Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Purification of Functionalized DNA Origami Nanostructures

View Author Information
Department of Neuroscience and Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
*Address correspondence to [email protected]
Cite this: ACS Nano 2015, 9, 5, 4968–4975
Publication Date (Web):May 12, 2015
https://doi.org/10.1021/nn507035g
Copyright © 2015 American Chemical Society

    Article Views

    8019

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The high programmability of DNA origami has provided tools for precise manipulation of matter at the nanoscale. This manipulation of matter opens up the possibility to arrange functional elements for a diverse range of applications that utilize the nanometer precision provided by these structures. However, the realization of functionalized DNA origami still suffers from imperfect production methods, in particular in the purification step, where excess material is separated from the desired functionalized DNA origami. In this article we demonstrate and optimize two purification methods that have not previously been applied to DNA origami. In addition, we provide a systematic study comparing the purification efficacy of these and five other commonly used purification methods. Three types of functionalized DNA origami were used as model systems in this study. DNA origami was patterned with either small molecules, antibodies, or larger proteins. With the results of our work we aim to provide a guideline in quality fabrication of various types of functionalized DNA origami and to provide a route for scalable production of these promising tools.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Structure designs, DNA sequences, additional TEM images, agarose gel images, FPLC chromatograms. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/nn507035g.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 94 publications.

    1. Heather R. Everson, Kayla Neyra, Dylan V. Scarton, Soumya Chandrasekhar, Christopher M. Green, Thorsten-Lars Schmidt, Igor L. Medintz, Remi Veneziano, Divita Mathur. Purification of DNA Nanoparticles Using Photocleavable Biotin Tethers. ACS Applied Materials & Interfaces 2024, 16 (17) , 22334-22343. https://doi.org/10.1021/acsami.3c18955
    2. Alireza Ebrahimimojarad, Zhicheng Wang, Qiaochu Zhang, Akshay Shah, Jacob S. Brenner, Jinglin Fu. A Robust and Efficient Method to Purify DNA-Scaffolded Nanostructures by Gravity-Driven Size Exclusion Chromatography. Langmuir 2024, 40 (16) , 8365-8372. https://doi.org/10.1021/acs.langmuir.3c03778
    3. Kayla Neyra, Heather R. Everson, Divita Mathur. Dominant Analytical Techniques in DNA Nanotechnology for Various Applications. Analytical Chemistry 2024, 96 (9) , 3687-3697. https://doi.org/10.1021/acs.analchem.3c04176
    4. Sofia Julin, Veikko Linko, Mauri A. Kostiainen. Reconfigurable pH-Responsive DNA Origami Lattices. ACS Nano 2023, 17 (11) , 11014-11022. https://doi.org/10.1021/acsnano.3c03438
    5. Saanfor Hubert Suh, Yongzheng Xing, Alexia Rottensteiner, Rong Zhu, Yoo Jin Oh, Stefan Howorka, Peter Hinterdorfer. Molecular Recognition in Confined Space Elucidated with DNA Nanopores and Single-Molecule Force Microscopy. Nano Letters 2023, 23 (10) , 4439-4447. https://doi.org/10.1021/acs.nanolett.3c00743
    6. Congzhou Chen, Jinyan Nie, Mingyuan Ma, Xiaolong Shi. DNA Origami Nanostructure Detection and Yield Estimation Using Deep Learning. ACS Synthetic Biology 2023, 12 (2) , 524-532. https://doi.org/10.1021/acssynbio.2c00533
    7. Paniz Rahmani, Melissa Goodlad, Yehan Zhang, Yichen Li, Tao Ye. One-Step Ligand-Exchange Method to Produce Quantum Dot–DNA Conjugates for DNA-Directed Self-Assembly. ACS Applied Materials & Interfaces 2022, 14 (42) , 47359-47368. https://doi.org/10.1021/acsami.2c10580
    8. Iris Seitz, Heini Ijäs, Veikko Linko, Mauri A. Kostiainen. Optically Responsive Protein Coating of DNA Origami for Triggered Antigen Targeting. ACS Applied Materials & Interfaces 2022, 14 (34) , 38515-38524. https://doi.org/10.1021/acsami.2c10058
    9. Anuttara Udomprasert, Chanida Wootthichairangsan, Ratchanee Duangrat, Supattra Chaithongyot, Yuwei Zhang, Rachel Nixon, Wenyan Liu, Risheng Wang, Mathurose Ponglikitmongkol, Thaned Kangsamaksin. Enhanced Functional Properties of Three DNA Origami Nanostructures as Doxorubicin Carriers to Breast Cancer Cells. ACS Applied Bio Materials 2022, 5 (5) , 2262-2272. https://doi.org/10.1021/acsabm.2c00114
    10. Grant A. Knappe, Eike-Christian Wamhoff, Benjamin J. Read, Darrell J. Irvine, Mark Bathe. In Situ Covalent Functionalization of DNA Origami Virus-like Particles. ACS Nano 2021, 15 (9) , 14316-14322. https://doi.org/10.1021/acsnano.1c03158
    11. Glenn A. O. Cremers, Bas J. H. M. Rosier, Ab Meijs, Nicholas B. Tito, Sander M. J. van Duijnhoven, Hans van Eenennaam, Lorenzo Albertazzi, Tom F. A. de Greef. Determinants of Ligand-Functionalized DNA Nanostructure–Cell Interactions. Journal of the American Chemical Society 2021, 143 (27) , 10131-10142. https://doi.org/10.1021/jacs.1c02298
    12. Nathan D. Williams, Ane Landajuela, Ravi Kiran Kasula, Wenjiao Zhou, John T. Powell, Zhiqun Xi, Farren J. Isaacs, Julien Berro, Derek Toomre, Erdem Karatekin, Chenxiang Lin. DNA-Origami-Based Fluorescence Brightness Standards for Convenient and Fast Protein Counting in Live Cells. Nano Letters 2020, 20 (12) , 8890-8896. https://doi.org/10.1021/acs.nanolett.0c03925
    13. Travis A. Meyer, Chuan Zhang, Gang Bao, Yonggang Ke. Programmable Assembly of Iron Oxide Nanoparticles Using DNA Origami. Nano Letters 2020, 20 (4) , 2799-2805. https://doi.org/10.1021/acs.nanolett.0c00484
    14. William P. Klein, Rasmus P. Thomsen, Kendrick B. Turner, Scott A. Walper, James Vranish, Jørgen Kjems, Mario G. Ancona, Igor L. Medintz. Enhanced Catalysis from Multienzyme Cascades Assembled on a DNA Origami Triangle. ACS Nano 2019, 13 (12) , 13677-13689. https://doi.org/10.1021/acsnano.9b05746
    15. Mingshu Xiao, Wei Lai, Tiantian Man, Binbin Chang, Li Li, Arun Richard Chandrasekaran, Hao Pei. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chemical Reviews 2019, 119 (22) , 11631-11717. https://doi.org/10.1021/acs.chemrev.9b00121
    16. Wenjuan Ma, Yuxi Zhan, Yuxin Zhang, Xiaoru Shao, Xueping Xie, Chenchen Mao, Weitong Cui, Qian Li, Jiye Shi, Jiang Li, Chunhai Fan, Yunfeng Lin. An Intelligent DNA Nanorobot with in Vitro Enhanced Protein Lysosomal Degradation of HER2. Nano Letters 2019, 19 (7) , 4505-4517. https://doi.org/10.1021/acs.nanolett.9b01320
    17. Soumyananda Chakraborti, Antti Korpi, Mantu Kumar, Piotr Stępień, Mauri A. Kostiainen, Jonathan G. Heddle. Three-Dimensional Protein Cage Array Capable of Active Enzyme Capture and Artificial Chaperone Activity. Nano Letters 2019, 19 (6) , 3918-3924. https://doi.org/10.1021/acs.nanolett.9b01148
    18. Zhen-Gang Wang, Na Li, Ting Wang, Baoquan Ding. Surface-Guided Chemical Processes on Self-Assembled DNA Nanostructures. Langmuir 2018, 34 (49) , 14954-14962. https://doi.org/10.1021/acs.langmuir.8b01060
    19. Anton Kuzyk, Ralf Jungmann, Guillermo P. Acuna, Na Liu. DNA Origami Route for Nanophotonics. ACS Photonics 2018, 5 (4) , 1151-1163. https://doi.org/10.1021/acsphotonics.7b01580
    20. Fan Hong, Fei Zhang, Yan Liu, and Hao Yan . DNA Origami: Scaffolds for Creating Higher Order Structures. Chemical Reviews 2017, 117 (20) , 12584-12640. https://doi.org/10.1021/acs.chemrev.6b00825
    21. Ken Halvorsen, Megan E. Kizer, Xing Wang, Arun Richard Chandrasekaran, and Maria Basanta-Sanchez . Shear Dependent LC Purification of an Engineered DNA Nanoswitch and Implications for DNA Origami. Analytical Chemistry 2017, 89 (11) , 5673-5677. https://doi.org/10.1021/acs.analchem.7b00791
    22. Divita Mathur and Igor L. Medintz . Analyzing DNA Nanotechnology: A Call to Arms For The Analytical Chemistry Community. Analytical Chemistry 2017, 89 (5) , 2646-2663. https://doi.org/10.1021/acs.analchem.6b04033
    23. Kilian Vogele, Jonathan List, Günther Pardatscher, Nolan B. Holland, Friedrich C. Simmel, and Tobias Pirzer . Self-Assembled Active Plasmonic Waveguide with a Peptide-Based Thermomechanical Switch. ACS Nano 2016, 10 (12) , 11377-11384. https://doi.org/10.1021/acsnano.6b06635
    24. Aradhana Chopra, Swati Krishnan, and Friedrich C. Simmel . Electrotransfection of Polyamine Folded DNA Origami Structures. Nano Letters 2016, 16 (10) , 6683-6690. https://doi.org/10.1021/acs.nanolett.6b03586
    25. Bezu Teschome, Stefan Facsko, Kurt V. Gothelf, and Adrian Keller . Alignment of Gold Nanoparticle-Decorated DNA Origami Nanotubes: Substrate Prepatterning versus Molecular Combing. Langmuir 2015, 31 (46) , 12823-12829. https://doi.org/10.1021/acs.langmuir.5b02569
    26. Luca Piantanida, J Alexander Liddle, William L Hughes, Jacob M Majikes. DNA nanostructure decoration: a how-to tutorial. Nanotechnology 2024, 35 (27) , 273001. https://doi.org/10.1088/1361-6528/ad2ac5
    27. Yuanfang Chen, Jiayi Li, Yuhe R. Yang. DNA Nanoscaffolds for Biomacromolecules Organization and Bioimaging Applications. 2024, 259-278. https://doi.org/10.1002/9783527840816.ch11
    28. Chalmers Chau, Gayathri Mohanan, Iain Macaulay, Paolo Actis, Christoph Wälti. Automated Purification of DNA Origami with SPRI Beads. Small 2024, 20 (20) https://doi.org/10.1002/smll.202308776
    29. Sandra Kröll, Christof M. Niemeyer. Nucleic Acid‐based Enzyme Cascades—Current Trends and Future Perspectives. Angewandte Chemie 2024, 136 (5) https://doi.org/10.1002/ange.202314452
    30. Sandra Kröll, Christof M. Niemeyer. Nucleic Acid‐based Enzyme Cascades—Current Trends and Future Perspectives. Angewandte Chemie International Edition 2024, 63 (5) https://doi.org/10.1002/anie.202314452
    31. Chang Yong Oh, Eric R. Henderson. In vitro transcription of self-assembling DNA nanoparticles. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-39777-0
    32. Irina V. Martynenko, Elisabeth Erber, Veronika Ruider, Mihir Dass, Gregor Posnjak, Xin Yin, Philipp Altpeter, Tim Liedl. Site-directed placement of three-dimensional DNA origami. Nature Nanotechnology 2023, 18 (12) , 1456-1462. https://doi.org/10.1038/s41565-023-01487-z
    33. Jiayi Li, Yuanfang Chen, Yuhe R. Yang. DNA nanotechnology-based biomolecular assembly and imaging. Chinese Science Bulletin 2023, 68 (32) , 4383-4400. https://doi.org/10.1360/TB-2023-0511
    34. Jason Sentosa, Franky Djutanta, Brian Horne, Dominic Showkeir, Robert Rezvani, Chloe Leff, Swechchha Pradhan, Rizal F. Hariadi, . Gradient-mixing LEGO robots for purifying DNA origami nanostructures of multiple components by rate-zonal centrifugation. PLOS ONE 2023, 18 (7) , e0283134. https://doi.org/10.1371/journal.pone.0283134
    35. Qipeng Long, Xinchen Tian, Haochen Wang, Ni Zhang, Tao Han, Zhe Li, Shulong Jiang. Applications of DNA tetrahedron nanostructure in cancer diagnosis and anticancer drugs delivery. Nanotechnology Reviews 2023, 12 (1) https://doi.org/10.1515/ntrev-2022-0553
    36. Nicole I. Langlois, Kristine Y. Ma, Heather A. Clark. Nucleic acid nanostructures for in vivo applications: The influence of morphology on biological fate. Applied Physics Reviews 2023, 10 (1) https://doi.org/10.1063/5.0121820
    37. Shoji Iwabuchi, Shin‐ichiro M. Nomura, Yusuke Sato. Surfactant‐Assisted Purification of Hydrophobic DNA Nanostructures. ChemBioChem 2023, 24 (4) https://doi.org/10.1002/cbic.202200568
    38. Grant A. Knappe, Eike-Christian Wamhoff, Mark Bathe. Functionalizing DNA origami to investigate and interact with biological systems. Nature Reviews Materials 2023, 8 (2) , 123-138. https://doi.org/10.1038/s41578-022-00517-x
    39. Joschka Hellmeier, René Platzer, Johannes B. Huppa, Eva Sevcsik. A DNA Origami-Based Biointerface to Interrogate the Spatial Requirements for Sensitized T-Cell Antigen Recognition. 2023, 277-302. https://doi.org/10.1007/978-1-0716-3135-5_18
    40. Ioanna Smyrlaki, Alan Shaw, Yunshi Yang, Boxuan Shen, Björn Högberg. Solid Phase Synthesis of DNA Nanostructures in Heavy Liquid. Small 2023, 19 (4) https://doi.org/10.1002/smll.202204513
    41. Chi Chen, Xingfei Wei, Molly F. Parsons, Jiajia Guo, James L. Banal, Yinong Zhao, Madelyn N. Scott, Gabriela S. Schlau-Cohen, Rigoberto Hernandez, Mark Bathe. Nanoscale 3D spatial addressing and valence control of quantum dots using wireframe DNA origami. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-32662-w
    42. Marcos K. Masukawa, Yusuke Sato, Fujio Yu, Kanta Tsumoto, Kenichi Yoshikawa, Masahiro Takinoue. Water‐in‐Water Droplets Selectively Uptake Self‐Assembled DNA Nano/Microstructures: a Versatile Method for Purification in DNA Nanotechnology. ChemBioChem 2022, 23 (17) https://doi.org/10.1002/cbic.202200240
    43. Akul Patel, Vibhav Valsangkar, Ken Halvorsen, Arun Richard Chandrasekaran. Purification of Self‐Assembled DNA Tetrahedra Using Gel Electrophoresis. Current Protocols 2022, 2 (9) https://doi.org/10.1002/cpz1.560
    44. Yunxiang Lei, Zhichao Mei, Yuanfang Chen, Ning Deng, Yulin Li. Facile Purification and Concentration of DNA Origami Structures by Ethanol Precipitation. ChemNanoMat 2022, 8 (7) https://doi.org/10.1002/cnma.202200161
    45. Nicole I. Langlois, Heather A. Clark. Characterization of DNA nanostructure stability by size exclusion chromatography. Analytical Methods 2022, 14 (10) , 1006-1014. https://doi.org/10.1039/D1AY02146J
    46. Qin Fan, Zhimei He, Jinxin Xiong, Jie Chao. Smart Drug Delivery Systems Based on DNA Nanotechnology. ChemPlusChem 2022, 87 (3) https://doi.org/10.1002/cplu.202100548
    47. Ian T. Hoffecker, Alan Shaw, Viktoria Sorokina, Ioanna Smyrlaki, Björn Högberg. Stochastic modeling of antibody binding predicts programmable migration on antigen patterns. Nature Computational Science 2022, 2 (3) , 179-192. https://doi.org/10.1038/s43588-022-00218-z
    48. Marcel Hanke, Niklas Hansen, Ruiping Chen, Guido Grundmeier, Karim Fahmy, Adrian Keller. Salting-Out of DNA Origami Nanostructures by Ammonium Sulfate. International Journal of Molecular Sciences 2022, 23 (5) , 2817. https://doi.org/10.3390/ijms23052817
    49. Chung Yi Tseng, Wendy Xueyi Wang, Travis Robert Douglas, Leo Y. T. Chou. Engineering DNA Nanostructures to Manipulate Immune Receptor Signaling and Immune Cell Fates. Advanced Healthcare Materials 2022, 11 (4) https://doi.org/10.1002/adhm.202101844
    50. Patrick D. Halley, Christopher R. Lucas, Nikša Roki, Nicholas J. Vantangoli, Kurtis P. Chenoweth, Carlos E. Castro. DNA Origami Nanodevices for Therapeutic Delivery Applications. 2022, 161-194. https://doi.org/10.1007/978-3-030-93333-3_8
    51. Fengyu Liu, Xiaoming Liu, Qiang Huang, Tatsuo Arai. Recent Progress of Magnetically Actuated DNA Micro/Nanorobots. Cyborg and Bionic Systems 2022, 2022 https://doi.org/10.34133/2022/9758460
    52. Iris Seitz, Ahmed Shaukat, Kurt Nurmi, Heini Ijäs, Jouni Hirvonen, Hélder A. Santos, Mauri A. Kostiainen, Veikko Linko. Prospective Cancer Therapies Using Stimuli‐Responsive DNA Nanostructures. Macromolecular Bioscience 2021, 21 (12) https://doi.org/10.1002/mabi.202100272
    53. Wenjuan Ma, Yuxi Zhan, Yuxin Zhang, Chenchen Mao, Xueping Xie, Yunfeng Lin. The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduction and Targeted Therapy 2021, 6 (1) https://doi.org/10.1038/s41392-021-00727-9
    54. Swarup Dey, Chunhai Fan, Kurt V. Gothelf, Jiang Li, Chenxiang Lin, Longfei Liu, Na Liu, Minke A. D. Nijenhuis, Barbara Saccà, Friedrich C. Simmel, Hao Yan, Pengfei Zhan. DNA origami. Nature Reviews Methods Primers 2021, 1 (1) https://doi.org/10.1038/s43586-020-00009-8
    55. Noemi Bellassai, Roberta D’Agata, Giuseppe Spoto. Novel nucleic acid origami structures and conventional molecular beacon–based platforms: a comparison in biosensing applications. Analytical and Bioanalytical Chemistry 2021, 413 (24) , 6063-6077. https://doi.org/10.1007/s00216-021-03309-4
    56. Erik Benson, Rafael Carrascosa Marzo, Jonathan Bath, Andrew J. Turberfield. Strategies for Constructing and Operating DNA Origami Linear Actuators. Small 2021, 17 (20) https://doi.org/10.1002/smll.202007704
    57. Jingjing Ye, Josephine Teske, Ulrich Kemper, Ralf Seidel. Sequential Pull‐Down Purification of DNA Origami Superstructures. Small 2021, 17 (17) https://doi.org/10.1002/smll.202007218
    58. Ashwin Gopinath, Chris Thachuk, Anya Mitskovets, Harry A. Atwater, David Kirkpatrick, Paul W. K. Rothemund. Absolute and arbitrary orientation of single-molecule shapes. Science 2021, 371 (6531) https://doi.org/10.1126/science.abd6179
    59. Conor Lanphere, Daniel Offenbartl-Stiegert, Adam Dorey, Genevieve Pugh, Elena Georgiou, Yongzheng Xing, Jonathan R. Burns, Stefan Howorka. Design, assembly, and characterization of membrane-spanning DNA nanopores. Nature Protocols 2021, 16 (1) , 86-130. https://doi.org/10.1038/s41596-020-0331-7
    60. Wolfgang Ott, Alessandro Ceccarelli, Jack Manning, Nicholas J. Turner, Robert Oppenheimer. Data‐driven enzyme immobilisation: a case study using DNA to immobilise galactose oxidase. Engineering Biology 2020, 4 (3) , 43-46. https://doi.org/10.1049/enb.2020.0014
    61. Hamid Ramezani, Hendrik Dietz. Building machines with DNA molecules. Nature Reviews Genetics 2020, 21 (1) , 5-26. https://doi.org/10.1038/s41576-019-0175-6
    62. Breveruos Sheheade, Miran Liber, Mary Popov, Yaron Berger, Dinesh C. Khara, Jürgen Jopp, Eyal Nir. Self‐Assembly of DNA Origami Heterodimers in High Yields and Analysis of the Involved Mechanisms. Small 2019, 15 (51) https://doi.org/10.1002/smll.201902979
    63. Divita Mathur, William P. Klein, Matthew Chiriboga, Hieu Bui, Eunkeu Oh, Rafaela Nita, Jawad Naciri, Paul Johns, Jake Fontana, Sebastián A. Díaz, Igor L. Medintz. Analyzing fidelity and reproducibility of DNA templated plasmonic nanostructures. Nanoscale 2019, 11 (43) , 20693-20706. https://doi.org/10.1039/C9NR03711J
    64. Joshua A. Johnson, Abhilasha Dehankar, Ariel Robbins, Prerna Kabtiyal, Elizabeth Jergens, Kil Ho Lee, Ezekiel Johnston-Halperin, Michael Poirier, Carlos E. Castro, Jessica O. Winter. The path towards functional nanoparticle-DNA origami composites. Materials Science and Engineering: R: Reports 2019, 138 , 153-209. https://doi.org/10.1016/j.mser.2019.06.003
    65. Jaekel, Stegemann, Saccà. Manipulating Enzymes Properties with DNA Nanostructures. Molecules 2019, 24 (20) , 3694. https://doi.org/10.3390/molecules24203694
    66. Qiao Jiang, Shuai Zhao, Jianbing Liu, Linlin Song, Zhen-Gang Wang, Baoquan Ding. Rationally designed DNA-based nanocarriers. Advanced Drug Delivery Reviews 2019, 147 , 2-21. https://doi.org/10.1016/j.addr.2019.02.003
    67. Eike-Christian Wamhoff, James L. Banal, William P. Bricker, Tyson R. Shepherd, Molly F. Parsons, Rémi Veneziano, Matthew B. Stone, Hyungmin Jun, Xiao Wang, Mark Bathe. Programming Structured DNA Assemblies to Probe Biophysical Processes. Annual Review of Biophysics 2019, 48 (1) , 395-419. https://doi.org/10.1146/annurev-biophys-052118-115259
    68. Patrick D. Halley, Randy A. Patton, Amjad Chowdhury, John C. Byrd, Carlos E. Castro. Low-cost, simple, and scalable self-assembly of DNA origami nanostructures. Nano Research 2019, 12 (5) , 1207-1215. https://doi.org/10.1007/s12274-019-2384-x
    69. Teresa Burgahn, Ruben Garrecht, Kersten S. Rabe, Christof M. Niemeyer. Solid‐Phase Synthesis and Purification of Protein–DNA Origami Nanostructures. Chemistry – A European Journal 2019, 25 (14) , 3483-3488. https://doi.org/10.1002/chem.201805506
    70. Kerstin Göpfrich, Ulrich F. Keyser. DNA Nanotechnology for Building Sensors, Nanopores and Ion-Channels. 2019, 331-370. https://doi.org/10.1007/978-981-13-9791-2_11
    71. Sebastian Loescher, Saskia Groeer, Andreas Walther. 3D‐DNA‐Origami‐Nanopartikel: von grundlegenden Designprinzipien hin zu neuartigen Anwendungen in der weichen Materie und den (Bio‐)Nanowissenschaften. Angewandte Chemie 2018, 130 (33) , 10594-10607. https://doi.org/10.1002/ange.201801700
    72. Sebastian Loescher, Saskia Groeer, Andreas Walther. 3D DNA Origami Nanoparticles: From Basic Design Principles to Emerging Applications in Soft Matter and (Bio‐)Nanosciences. Angewandte Chemie International Edition 2018, 57 (33) , 10436-10448. https://doi.org/10.1002/anie.201801700
    73. Matthias Schickinger, Martin Zacharias, Hendrik Dietz. Tethered multifluorophore motion reveals equilibrium transition kinetics of single DNA double helices. Proceedings of the National Academy of Sciences 2018, 115 (32) https://doi.org/10.1073/pnas.1800585115
    74. Richie E. Kohman, Aditya M. Kunjapur, Eriona Hysolli, Yu Wang, George M. Church. Vom Design der Moleküle des Lebens zum Design von Leben: Zukünftige Anwendungen von DNA‐Technologien. Angewandte Chemie 2018, 130 (16) , 4395-4411. https://doi.org/10.1002/ange.201707976
    75. Richie E. Kohman, Aditya M. Kunjapur, Eriona Hysolli, Yu Wang, George M. Church. From Designing the Molecules of Life to Designing Life: Future Applications Derived from Advances in DNA Technologies. Angewandte Chemie International Edition 2018, 57 (16) , 4313-4328. https://doi.org/10.1002/anie.201707976
    76. P Lourdu Xavier, Arun Richard Chandrasekaran. DNA-based construction at the nanoscale: emerging trends and applications. Nanotechnology 2018, 29 (6) , 062001. https://doi.org/10.1088/1361-6528/aaa120
    77. Janane F. Rahbani, John C. C. Hsu, Pongphak Chidchob, Hanadi F. Sleiman. Single-stranded templates as railroad tracks for hierarchical assembly of DNA origami. Nanoscale 2018, 10 (29) , 13994-13999. https://doi.org/10.1039/C8NR03185A
    78. Sarah Helmig, Kurt Vesterager Gothelf. AFM Imaging of Hybridization Chain Reaction Mediated Signal Transmission between Two DNA Origami Structures. Angewandte Chemie 2017, 129 (44) , 13821-13824. https://doi.org/10.1002/ange.201706680
    79. Sarah Helmig, Kurt Vesterager Gothelf. AFM Imaging of Hybridization Chain Reaction Mediated Signal Transmission between Two DNA Origami Structures. Angewandte Chemie International Edition 2017, 56 (44) , 13633-13636. https://doi.org/10.1002/anie.201706680
    80. Klaus F. Wagenbauer, Floris A. S. Engelhardt, Evi Stahl, Vera K. Hechtl, Pierre Stömmer, Fabian Seebacher, Letizia Meregalli, Philip Ketterer, Thomas Gerling, Hendrik Dietz. How We Make DNA Origami. ChemBioChem 2017, 18 (19) , 1873-1885. https://doi.org/10.1002/cbic.201700377
    81. Linlin Song, Qiao Jiang, Zhen‐Gang Wang, Baoquan Ding. Self‐Assembled DNA Nanostructures for Biomedical Applications. ChemNanoMat 2017, 3 (10) , 713-724. https://doi.org/10.1002/cnma.201700158
    82. Travis A. Meyer. Purification Techniques for Three-Dimensional DNA Nanostructures. 2017, 109-119. https://doi.org/10.1007/978-1-4939-6454-3_8
    83. J. M. Majikes, J. A. Nash, T. H. LaBean. Search for effective chemical quenching to arrest molecular assembly and directly monitor DNA nanostructure formation. Nanoscale 2017, 9 (4) , 1637-1644. https://doi.org/10.1039/C6NR08433H
    84. Bas J. H. M. Rosier, Glenn A. O. Cremers, Wouter Engelen, Maarten Merkx, Luc Brunsveld, Tom F. A. de Greef. Incorporation of native antibodies and Fc-fusion proteins on DNA nanostructures via a modular conjugation strategy. Chemical Communications 2017, 53 (53) , 7393-7396. https://doi.org/10.1039/C7CC04178K
    85. Arun Richard Chandrasekaran. DNA Nanobiosensors: An Outlook on Signal Readout Strategies. Journal of Nanomaterials 2017, 2017 , 1-9. https://doi.org/10.1155/2017/2820619
    86. Thomas G. Martin, Tanmay A. M. Bharat, Andreas C. Joerger, Xiao-chen Bai, Florian Praetorius, Alan R. Fersht, Hendrik Dietz, Sjors H. W. Scheres. Design of a molecular support for cryo-EM structure determination. Proceedings of the National Academy of Sciences 2016, 113 (47) https://doi.org/10.1073/pnas.1612720113
    87. Dawei Jiang, Christopher G. England, Weibo Cai. DNA nanomaterials for preclinical imaging and drug delivery. Journal of Controlled Release 2016, 239 , 27-38. https://doi.org/10.1016/j.jconrel.2016.08.013
    88. Cathal J. Kearney, Christopher R. Lucas, Fergal J. O'Brien, Carlos E. Castro. DNA Origami: Folded DNA‐Nanodevices That Can Direct and Interpret Cell Behavior. Advanced Materials 2016, 28 (27) , 5509-5524. https://doi.org/10.1002/adma.201504733
    89. Ashwin Gopinath, Evan Miyazono, Andrei Faraon, Paul W. K. Rothemund. Engineering and mapping nanocavity emission via precision placement of DNA origami. Nature 2016, 535 (7612) , 401-405. https://doi.org/10.1038/nature18287
    90. Arun Richard Chandrasekaran, Nate Anderson, Megan Kizer, Ken Halvorsen, Xing Wang. Beyond the Fold: Emerging Biological Applications of DNA Origami. ChemBioChem 2016, 17 (12) , 1081-1089. https://doi.org/10.1002/cbic.201600038
    91. Sandra Sagredo, Tobias Pirzer, Ali Aghebat Rafat, Marisa A. Goetzfried, Gabriel Moncalian, Friedrich C. Simmel, Fernando de la Cruz. Orthogonale Assemblierung von Proteinen auf DNA‐Nanostrukturen mithilfe von Relaxasen. Angewandte Chemie 2016, 128 (13) , 4421-4425. https://doi.org/10.1002/ange.201510313
    92. Sandra Sagredo, Tobias Pirzer, Ali Aghebat Rafat, Marisa A. Goetzfried, Gabriel Moncalian, Friedrich C. Simmel, Fernando de la Cruz. Orthogonal Protein Assembly on DNA Nanostructures Using Relaxases. Angewandte Chemie International Edition 2016, 55 (13) , 4348-4352. https://doi.org/10.1002/anie.201510313
    93. Di Sheng Lee, Hang Qian, Chor Yong Tay, David Tai Leong. Cellular processing and destinies of artificial DNA nanostructures. Chemical Society Reviews 2016, 45 (15) , 4199-4225. https://doi.org/10.1039/C5CS00700C
    94. Vikash Verma, Leena Mallik, Rizal F. Hariadi, Sivaraj Sivaramakrishnan, Georgios Skiniotis, Ajit P. Joglekar, . Using Protein Dimers to Maximize the Protein Hybridization Efficiency with Multisite DNA Origami Scaffolds. PLOS ONE 2015, 10 (9) , e0137125. https://doi.org/10.1371/journal.pone.0137125