ACS Publications. Most Trusted. Most Cited. Most Read
Delineating Origins of Stereocontrol in Asymmetric Pd-Catalyzed α-Hydroxylation of 1,3-Ketoesters
My Activity
    Article

    Delineating Origins of Stereocontrol in Asymmetric Pd-Catalyzed α-Hydroxylation of 1,3-Ketoesters
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom.
    †Pfizer Animal Health, 333 Portage Street, Kalamazoo, MI 49001.
    Other Access OptionsSupporting Information (2)

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2010, 75, 9, 3085–3096
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo1002906
    Published March 25, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Systematic studies of reaction conditions and subsequent optimization led to the identification of important parameters for stereoselectivity in the asymmetric α-hydroxylation reaction of 1,3-ketoesters. Enantioselectivities of up to 98% can be achieved for cyclic substrates and 88% for acyclic ketoesters. Subsequently, the combination of cyclic/acyclic ketoester, catalyst, and oxidant was found to have a profound effect on reaction rates and turnover-limiting steps. The stereochemistry of the reaction contradicts that observed for other similar electrophilic substitution reactions. This was rationalized by transition-state modeling, which revealed a number of cooperative weak interactions between oxidant, ligand, and counterion, together with C−H/π interactions that cumulatively account for the unusual stereoselectivity.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental procedure, and characterization data (precursors and known compounds), X-ray crystallographic data (including ORTEP plot and CIF), and copies of 1H and 13C NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org. Calculated coordinates and animated transition-state normal modes are provided via web-enhanced tables in the HTML version of the article.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 90 publications.

    1. Changming Xu, Xiangfan Li, Lei Bai. Direct Aerobic α-Hydroxylation of Arylacetates for the Synthesis of Mandelates. The Journal of Organic Chemistry 2022, 87 (6) , 4298-4304. https://doi.org/10.1021/acs.joc.1c03149
    2. Timo Heinrich, Jeyaprakashnarayanan Seenisamy, Frank Becker, Beatrix Blume, Jörg Bomke, Melanie Dietz, Uwe Eckert, Manja Friese-Hamim, Jakub Gunera, Kerrin Hansen, Birgitta Leuthner, Djordje Musil, Jens Pfalzgraf, Felix Rohdich, Christian Siegl, Dieter Spuck, Ansgar Wegener, Frank T. Zenke. Identification of Methionine Aminopeptidase-2 (MetAP-2) Inhibitor M8891: A Clinical Compound for the Treatment of Cancer. Journal of Medicinal Chemistry 2019, 62 (24) , 11119-11134. https://doi.org/10.1021/acs.jmedchem.9b01070
    3. Zhongxiang Chen, Mingxue Yang, Zhaofeng Sun, Xuebo Zhang, Jing Xu, Guangling Bian, Ling Song. Chiral Discrimination by a Binuclear Pd Complex Sensor Using 31P{1H} NMR. Analytical Chemistry 2019, 91 (22) , 14591-14596. https://doi.org/10.1021/acs.analchem.9b03661
    4. Brianna M. Upton, Andrea M. Kasko. Biomass-Derived Poly(ether-amide)s Incorporating Hydroxycinnamates. Biomacromolecules 2019, 20 (2) , 758-766. https://doi.org/10.1021/acs.biomac.9b00044
    5. Oleg V. Bityukov, Olesya K. Matveeva, Vera A. Vil’, Vladimir A. Kokorekin, Gennady I. Nikishin, Alexander O. Terent’ev. Electrochemically Induced Intermolecular Cross-Dehydrogenative C–O Coupling of β-Diketones and β-Ketoesters with Carboxylic Acids. The Journal of Organic Chemistry 2019, 84 (3) , 1448-1460. https://doi.org/10.1021/acs.joc.8b02791
    6. Justin Y. Su, David E. Olson, Stephen I. Ting, J. Du Bois. Synthetic Studies Toward Pactamycin Highlighting Oxidative C–H and Alkene Amination Technologies. The Journal of Organic Chemistry 2018, 83 (13) , 7121-7134. https://doi.org/10.1021/acs.joc.8b00142
    7. Hai-Jun Zhang, Alexander W. Schuppe, Shi-Tao Pan, Jin-Xiang Chen, Bo-Ran Wang, Timothy R. Newhouse, Liang Yin. Copper-Catalyzed Vinylogous Aerobic Oxidation of Unsaturated Compounds with Air. Journal of the American Chemical Society 2018, 140 (15) , 5300-5310. https://doi.org/10.1021/jacs.8b01886
    8. Brianna M. Upton, Andrea M. Kasko. Biodegradable Aromatic–Aliphatic Poly(ester–amides) from Monolignol-Based Ester Dimers. ACS Sustainable Chemistry & Engineering 2018, 6 (3) , 3659-3668. https://doi.org/10.1021/acssuschemeng.7b03784
    9. Yakun Wang, Qinghe Gao, Zhaomin Liu, Suping Bai, Xiaofei Tang, Hang Yin, and Qingwei Meng . Enantioselective α-Benzoyloxylation of β-Keto Esters by N-Oxide Phase-Transfer Catalysts. The Journal of Organic Chemistry 2018, 83 (4) , 2263-2273. https://doi.org/10.1021/acs.joc.7b03150
    10. Xuguang Sheng, Jinlong Zhang, Huameng Yang, and Gaoxi Jiang . Tunable Aerobic Oxidative Hydroxylation/Dehydrogenative Homocoupling of Pyrazol-5-ones under Transition-Metal-Free Conditions. Organic Letters 2017, 19 (10) , 2618-2621. https://doi.org/10.1021/acs.orglett.7b00951
    11. Fan Yang, Jingnan Zhao, Xiaofei Tang, Guangli Zhou, Wangze Song, and Qingwei Meng . Enantioselective α-Hydroxylation by Modified Salen-Zirconium(IV)-Catalyzed Oxidation of β-Keto Esters. Organic Letters 2017, 19 (3) , 448-451. https://doi.org/10.1021/acs.orglett.6b03554
    12. Yakun Wang, Hang Yin, Xiaofei Tang, Yufeng Wu, Qingwei Meng, and Zhanxian Gao . A Series of Cinchona-Derived N-Oxide Phase-Transfer Catalysts: Application to the Photo-Organocatalytic Enantioselective α-Hydroxylation of β-Dicarbonyl Compounds. The Journal of Organic Chemistry 2016, 81 (16) , 7042-7050. https://doi.org/10.1021/acs.joc.6b00856
    13. Benedict J. Barron, Wing-Tak Wong, Pauline Chiu, and King Kuok Hii . “Goldilocks Effect” of Water in Lewis-Brønsted Acid and Base Catalysis. ACS Catalysis 2016, 6 (7) , 4189-4194. https://doi.org/10.1021/acscatal.6b00800
    14. Alexander O. Terent’ev, Vera A. Vil’, Evgenii S. Gorlov, Gennady I. Nikishin, Kasimir K. Pivnitsky, and Waldemar Adam . Lanthanide-Catalyzed Oxyfunctionalization of 1,3-Diketones, Acetoacetic Esters, And Malonates by Oxidative C–O Coupling with Malonyl Peroxides. The Journal of Organic Chemistry 2016, 81 (3) , 810-823. https://doi.org/10.1021/acs.joc.5b02233
    15. Haruyasu Asahara and Nagatoshi Nishiwaki . Metal-Free α-Hydroxylation of α-Unsubstituted β-Oxoesters and β-Oxoamides. The Journal of Organic Chemistry 2014, 79 (23) , 11735-11739. https://doi.org/10.1021/jo501985u
    16. Songjin Guo, Qian Wang, Yan Jiang, and Jin-Tao Yu . tert-Butyl Peroxybenzoate-Promoted α-Methylation of 1,3-Dicarbonyl Compounds. The Journal of Organic Chemistry 2014, 79 (22) , 11285-11289. https://doi.org/10.1021/jo502204a
    17. Phillip J. Mabe and Armen Zakarian . Asymmetric Radical Addition of TEMPO to Titanium Enolates. Organic Letters 2014, 16 (2) , 516-519. https://doi.org/10.1021/ol403398u
    18. Chun-Bao Miao, Yan-Hong Wang, Meng-Lei Xing, Xin-Wei Lu, Xiao-Qiang Sun, and Hai-Tao Yang . I2-Catalyzed Direct α-Hydroxylation of β-Dicarbonyl Compounds with Atmospheric Oxygen under Photoirradiation. The Journal of Organic Chemistry 2013, 78 (22) , 11584-11589. https://doi.org/10.1021/jo401866p
    19. Liwei Zou, Baomin Wang, Hongfang Mu, Huanrui Zhang, Yuming Song, and Jingping Qu . Development of Tartaric Acid Derived Chiral Guanidines and Their Application to Catalytic Enantioselective α-Hydroxylation of β-Dicarbonyl Compounds. Organic Letters 2013, 15 (12) , 3106-3109. https://doi.org/10.1021/ol401306h
    20. Hongjie Yao, Mingming Lian, Zhi Li, Yakun Wang, and Qingwei Meng . Asymmetric Direct α-Hydroxylation of β-Oxo Esters Catalyzed by Chiral Quaternary Ammonium Salts Derived from Cinchona Alkaloids. The Journal of Organic Chemistry 2012, 77 (21) , 9601-9608. https://doi.org/10.1021/jo3016242
    21. Alexander M. R. Smith and King Kuok (Mimi) Hii . Transition Metal Catalyzed Enantioselective α-Heterofunctionalization of Carbonyl Compounds. Chemical Reviews 2011, 111 (3) , 1637-1656. https://doi.org/10.1021/cr100197z
    22. Alexander O. Terent’ev, Dmitry A. Borisov, Ivan A. Yaremenko, Vladimir V. Chernyshev and Gennady I. Nikishin . Synthesis of Asymmetric Peroxides: Transition Metal (Cu, Fe, Mn, Co) Catalyzed Peroxidation of β-Dicarbonyl Compounds with tert-Butyl Hydroperoxide. The Journal of Organic Chemistry 2010, 75 (15) , 5065-5071. https://doi.org/10.1021/jo100793j
    23. Jing Kong, Paul v. R. Schleyer and Henry S. Rzepa . Successful Computational Modeling of Isobornyl Chloride Ion-Pair Mechanisms. The Journal of Organic Chemistry 2010, 75 (15) , 5164-5169. https://doi.org/10.1021/jo100920e
    24. Shuai Peng, Fangyao Su, Shuting Yin, Baoguo Sun, Hongyu Tian, Sen Liang. Advances in α ‐Hydroxylation of β ‐Dicarbonyl Compounds. Advanced Synthesis & Catalysis 2024, 6 https://doi.org/10.1002/adsc.202400627
    25. Jin-Rui Tian, Yu-Hao Qiao, Qing-Bo Zhuang, Rong Fan, Zhen Li, Xiao-Ming Zhang, Fu-Min Zhang, Yong-Qiang Tu. Organo-cation catalyzed enantioselective α-hydroxylation of pyridinone-fused lactones: asymmetric synthesis of SN-38 and irinotecan. Chemical Communications 2024, 88 https://doi.org/10.1039/D4CC03580A
    26. Hualing He, K. S. Satyanarayana Tummalapalli, Linfei Zhu, Minglei Chen, Suvratha Krishnamurthy, Jon C. Antilla. Asymmetric Rubottom‐Type Oxidation Catalyzed by Chiral Calcium Phosphates. Chemistry – A European Journal 2023, 29 (10) https://doi.org/10.1002/chem.202203720
    27. Konstantin P. Bryliakov. Asymmetric CH Oxygenation Reactions. 2022, 1-39. https://doi.org/10.1002/9783527834242.chf0133
    28. Valentin Magné, Fatima Rammal, Guillaume Berionni, Sami Lakhdar. Four-Membered Rings With One Phosphorus, Arsenic, Antimony, or Bismuth Atom. 2022, 335-362. https://doi.org/10.1016/B978-0-12-818655-8.00156-6
    29. Hong-Wei Chen, Qin-Hua Song. Regioselective benzoyloxylative dearomatization of naphthols by benzoyl peroxide under catalyst-free conditions. Organic & Biomolecular Chemistry 2021, 19 (33) , 7161-7164. https://doi.org/10.1039/D1OB01274F
    30. Philipp Honegger, Alexander Roller, Michael Widhalm. Synthesis and characterization of enantiopure planar–chiral phosphorus-linked diferrocenes. Acta Crystallographica Section C Structural Chemistry 2021, 77 (3) , 152-160. https://doi.org/10.1107/S2053229621001996
    31. Jie Chen, Haiyang Gu, Xueying Zhu, Wonwoo Nam, Bin Wang. Zirconium‐Salan Catalyzed Enantioselective α ‐Hydroxylation of β ‐Keto Esters. Advanced Synthesis & Catalysis 2020, 362 (14) , 2976-2983. https://doi.org/10.1002/adsc.202000290
    32. Philipp Honegger, Lukas Scheibelberger, Michael Widhalm. Planar-Chiral P and N-bridged Diferrocenes. Molbank 2020, 2020 (2) , M1130. https://doi.org/10.3390/M1130
    33. Philipp Honegger, Michael Widhalm. (2Sp,4R,8Sp)-4-Methyl-1-phenyl-diferroceno-5-Z-ethylene-1-phosphinoxide. Molbank 2020, 2020 (1) , M1105. https://doi.org/10.3390/M1105
    34. Shengzhou Jin, Hua Yao, Sen Lin, Xiaoqing You, Yao Yang, Zhaohua Yan. Peroxide-mediated site-specific C–H methylation of imidazo[1,2- a ]pyridines and quinoxalin-2(1 H )-ones under metal-free conditions. Organic & Biomolecular Chemistry 2020, 18 (2) , 205-210. https://doi.org/10.1039/C9OB02328C
    35. Philipp Honegger, Michael Widhalm. (2Sp,4R,6R,8Sp)-4,6-Dimethyl-1-phenyl-diferroceno-1-phosphines. Molbank 2019, 2019 (4) , M1098. https://doi.org/10.3390/M1098
    36. Saúl Silva, Christopher D. Maycock. Synthesis of β-oxo carbonyl and thiocarbonyl compounds via basic sulfur abstraction. Tetrahedron 2019, 75 (40) , 130552. https://doi.org/10.1016/j.tet.2019.130552
    37. M.V. Krishna Rao, K. Nagarjuna Reddy, B. Sridhar, B.V. Subba Reddy. Ru(II)-catalyzed α-sulfonamidation of cyclic β-ketoesters with sulfonyl azides. Tetrahedron Letters 2019, 60 (41) , 151083. https://doi.org/10.1016/j.tetlet.2019.151083
    38. Yakun Wang, Shuaifei Wang, Qinghe Gao, Luohao Li, Haoyu Zhi, Tao Zhang, Jixia Zhang. Transition-metal, organic solvent and base free α-hydroxylation of β-keto esters and β-keto amides with peroxides in water. Tetrahedron 2019, 75 (28) , 3856-3863. https://doi.org/10.1016/j.tet.2019.06.011
    39. Hua Wu, Rémi Andres, Qian Wang, Jieping Zhu. Catalytic Enantioselective α‐Ketol Rearrangement. Angewandte Chemie International Edition 2019, 58 (2) , 499-503. https://doi.org/10.1002/anie.201812244
    40. Hua Wu, Rémi Andres, Qian Wang, Jieping Zhu. Catalytic Enantioselective α‐Ketol Rearrangement. Angewandte Chemie 2019, 131 (2) , 509-513. https://doi.org/10.1002/ange.201812244
    41. Wentan Liu, Bo Wang. Stereoselective Synthesis of a Common 3-Oxabicyclo[3.2.0]heptan-2-one Core Building Block Toward Illicium Sesquiterpenes via Desymmetrization. Chemical Research in Chinese Universities 2018, 34 (6) , 867-870. https://doi.org/10.1007/s40242-018-8229-4
    42. Qiao Ren, Wen Yang, Yunfei Lan, Xurong Qin, Youzhou He, Lujiang Yuan. Recent Advances in the Catalytic Asymmetric Reactions of Oxaziridines. Molecules 2018, 23 (10) , 2656. https://doi.org/10.3390/molecules23102656
    43. Yakun Wang, Qinghe Gao, Nan Li, Yifan Chen, Jingwen Cui, Feiyu Gao, Qingwei Meng. High-efficiency α-benzoyloxylation and hydroxylation of β-keto amides by phase transfer catalysis. Tetrahedron 2018, 74 (30) , 4126-4133. https://doi.org/10.1016/j.tet.2018.06.026
    44. Jean Le Bras, Jacques Muzart. C-O Bonds from Pd-Catalyzed C(sp 3 )-H Reactions Mediated by Heteroatomic Groups. European Journal of Organic Chemistry 2018, 2018 (10) , 1176-1203. https://doi.org/10.1002/ejoc.201701446
    45. Oleg V. Bityukov, Vera A. Vil’, Valentina M. Merkulova, Gennady I. Nikishin, Alexander O. Terent’ev. Silica gel mediated oxidative C–O coupling of β-dicarbonyl compounds with malonyl peroxides in solvent-free conditions. Pure and Applied Chemistry 2018, 90 (1) , 7-20. https://doi.org/10.1515/pac-2017-0312
    46. M. Uyanik, K. Ishihara. 10 α-Oxidation of Carbonyl Compounds. 2018https://doi.org/10.1055/sos-SD-225-00320
    47. Ze-lin Li, Chun Cai. Pd/Ni catalyzed selective N–H/C–H methylation of amides by using peroxides as the methylating reagents via a radical process. Organic Chemistry Frontiers 2017, 4 (11) , 2207-2210. https://doi.org/10.1039/C7QO00625J
    48. Johanna Novacek, Joseph A. Izzo, Mathew J. Vetticatt, Mario Waser. Bifunctional Ammonium Salt Catalyzed Asymmetric α‐Hydroxylation of β‐Ketoesters by Simultaneous Resolution of Oxaziridines. Chemistry – A European Journal 2016, 22 (48) , 17339-17344. https://doi.org/10.1002/chem.201604153
    49. Yuki Naganawa, Tomotaka Aoyama, Keisuke Kato, Hisao Nishiyama. Cu(II)‐catalyzed Enantioselective α‐Hydroxylation and α‐Chlorination of β‐Ketoesters with N,N,O ‐Tridentate Chiral Phenanthroline Ligand. ChemistrySelect 2016, 1 (9) , 1938-1942. https://doi.org/10.1002/slct.201600449
    50. Shun-Ming Yu, Kai Cui, Fei Lv, Zhen-Yu Yang, Zhu-Jun Yao. Aerobic α-hydroxylation of β-keto esters and amides by co-catalysis of SmI3 and I2 under mild base-free conditions. Tetrahedron Letters 2016, 57 (25) , 2818-2821. https://doi.org/10.1016/j.tetlet.2016.05.052
    51. Yakun Wang, Hang Yin, Hai Qing, Jingnan Zhao, Yufeng Wu, Qingwei Meng. Asymmetric α‐Hydroxylation of β‐Indanone Esters and β‐Indanone Amides Catalyzed by C‐2′ Substituted Cinchona Alkaloid Derivatives. Advanced Synthesis & Catalysis 2016, 358 (5) , 737-745. https://doi.org/10.1002/adsc.201500911
    52. Jelena Popović-Djordjević, Stepan Stepanović, Ljiljana Došen-Mićović, Evica Ivanović, Milovan D. Ivanović. High-yielding method for preparation of carbocyclic or N -containing heterocyclic β-keto esters using in situ activated sodium hydride in dimethyl sulphoxide. Green Chemistry Letters and Reviews 2016, 9 (1) , 61-68. https://doi.org/10.1080/17518253.2016.1145744
    53. Yakun Wang, Zehao Zheng, Mingming Lian, Hang Yin, Jingnan Zhao, Qingwei Meng, Zhanxian Gao. Photo-organocatalytic enantioselective α-hydroxylation of β-keto esters and β-keto amides with oxygen under phase transfer catalysis. Green Chemistry 2016, 18 (20) , 5493-5499. https://doi.org/10.1039/C6GC01245K
    54. Kazutaka Shibatomi, Manato Kotozaki, Nozomi Sasaki, Ikuhide Fujisawa, Seiji Iwasa. Williamson Ether Synthesis with Phenols at a Tertiary Stereogenic Carbon: Formal Enantioselective Phenoxylation of β‐Keto Esters. Chemistry – A European Journal 2015, 21 (40) , 14095-14098. https://doi.org/10.1002/chem.201502042
    55. Teng Niu, Xiping Han, Danfeng Huang, Ke-Hu Wang, Yingpeng Su, Yulai Hu, Ying Fu. Enantioselective fluorination of β-ketoesters catalysed by complexes of new mono-oxazoline ligands. Journal of Fluorine Chemistry 2015, 175 , 6-11. https://doi.org/10.1016/j.jfluchem.2015.02.017
    56. Yakun Wang, Ting Xiong, Qingwei Meng. Methylhydrazine-induced enantioselective α-hydroxylation of β-keto esters with molecular oxygen catalyzed by hydroquinine. Tetrahedron 2015, 71 (1) , 85-90. https://doi.org/10.1016/j.tet.2014.11.029
    57. Yuki Naganawa, Tomotaka Aoyama, Hisao Nishiyama. Cu( ii )-catalyzed enantioselective oxygen atom transfer from oxaziridine to oxindole derivatives with chiral phenanthroline. Org. Biomol. Chem. 2015, 13 (47) , 11499-11506. https://doi.org/10.1039/C5OB01840D
    58. Dominika J. Walaszek, Ksenia Maximova, Katarzyna Rybicka-Jasińska, Agnieszka Lipke, Dorota Gryko. Synthesis of chiral porphyrins and their use in photochemical oxidation of carbonyl compounds. Journal of Porphyrins and Phthalocyanines 2014, 18 (06) , 493-505. https://doi.org/10.1142/S1088424614500229
    59. Zhi Li, Mingming Lian, Fan Yang, Qingwei Meng, Zhanxian Gao. Diterpenoid Alkaloid Lappaconine Derivative Catalyzed Asymmetric α‐Hydroxylation of β‐Dicarbonyl Compounds with Hydrogen Peroxide. European Journal of Organic Chemistry 2014, 2014 (16) , 3491-3495. https://doi.org/10.1002/ejoc.201402019
    60. Weizhen Fang, Marc Presset, Amandine Guérinot, Christophe Bour, Sophie Bezzenine‐Lafollée, Vincent Gandon. Silver‐Free Two‐Component Approach in Gold Catalysis: Activation of [LAuCl] Complexes with Derivatives of Copper, Zinc, Indium, Bismuth, and Other Lewis Acids. Chemistry – A European Journal 2014, 20 (18) , 5439-5446. https://doi.org/10.1002/chem.201304831
    61. Kazuhiro Takenaka, Suman C. Mohanta, Hiroaki Sasai. Palladium Enolate Umpolung: Cyclative Diacetoxylation of Alkynyl Cyclohexadienones Promoted by a Pd/SPRIX Catalyst. Angewandte Chemie International Edition 2014, 53 (18) , 4675-4679. https://doi.org/10.1002/anie.201311172
    62. Kazuhiro Takenaka, Suman C. Mohanta, Hiroaki Sasai. Palladium Enolate Umpolung: Cyclative Diacetoxylation of Alkynyl Cyclohexadienones Promoted by a Pd/SPRIX Catalyst. Angewandte Chemie 2014, 126 (18) , 4763-4767. https://doi.org/10.1002/ange.201311172
    63. Simon Jones, Peichao Zhao. Evaluating dynamic kinetic resolution strategies in the asymmetric hydrosilylation of cyclic ketimines. Tetrahedron: Asymmetry 2014, 25 (3) , 238-244. https://doi.org/10.1016/j.tetasy.2013.11.006
    64. M.J. Bouma, B. Olofsson. 7.07 α-Oxygenation of Carbonyl Compounds. 2014, 213-241. https://doi.org/10.1016/B978-0-08-097742-3.00708-4
    65. Jiahuan Peng, Da-Ming Du. Efficient enantioselective fluorination of β-keto esters/amides catalysed by diphenylamine-linked bis(thiazoline)–Cu(OTf) 2 complexes. RSC Adv. 2014, 4 (4) , 2061-2067. https://doi.org/10.1039/C3RA45438J
    66. P. P. Giovannini, O. Bortolini, A. Cavazzini, R. Greco, G. Fantin, A. Massi. Expanding the scope of enzymatic carboligation reactions in flow-mode: production of optically active tertiary alcohols with packed-bed micro-bioreactors. Green Chem. 2014, 16 (8) , 3904-3915. https://doi.org/10.1039/C4GC00838C
    67. Kyohei Kanomata, Yasunori Toda, Yukihiro Shibata, Masahiro Yamanaka, Seiji Tsuzuki, Ilya D. Gridnev, Masahiro Terada. Secondary stereocontrolling interactions in chiral Brønsted acid catalysis: study of a Petasis–Ferrier-type rearrangement catalyzed by chiral phosphoric acids. Chem. Sci. 2014, 5 (9) , 3515-3523. https://doi.org/10.1039/C4SC00611A
    68. Takanori Shibata, Kazumasa Kanda, Shoya Oshima, Tsubasa Shizuno, Risa Hamanaka, Miku Fukai. Enantioselective Synthesis of Planar-Chiral Phosphines with 1,N-Dioxa[N]paracyclophane Scaffold and Their Application as Chiral Ligands. HETEROCYCLES 2014, 88 (2) , 1355. https://doi.org/10.3987/COM-13-S(S)105
    69. Minami Odagi, Kota Furukori, Tatsuya Watanabe, Kazuo Nagasawa. Asymmetric α‐Hydroxylation of Tetralone‐Derived β‐Ketoesters by Using a Guanidine–Urea Bifunctional Organocatalyst in the Presence of Cumene Hydroperoxide. Chemistry – A European Journal 2013, 19 (49) , 16740-16745. https://doi.org/10.1002/chem.201303006
    70. Chengkai Yin, Weidi Cao, Lili Lin, Xiaohua Liu, Xiaoming Feng. N,N′ ‐Dioxide‐Magnesium Ditriflate Complex‐Catalyzed Asymmetric α‐Hydroxylation of β‐Keto Esters and β‐Keto Amides. Advanced Synthesis & Catalysis 2013, 355 (10) , 1924-1930. https://doi.org/10.1002/adsc.201300335
    71. Naoya Kumagai, Masakatsu Shibasaki. Asymmetric Catalysis with Bis(hydroxyphenyl)diamides/Rare‐Earth Metal Complexes. Angewandte Chemie International Edition 2013, 52 (1) , 223-234. https://doi.org/10.1002/anie.201206582
    72. Naoya Kumagai, Masakatsu Shibasaki. Asymmetrische Katalyse mit Bis(hydroxyphenyl)diamid/Seltenerdmetall‐Komplexen. Angewandte Chemie 2013, 125 (1) , 235-246. https://doi.org/10.1002/ange.201206582
    73. Claudia De Fusco, Sara Meninno, Consiglia Tedesco, Alessandra Lattanzi. Enantioselective α-hydroxylation of β-ketoamides. Organic & Biomolecular Chemistry 2013, 11 (6) , 896. https://doi.org/10.1039/c2ob27283k
    74. Andrey E Sheshenev, Alexander M R Smith, King Kuok Hii. Preparation of dicationic palladium catalysts for asymmetric catalytic reactions. Nature Protocols 2012, 7 (10) , 1765-1773. https://doi.org/10.1038/nprot.2012.095
    75. K. K. Banerji. Oxidation and Reduction. 2012, 79-154. https://doi.org/10.1002/9781119941910.ch3
    76. Hiroyuki Miyamura, Shū Kobayashi. α-Hydroxylation of 1,3-Dicarbonyl Compounds Catalyzed by Polymer-incarcerated Gold Nanoclusters with Molecular Oxygen. Chemistry Letters 2012, 41 (9) , 976-978. https://doi.org/10.1246/cl.2012.976
    77. Jannine L. Arbour, Henry S. Rzepa, Julia Contreras‐García, Luis A. Adrio, Elena M. Barreiro, King Kuok (Mimi) Hii. Silver‐Catalysed Enantioselective Addition of OH and NH Bonds to Allenes: A New Model for Stereoselectivity Based on Noncovalent Interactions. Chemistry – A European Journal 2012, 18 (36) , 11317-11324. https://doi.org/10.1002/chem.201200547
    78. Mingming Lian, Zhi Li, Yuanchun Cai, Qingwei Meng, Zhanxian Gao. Enantioselective Photooxygenation of β‐Keto Esters by Chiral Phase‐Transfer Catalysis using Molecular Oxygen. Chemistry – An Asian Journal 2012, 7 (9) , 2019-2023. https://doi.org/10.1002/asia.201200358
    79. Gui‐Yang Chen, Huang Huang, Jian‐Liang Ye, Ai‐E Wang, Hui‐Ying Huang, Hong‐Kui Zhang, Pei‐Qiang Huang. Enantioselective Syntheses of Rigidiusculamides A and B: Revision of the Relative Stereochemistry of Rigidiusculamide A. Chemistry – An Asian Journal 2012, 7 (3) , 504-518. https://doi.org/10.1002/asia.201100809
    80. Gareth J. Rowlands. Planar Chiral Phosphines Derived from [2.2]Paracyclophane. Israel Journal of Chemistry 2012, 52 (1-2) , 60-75. https://doi.org/10.1002/ijch.201100098
    81. Christopher A. Rose, Sivaji Gundala, Claire-Louise Fagan, Johannes F. Franz, Stephen J. Connon, Kirsten Zeitler. NHC-catalysed, chemoselective crossed-acyloin reactions. Chem. Sci. 2012, 3 (3) , 735-740. https://doi.org/10.1039/C2SC00622G
    82. A. Yanagisawa. 5.4 Oxidation: α-hydroxylation of Carbonyls. 2012, 118-136. https://doi.org/10.1016/B978-0-08-095167-6.00506-1
    83. Jing Kong, Boris Galabov, Gergana Koleva, Ji‐Jun Zou, Henry F. Schaefer, Paul von Ragué Schleyer. The Inherent Competition between Addition and Substitution Reactions of Br 2 with Benzene and Arenes. Angewandte Chemie International Edition 2011, 50 (30) , 6809-6813. https://doi.org/10.1002/anie.201101852
    84. Jing Kong, Boris Galabov, Gergana Koleva, Ji‐Jun Zou, Henry F. Schaefer, Paul von Ragué Schleyer. The Inherent Competition between Addition and Substitution Reactions of Br 2 with Benzene and Arenes. Angewandte Chemie 2011, 123 (30) , 6941-6945. https://doi.org/10.1002/ange.201101852
    85. Young Ku Kang, Bo Kyung Kwon, Joo Yang Mang, Dae Young Kim. Chiral Pd-catalyzed enantioselective Friedel–Crafts reaction of indoles with γ,δ-unsaturated β-keto phosphonates. Tetrahedron Letters 2011, 52 (25) , 3247-3249. https://doi.org/10.1016/j.tetlet.2011.04.084
    86. Sho Takechi, Naoya Kumagai, Masakatsu Shibasaki. Catalytic asymmetric hydroxylation of α-alkoxycarbonyl amides with a Pr(OiPr)3/amide-based ligand catalyst. Tetrahedron Letters 2011, 52 (17) , 2140-2143. https://doi.org/10.1016/j.tetlet.2010.11.064
    87. Jie Li, Gang Chen, Zheng Wang, Ruzhou Zhang, Xumu Zhang, Kuiling Ding. Spiro-2,2′-bichroman-based bisoxazoline (SPANbox) ligands for ZnII-catalyzed enantioselective hydroxylation of β-keto esters and 1,3-diester. Chemical Science 2011, 2 (6) , 1141. https://doi.org/10.1039/c0sc00607f
    88. Stephan Enthaler, Anna Company. Palladium-catalysed hydroxylation and alkoxylation. Chemical Society Reviews 2011, 40 (10) , 4912. https://doi.org/10.1039/c1cs15085e
    89. Mingming Lian, Zhi Li, Jian Du, Qingwei Meng, Zhanxian Gao. Asymmetric Direct α‐Hydroxylation of β‐Oxo Esters by Phase‐Transfer Catalysis Using Chiral Quaternary Ammonium Salts. European Journal of Organic Chemistry 2010, 2010 (34) , 6525-6530. https://doi.org/10.1002/ejoc.201001175
    90. Shu-Hua Cao, Min Shi. Axially chiral C2-symmetric N-heterocyclic carbene (NHC) palladium complex-catalyzed asymmetric α-hydroxylation of β-keto esters. Tetrahedron: Asymmetry 2010, 21 (21-22) , 2675-2680. https://doi.org/10.1016/j.tetasy.2010.10.031

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2010, 75, 9, 3085–3096
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo1002906
    Published March 25, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    7005

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.