direct Band Emission in MoSe2/MoS2 Heterostacked Multilayers. ACS Nano 2016, 10 (6) , 6211-6219. https://doi.org/10.1021/acsnano.6b02213
    42. A-Rang Jang, Seokmo Hong, Chohee Hyun, Seong In Yoon, Gwangwoo Kim, Hu Young Jeong, Tae Joo Shin, Sung O. Park, Kester Wong, Sang Kyu Kwak, Noejung Park, Kwangnam Yu, Eunjip Choi, Artem Mishchenko, Freddie Withers, Kostya S. Novoselov, Hyunseob Lim, and Hyeon Suk Shin . Wafer-Scale and Wrinkle-Free Epitaxial Growth of Single-Orientated Multilayer Hexagonal Boron Nitride on Sapphire. Nano Letters 2016, 16 (5) , 3360-3366. https://doi.org/10.1021/acs.nanolett.6b01051
    43. M. Sky Driver, John D. Beatty, Opeyemi Olanipekun, Kimberly Reid, Ashutosh Rath, Paul M. Voyles, and Jeffry A. Kelber . Atomic Layer Epitaxy of h-BN(0001) Multilayers on Co(0001) and Molecular Beam Epitaxy Growth of Graphene on h-BN(0001)/Co(0001). Langmuir 2016, 32 (11) , 2601-2607. https://doi.org/10.1021/acs.langmuir.5b03653
    44. Hyun Jeong, Hye Min Oh, Seungho Bang, Hyeon Jun Jeong, Sung-Jin An, Gang Hee Han, Hyun Kim, Seok Joon Yun, Ki Kang Kim, Jin Cheol Park, Young Hee Lee, Gilles Lerondel, and Mun Seok Jeong . Metal–Insulator–Semiconductor Diode Consisting of Two-Dimensional Nanomaterials. Nano Letters 2016, 16 (3) , 1858-1862. https://doi.org/10.1021/acs.nanolett.5b04936
    45. Ji-Hui Yang, Yueyu Zhang, Wan-Jian Yin, X. G. Gong, Boris I. Yakobson, and Su-Huai Wei . Two-Dimensional SiS Layers with Promising Electronic and Optoelectronic Properties: Theoretical Prediction. Nano Letters 2016, 16 (2) , 1110-1117. https://doi.org/10.1021/acs.nanolett.5b04341
    46. Sabina Caneva, Robert S. Weatherup, Bernhard C. Bayer, Raoul Blume, Andrea Cabrero-Vilatela, Philipp Braeuninger-Weimer, Marie-Blandine Martin, Ruizhi Wang, Carsten Baehtz, Robert Schloegl, Jannik C. Meyer, and Stephan Hofmann . Controlling Catalyst Bulk Reservoir Effects for Monolayer Hexagonal Boron Nitride CVD. Nano Letters 2016, 16 (2) , 1250-1261. https://doi.org/10.1021/acs.nanolett.5b04586
    47. Sang Hoon Chae, Youngjo Jin, Tae Soo Kim, Dong Seob Chung, Hyunyeong Na, Honggi Nam, Hyun Kim, David J. Perello, Hye Yun Jeong, Thuc Hue Ly, and Young Hee Lee . Oxidation Effect in Octahedral Hafnium Disulfide Thin Film. ACS Nano 2016, 10 (1) , 1309-1316. https://doi.org/10.1021/acsnano.5b06680
    48. Yanhong Zhang, Xuefei Weng, Huan Li, Haobo Li, Mingming Wei, Jianping Xiao, Zhi Liu, Mingshu Chen, Qiang Fu, and Xinhe Bao . Hexagonal Boron Nitride Cover on Pt(111): A New Route to Tune Molecule–Metal Interaction and Metal-Catalyzed Reactions. Nano Letters 2015, 15 (5) , 3616-3623. https://doi.org/10.1021/acs.nanolett.5b01205
    49. Sabina Caneva, Robert S. Weatherup, Bernhard C. Bayer, Barry Brennan, Steve J. Spencer, Ken Mingard, Andrea Cabrero-Vilatela, Carsten Baehtz, Andrew J. Pollard, and Stephan Hofmann . Nucleation Control for Large, Single Crystalline Domains of Monolayer Hexagonal Boron Nitride via Si-Doped Fe Catalysts. Nano Letters 2015, 15 (3) , 1867-1875. https://doi.org/10.1021/nl5046632
    50. Piran R. Kidambi, Raoul Blume, Jens Kling, Jakob B. Wagner, Carsten Baehtz, Robert S. Weatherup, Robert Schloegl, Bernhard C. Bayer, and Stephan Hofmann . In Situ Observations during Chemical Vapor Deposition of Hexagonal Boron Nitride on Polycrystalline Copper. Chemistry of Materials 2014, 26 (22) , 6380-6392. https://doi.org/10.1021/cm502603n
    51. Yixin Chen, Fengzhou Fang, Nan Zhang. Advance in additive manufacturing of 2D materials at the atomic and close-to-atomic scale. npj 2D Materials and Applications 2024, 8 (1) https://doi.org/10.1038/s41699-024-00456-x
    52. Yangtao Fan, Wenlong Yao, Jun Yin, Jing Li, Junyong Kang. First principles investigation of ammonia borane decomposition for understanding h-BN growth on the copper surface. Physica B: Condensed Matter 2024, 687 , 416103. https://doi.org/10.1016/j.physb.2024.416103
    53. Swaati Sharma, Hardeep Kaur, Mansi Thakur, Shinar Athwal. Engineering 2D Nanomaterials for Biomedical Applications. 2024, 333-360. https://doi.org/10.1002/9781394167883.ch15
    54. Wenchao Zhang, Yuan Liang, Dong Yue, Yu Feng. Hexagonal boron nitride nanosheets: Fabrication, thermal properties and application in polymers. High Performance Polymers 2024, 36 (4) , 211-229. https://doi.org/10.1177/09540083241238774
    55. Zezhang Yan, Ningsheng Xu, Shaozhi Deng. AC Characteristics of van der Waals Bipolar Junction Transistors Using an MoS2/WSe2/MoS2 Heterostructure. Nanomaterials 2024, 14 (10) , 851. https://doi.org/10.3390/nano14100851
    56. Lihua Cao, Tao Yang, Haixin Mo, Yafang Zhang, Yongmin Gao, Zhiyong Xu, Bing Kang, Xuefeng Xia, Wenhua Zhang, Zhihao Xu, Fei Xia, Xue Hou. (B, N)‐Rich B−C−N Nanosheet‐assembled Microwires as Effective Electrocatalysts for Oxygen Reduction Reaction. ChemNanoMat 2024, 10 (3) https://doi.org/10.1002/cnma.202300487
    57. Jaroslav Kuliček, Takatoshi Yamada, Takashi Taniguchi, Bohuslav Rezek. Visible-frequency plasmonic enhancement at the edge of graphene/h-BN heterostructures on silicon substrate. Carbon 2024, 219 , 118836. https://doi.org/10.1016/j.carbon.2024.118836
    58. Aliaksandr Duleba, Mikhail Pugachev, Mark Blumenau, Sergey Martanov, Mark Naumov, Aleksey Shupletsov, Aleksandr Kuntsevich. Inert-Atmosphere Microfabrication Technology for 2D Materials and Heterostructures. Micromachines 2024, 15 (1) , 94. https://doi.org/10.3390/mi15010094
    59. Sourav Baiju, Masuda U., Sumit Datta, Kartick Tarefder, Jyotsna Chaturvedi, Seeram Ramakrishna, Laxmi Narayan Tripathi. Photo-electrochemical green-hydrogen generation: Fundamentals and recent developments. International Journal of Hydrogen Energy 2024, 51 , 779-808. https://doi.org/10.1016/j.ijhydene.2023.10.210
    60. Joo Song Lee, Nilanjan Basu, Hyeon Suk Shin. Large-area single-crystal hexagonal boron nitride: From growth mechanism to potential applications. Chemical Physics Reviews 2023, 4 (4) https://doi.org/10.1063/5.0165422
    61. Péter Udvarhelyi, Tristan Clua-Provost, Alrik Durand, Jiahan Li, James H. Edgar, Bernard Gil, Guillaume Cassabois, Vincent Jacques, Adam Gali. A planar defect spin sensor in a two-dimensional material susceptible to strain and electric fields. npj Computational Materials 2023, 9 (1) https://doi.org/10.1038/s41524-023-01111-7
    62. Xunshan Liu, Xianjing Xie, Zhetong Jin, Xu Zhang, Chengshuo Shen. A DFT study on boron-nitrogen helicenes. Computational and Theoretical Chemistry 2023, 1230 , 114396. https://doi.org/10.1016/j.comptc.2023.114396
    63. Roland Yingjie Tay, Hongling Li, Hong Wang, Jinjun Lin, Zhi Kai Ng, Ranjana Shivakumar, Asaf Bolker, Maziar Shakerzadeh, Siu Hon Tsang, Edwin Hang Tong Teo. Advanced nano boron nitride architectures: Synthesis, properties and emerging applications. Nano Today 2023, 53 , 102011. https://doi.org/10.1016/j.nantod.2023.102011
    64. Lulu An, Yuanlie Yu, Qiran Cai, Srikanth Mateti, Lu Hua Li, Ying Ian Chen. Hexagonal boron nitride nanosheets: Preparation, heat transport property and application as thermally conductive fillers. Progress in Materials Science 2023, 138 , 101154. https://doi.org/10.1016/j.pmatsci.2023.101154
    65. Md. Sherajul Islam, Abdullah Al Mamun Mazumder, Minhaz Uddin Sohag, Md. Mosarof Hossain Sarkar, Catherine Stampfl, Jeongwon Park. Growth mechanisms of monolayer hexagonal boron nitride ( h -BN) on metal surfaces: theoretical perspectives. Nanoscale Advances 2023, 5 (16) , 4041-4064. https://doi.org/10.1039/D3NA00382E
    66. Ziaul Raza Khan, Zaheer Abbas, Naseem Akhter, Mohd. Shahid Khan, Md. Shahzad Khan. Enhanced quantum capacitance in Ti, V, Cr, Fe, Ga, Ge, Se, and Br doped arsenene: A first principles investigation. Chemical Physics Letters 2023, 823 , 140500. https://doi.org/10.1016/j.cplett.2023.140500
    67. Kangmo Yeo, Sukmin Jeong. Machine learning insight into h-BN growth on Pt(111) from atomic states. Applied Surface Science 2023, 621 , 156893. https://doi.org/10.1016/j.apsusc.2023.156893
    68. Khashayar Ghorbani, Pedram Mirchi, Saeed Arabha, Ali Rajabpour, Sebastian Volz. Lattice thermal conductivity and Young's modulus of XN 4 (X = Be, Mg and Pt) 2D materials using machine learning interatomic potentials. Physical Chemistry Chemical Physics 2023, 25 (18) , 12923-12933. https://doi.org/10.1039/D3CP00746D
    69. Anhan Liu, Xueyang Peng, Songang Peng, He Tian. Dielectrics for 2-D Electronics: From Device to Circuit Applications. IEEE Transactions on Electron Devices 2023, 70 (4) , 1474-1498. https://doi.org/10.1109/TED.2022.3220483
    70. Chanukorn Tabtimsai, Wandee Rakrai, Chatthai Kaewtong, Banchob Wanno. CO gas adsorption and detection ability of boron nitride nanosheet doping with group 8B transition metal: A theoretical investigation. Diamond and Related Materials 2023, 133 , 109694. https://doi.org/10.1016/j.diamond.2023.109694
    71. Andrew E. Naclerio, Piran R. Kidambi. A Review of Scalable Hexagonal Boron Nitride ( h ‐BN) Synthesis for Present and Future Applications. Advanced Materials 2023, 35 (6) https://doi.org/10.1002/adma.202207374
    72. Don N. Futaba. Hexagonal boron nitride heterostructures go large. Nature Electronics 2023, 6 (2) , 104-105. https://doi.org/10.1038/s41928-023-00917-z
    73. Xiaohan Wu, Yuqian Gu, Ruijing Ge, Martha I. Serna, Yifu Huang, Jack C. Lee, Deji Akinwande. Electron irradiation-induced defects for reliability improvement in monolayer MoS2-based conductive-point memory devices. npj 2D Materials and Applications 2022, 6 (1) https://doi.org/10.1038/s41699-022-00306-8
    74. Makoto Takamura, Kenji Watanabe, Takashi Taniguchi, Yoshitaka Taniyasu. Nanoscale infrared imaging and spectroscopy of few-layer hexagonal boron nitride. Journal of Applied Physics 2022, 132 (17) https://doi.org/10.1063/5.0107821
    75. Fabrice Piazza, Marc Monthioux, Pascal Puech. 2D (< 10 nm) sp3-C-rich carbon materials, possibly hydrogenated: A review. Carbon Trends 2022, 9 , 100219. https://doi.org/10.1016/j.cartre.2022.100219
    76. Yu-Jie Zhu, Tao Jiang, Xiao-Juan Ye, Chun-Sheng Liu. Two-dimensional CSiO and CGeO: direct-band-gap semiconductors with normal/anomalous auxeticity for solar cells and alkali-metal-ion batteries. Journal of Physics: Condensed Matter 2022, 34 (36) , 365301. https://doi.org/10.1088/1361-648X/ac7d2e
    77. Caiying Chen, Sherif Araby, Murat Demiral, Rui Cai, Xuanyi Yang, Wei Wang, Qingshi Meng. Fatigue behavior and tribological properties of laser additive manufactured aluminum alloy/boron nitride nanosheet nanocomposites. Journal of Materials Research and Technology 2022, 20 , 3930-3948. https://doi.org/10.1016/j.jmrt.2022.08.124
    78. Yoshiaki Hattori, Takashi Taniguchi, Kenji Watanabe, Masatoshi Kitamura. Enhancement of the contrast for a hexagonal boron nitride monolayer placed on a silicon nitride/silicon substrate. Applied Physics Express 2022, 15 (8) , 086502. https://doi.org/10.35848/1882-0786/ac8270
    79. Philip M. Jean-Remy, Matthew J. Cabral, Robert F. Davis. Chemical vapor deposition of sp2-boron nitride on mechanically polished pyrolytic boron nitride substrates. Journal of Vacuum Science & Technology A 2022, 40 (4) https://doi.org/10.1116/6.0001784
    80. Kyung Yeol Ma, Leining Zhang, Sunghwan Jin, Yan Wang, Seong In Yoon, Hyuntae Hwang, Juseung Oh, Da Sol Jeong, Meihui Wang, Shahana Chatterjee, Gwangwoo Kim, A-Rang Jang, Jieun Yang, Sunmin Ryu, Hu Young Jeong, Rodney S. Ruoff, Manish Chhowalla, Feng Ding, Hyeon Suk Shin. Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111). Nature 2022, 606 (7912) , 88-93. https://doi.org/10.1038/s41586-022-04745-7
    81. F.H. Tian, Y. Zhang, J. Dong, L. Sun, X. Xue. Oriented adsorption of NO2 on WSe2 monolayer. Materials Today Chemistry 2022, 24 , 100850. https://doi.org/10.1016/j.mtchem.2022.100850
    82. Hao-Dong Liu, Ya-Ping Li, Liu Yang, Na Jiao, Meng-Meng Zheng, Hong-Yan Lu, Ping Zhang. Theoretical prediction of superconductivity in monolayer B 3 N . Physical Review B 2022, 105 (22) https://doi.org/10.1103/PhysRevB.105.224501
    83. Yuefeng Zhang, Zhiyuan Zeng, Hao Li. Design of 3d transition metal anchored B 5 N 3 catalysts for electrochemical CO 2 reduction to methane. Journal of Materials Chemistry A 2022, 10 (17) , 9737-9745. https://doi.org/10.1039/D2TA00941B
    84. Shayan Angizi, Sayed Ali Ahmad Alem, Mahdi Hasanzadeh Azar, Farzaneh Shayeganfar, Max I. Manning, Amir Hatamie, Amir Pakdel, Abdolreza Simchi. A comprehensive review on planar boron nitride nanomaterials: From 2D nanosheets towards 0D quantum dots. Progress in Materials Science 2022, 124 , 100884. https://doi.org/10.1016/j.pmatsci.2021.100884
    85. Hajime Suzuki, Itsuki Miyazato, Tanveer Hussain, Fatih Ersan, Satoshi Maeda, Keisuke Takahashi. Designing two-dimensional dodecagonal boron nitride. CrystEngComm 2022, 24 (3) , 471-474. https://doi.org/10.1039/D1CE01354H
    86. Jiemin Wang, Liangzhu Zhang, Lifeng Wang, Weiwei Lei, Zhong‐Shuai Wu. Two‐dimensional Boron Nitride for Electronics and Energy Applications. ENERGY & ENVIRONMENTAL MATERIALS 2022, 5 (1) , 10-44. https://doi.org/10.1002/eem2.12159
    87. Muhammad Ikram, Ali Raza, Salamat Ali. Synthetic Protocols. 2022, 65-110. https://doi.org/10.1007/978-3-030-96021-6_4
    88. Kangho Park, Sukwon Hyeon, Kyoung Min Kang, Kiwon Eum, Jihan Kim, Dae Woo Kim, Hee-Tae Jung. Long-Range alignment of liquid crystalline small molecules on Metal-Organic framework micropores by physical anchoring. Journal of Industrial and Engineering Chemistry 2022, 105 , 378-383. https://doi.org/10.1016/j.jiec.2021.09.039
    89. Hongwei Liu, Wanzhen He, Zhenjing Liu, Irfan H Abidi, Yao Ding, Patrick Ryan Galligan, Mohsen Tamtaji, Jingwei Li, Yuting Cai, Ting Kang, Hoilun Wong, Zhongjian Li, Pei Zhao, Zhaoli Gao, Yongli Mi, Zhiping Xu, Zhengtang Luo. Structure evolution of hBN grown on molten Cu by regulating precursor flux during chemical vapor deposition. 2D Materials 2022, 9 (1) , 015004. https://doi.org/10.1088/2053-1583/ac2e59
    90. Hongseok Oh, Gyu-Chul Yi. Synthesis of Atomically Thin h-BN Layers Using BCl3 and NH3 by Sequential-Pulsed Chemical Vapor Deposition on Cu Foil. Nanomaterials 2022, 12 (1) , 80. https://doi.org/10.3390/nano12010080
    91. Yu-Jie Zhu, Tao Jiang, Xiao-Juan Ye, Chun-Sheng Liu, . Theoretical prediction of novel two-dimensional auxetic material SiGeS and its electronic and optical properties. Acta Physica Sinica 2022, 71 (15) , 153101. https://doi.org/10.7498/aps.71.20220407
    92. Yang Gao, Yang Liu, Zheng Liu. Controllable growth of two-dimensional materials on noble metal substrates. iScience 2021, 24 (12) , 103432. https://doi.org/10.1016/j.isci.2021.103432
    93. Jinchai Li, Na Gao, Duanjun Cai, Wei Lin, Kai Huang, Shuping Li, Junyong Kang. Multiple fields manipulation on nitride material structures in ultraviolet light-emitting diodes. Light: Science & Applications 2021, 10 (1) https://doi.org/10.1038/s41377-021-00563-0
    94. Luzhao Sun, Guowen Yuan, Libo Gao, Jieun Yang, Manish Chhowalla, Meysam Heydari Gharahcheshmeh, Karen K. Gleason, Yong Seok Choi, Byung Hee Hong, Zhongfan Liu. Chemical vapour deposition. Nature Reviews Methods Primers 2021, 1 (1) https://doi.org/10.1038/s43586-020-00005-y
    95. Jun Pu, Kai Zhang, Zhenghua Wang, Chaowei Li, Kaiping Zhu, Yagang Yao, Guo Hong. Synthesis and Modification of Boron Nitride Nanomaterials for Electrochemical Energy Storage: From Theory to Application. Advanced Functional Materials 2021, 31 (48) https://doi.org/10.1002/adfm.202106315
    96. Victoria Chen, Yong Cheol Shin, Evgeny Mikheev, Qing Lin, Joel Martis, Ze Zhang, Sukti Chatterjee, Arun Majumdar, H-S Philip Wong, David Goldhaber-Gordon, Eric Pop. Application-driven synthesis and characterization of hexagonal boron nitride deposited on metals and carbon nanotubes. 2D Materials 2021, 8 (4) , 045024. https://doi.org/10.1088/2053-1583/ac10f1
    97. Jawad Hadid, Ivy Colambo, Christophe Boyaval, Nicolas Nuns, Pavel Dudin, Jose Avila, Xavier Wallart, Dominique Vignaud. Molecular beam epitaxial growth of hexagonal boron nitride on Ni foils. 2D Materials 2021, 8 (4) , 045007. https://doi.org/10.1088/2053-1583/ac1502
    98. Ranjan Singhal, Elena Echeverria, David N. McIlroy, Raj N. Singh. Synthesis of hexagonal boron nitride films on silicon and sapphire substrates by low-pressure chemical vapor deposition. Thin Solid Films 2021, 733 , 138812. https://doi.org/10.1016/j.tsf.2021.138812
    99. Parisa Amirkhani Maleki, Ebrahim Nemati‐Kande, Akbar Abdi Saray. Using Quantum Density Functional Theory Methods to Study the Adsorption of Fluorouracil Drug on Pristine and Al, Ga, P and As Doped Boron Nitride Nanosheets. ChemistrySelect 2021, 6 (24) , 6119-6131. https://doi.org/10.1002/slct.202101333
    100. Jiaqi Pan, Wei Wei, Zhongmiao Gong, Yi Cui. Effect of overlayer–substrate interaction on the coalescence behaviors of in-plane graphene/hexagonal boron nitride heterostructures. Carbon 2021, 177 , 19-25. https://doi.org/10.1016/j.carbon.2021.01.149
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect