Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Direct Detection of Adenosine in Undiluted Serum Using a Luminescent Aptamer Sensor Attached to a Terbium Complex
My Activity
    Article

    Direct Detection of Adenosine in Undiluted Serum Using a Luminescent Aptamer Sensor Attached to a Terbium Complex
    Click to copy article linkArticle link copied!

    View Author Information
    † § Department of Chemistry, Department of Physics, Center for the Physics of Living Cells, and §Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
    *Fax: (+1) 217-244-3186. E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Analytical Chemistry

    Cite this: Anal. Chem. 2012, 84, 18, 7852–7856
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac302167d
    Published August 15, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Aptamers, single-stranded nucleic acids that can selectively bind to various target molecules, have been widely used for constructing biosensors. A major challenge in this field, however, is direct sensing of analytes in complex biological media such as undiluted serum. While progress has been made in developing an inhomogeneous assay by using a preseparation step to wash away the interferences within serum, a facile strategy for direct detection of targets in homogeneous unprocessed serum is highly desired. We herein report a turn-on luminescent aptamer biosensor for the direct detection of adenosine in undiluted and unprocessed serum, by taking advantage of a terbium chelate complex with long luminescence lifetime to achieve time-resolved detection. The sensor exhibits a detection limit of 60 μM adenosine while marinating excellent selectivity that is comparable to those in buffer. The approach demonstrated here can be applied for direct detection and quantification of a broad range of analytes in biological media by using other aptamers.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional information as noted in text. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 96 publications.

    1. Milana Pikula, Yingfu Li, Carlos D. M. Filipe, Todd Hoare. An Aptamer-Based Hydrogel Sensing Platform Enabling Low Micromolar Detection of Small Molecules Using Low Sample Volumes. ACS Applied Materials & Interfaces 2024, 16 (18) , 22794-22808. https://doi.org/10.1021/acsami.3c19203
    2. Qing-Nan Li, Ai-Xin Ma, Dong-Xia Wang, Zhi-Qi Dai, Shun-Li Wu, Sha Lu, Li−Na Zhu, Hong-Xin Jiang, Dai-Wen Pang, De-Ming Kong. Allosteric Activator-Regulated CRISPR/Cas12a System Enables Biosensing and Imaging of Intracellular Endogenous and Exogenous Targets. Analytical Chemistry 2024, 96 (16) , 6426-6435. https://doi.org/10.1021/acs.analchem.4c00555
    3. Qing-Nan Li, Dong-Xia Wang, Gui-Mei Han, Bo Liu, An-Na Tang, De-Ming Kong. Low-Background CRISPR/Cas12a Sensors for Versatile Live-Cell Biosensing. Analytical Chemistry 2023, 95 (42) , 15725-15735. https://doi.org/10.1021/acs.analchem.3c03131
    4. Yuzhe Ding, Yachen Xie, Albert Zehan Li, Po-Jung Jimmy Huang, Juewen Liu. Cross-Binding of Four Adenosine/ATP Aptamers to Caffeine, Theophylline, and Other Methylxanthines. Biochemistry 2023, 62 (15) , 2280-2288. https://doi.org/10.1021/acs.biochem.3c00260
    5. Hong-Rae Kim, Ji-Hong Bong, Tae-Hun Kim, Kyung-Hak Choi, Seung-Shick Shin, Min-Jung Kang, Won-Bo Shim, Do Young Lee, Jae-Chul Pyun. Homogeneous One-Step Immunoassay Based on Switching Peptides for Detection of the Influenza Virus. Analytical Chemistry 2022, 94 (27) , 9627-9635. https://doi.org/10.1021/acs.analchem.2c00716
    6. Fang Zhang, Po-Jung Jimmy Huang, Juewen Liu. Sensing Adenosine and ATP by Aptamers and Gold Nanoparticles: Opposite Trends of Color Change from Domination of Target Adsorption Instead of Aptamer Binding. ACS Sensors 2020, 5 (9) , 2885-2893. https://doi.org/10.1021/acssensors.0c01169
    7. Rui Weng, Shengting Lou, Lidan Li, Yi Zhang, Jing Qiu, Xin Su, Yongzhong Qian, Nils G. Walter. Single-Molecule Kinetic Fingerprinting for the Ultrasensitive Detection of Small Molecules with Aptasensors. Analytical Chemistry 2019, 91 (2) , 1424-1431. https://doi.org/10.1021/acs.analchem.8b04145
    8. Mariane Le Fur, Enikő Molnár, Maryline Beyler, Olivier Fougère, David Esteban-Gómez, Olivier Rousseaux, Raphaël Tripier, Gyula Tircsó, Carlos Platas-Iglesias. Expanding the Family of Pyclen-Based Ligands Bearing Pendant Picolinate Arms for Lanthanide Complexation. Inorganic Chemistry 2018, 57 (12) , 6932-6945. https://doi.org/10.1021/acs.inorgchem.8b00598
    9. Omar A. Alsager, Shalen Kumar, and Justin M. Hodgkiss . Lateral Flow Aptasensor for Small Molecule Targets Exploiting Adsorption and Desorption Interactions on Gold Nanoparticles. Analytical Chemistry 2017, 89 (14) , 7416-7424. https://doi.org/10.1021/acs.analchem.7b00906
    10. Wenhu Zhou, Runjhun Saran, and Juewen Liu . Metal Sensing by DNA. Chemical Reviews 2017, 117 (12) , 8272-8325. https://doi.org/10.1021/acs.chemrev.7b00063
    11. Lizhen Chen, Jie Chao, Xiangmeng Qu, Hongbo Zhang, Dan Zhu, Shao Su, Ali Aldalbahi, Lianhui Wang, and Hao Pei . Probing Cellular Molecules with PolyA-Based Engineered Aptamer Nanobeacon. ACS Applied Materials & Interfaces 2017, 9 (9) , 8014-8020. https://doi.org/10.1021/acsami.6b16764
    12. Xiaofeng Wei, Tian Tian, Shasha Jia, Zhi Zhu, Yanli Ma, Jianjun Sun, Zhenyu Lin, and Chaoyong James Yang . Microfluidic Distance Readout Sweet Hydrogel Integrated Paper-Based Analytical Device (μDiSH-PAD) for Visual Quantitative Point-of-Care Testing. Analytical Chemistry 2016, 88 (4) , 2345-2352. https://doi.org/10.1021/acs.analchem.5b04294
    13. Wenhu Zhou, Qingyun Chen, Po-Jung Jimmy Huang, Jinsong Ding, and Juewen Liu . DNAzyme Hybridization, Cleavage, Degradation, and Sensing in Undiluted Human Blood Serum. Analytical Chemistry 2015, 87 (7) , 4001-4007. https://doi.org/10.1021/acs.analchem.5b00220
    14. Cheng Yang, Nicolas Spinelli, Sandrine Perrier, Eric Defrancq, and Eric Peyrin . Macrocyclic Host-Dye Reporter for Sensitive Sandwich-Type Fluorescent Aptamer Sensor. Analytical Chemistry 2015, 87 (6) , 3139-3143. https://doi.org/10.1021/acs.analchem.5b00341
    15. Katharina Urmann, Johanna-Gabriela Walter, Thomas Scheper, and Ester Segal . Label-Free Optical Biosensors Based on Aptamer-Functionalized Porous Silicon Scaffolds. Analytical Chemistry 2015, 87 (3) , 1999-2006. https://doi.org/10.1021/ac504487g
    16. Mustafa Balcioglu, Burak Zafer Buyukbekar, Mustafa Selman Yavuz, and Mehmet V. Yigit . Smart-Polymer-Functionalized Graphene Nanodevices for Thermo-Switch-Controlled Biodetection. ACS Biomaterials Science & Engineering 2015, 1 (1) , 27-36. https://doi.org/10.1021/ab500029h
    17. Yong-Xiang Wu, Xiao-Bing Zhang, Jun-Bin Li, Cui-Cui Zhang, Hao Liang, Guo-Jiang Mao, Li-Yi Zhou, Weihong Tan, and Ru-Qin Yu . Bispyrene–Fluorescein Hybrid Based FRET Cassette: A Convenient Platform toward Ratiometric Time-Resolved Probe for Bioanalytical Applications. Analytical Chemistry 2014, 86 (20) , 10389-10396. https://doi.org/10.1021/ac502863m
    18. Jing Zheng, Yaping Hu, Junhui Bai, Cheng Ma, Jishan Li, Yinhui Li, Muling Shi, Weihong Tan, and Ronghua Yang . Universal Surface-Enhanced Raman Scattering Amplification Detector for Ultrasensitive Detection of Multiple Target Analytes. Analytical Chemistry 2014, 86 (4) , 2205-2212. https://doi.org/10.1021/ac404004m
    19. Bin Yang, Xiao-Bing Zhang, Li-Ping Kang, Guo-Li Shen, Ru-Qin Yu, and Weihong Tan . Target-Triggered Cyclic Assembly of DNA–Protein Hybrid Nanowires for Dual-Amplified Fluorescence Anisotropy Assay of Small Molecules. Analytical Chemistry 2013, 85 (23) , 11518-11523. https://doi.org/10.1021/ac402781g
    20. Cuifeng Jiang, Tingting Zhao, Shuang Li, Nengyue Gao, and Qing-Hua Xu . Highly Sensitive Two-Photon Sensing of Thrombin in Serum Using Aptamers and Silver Nanoparticles. ACS Applied Materials & Interfaces 2013, 5 (21) , 10853-10857. https://doi.org/10.1021/am403046p
    21. Yuuya Kasahara, Yuuta Irisawa, Hiroto Fujita, Aiko Yahara, Hiroaki Ozaki, Satoshi Obika, and Masayasu Kuwahara . Capillary Electrophoresis–Systematic Evolution of Ligands by Exponential Enrichment Selection of Base- and Sugar-Modified DNA Aptamers: Target Binding Dominated by 2′-O,4′-C-Methylene-Bridged/Locked Nucleic Acid Primer. Analytical Chemistry 2013, 85 (10) , 4961-4967. https://doi.org/10.1021/ac400058z
    22. Masoomeh Esmaelpourfarkhani, Yeganeh Hazeri, Mohammad Ramezani, Mona Alibolandi, Khalil Abnous, Seyed Mohammad Taghdisi. A novel turn-off Tb3+/ssDNA complex-based time-resolved fluorescent aptasensor for oxytetracycline detection using the powerful sensitizing property of the modified complementary strand on Tb3+ emission. Microchemical Journal 2024, 199 , 110110. https://doi.org/10.1016/j.microc.2024.110110
    23. Masoomeh Esmaelpourfarkhani, Mohammad Ramezani, Mona Alibolandi, Khalil Abnous, Seyed Mohammad Taghdisi. Label-free competitive time-resolved fluorescent aptasensor for the detection of Pb2+ using ssDNA-sensitized fluorescence of Tb3+ ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2024, 304 , 123420. https://doi.org/10.1016/j.saa.2023.123420
    24. Masoomeh Esmaelpourfarkhani, Mohammad Ramezani, Mona Alibolandi, Khalil Abnous, Seyed Mohammad Taghdisi. Time-resolved Fluorescence DNA-based Sensors for Reducing Background Fluorescence of Environment. Journal of Fluorescence 2023, 33 (6) , 2145-2160. https://doi.org/10.1007/s10895-023-03239-7
    25. Yue Na, Jiaxin Zhang, Shunhua Zhang, Ning Liang, Longshan Zhao. Fluorescence Sensor for Zearalenone Detection Based on Oxidized Single-walled Carbon Nanohorns/N-doped Carbon Quantum Dots-aptamer. Journal of Fluorescence 2023, 336 https://doi.org/10.1007/s10895-023-03466-y
    26. Raja Chinnappan, Tanveer Ahmad Mir, Sulaiman Alsalameh, Tariq Makhzoum, Alaa Alzhrani, Khalid Alnajjar, Salma Adeeb, Noor Al Eman, Zara Ahmed, Ismail Shakir, Khaled Al-Kattan, Ahmed Yaqinuddin. Emerging Biosensing Methods to Monitor Lung Cancer Biomarkers in Biological Samples: A Comprehensive Review. Cancers 2023, 15 (13) , 3414. https://doi.org/10.3390/cancers15133414
    27. Hanxiao Zhang, Albert Zehan Li, Juewen Liu. Surfactant-Assisted Label-Free Fluorescent Aptamer Biosensors and Binding Assays. Biosensors 2023, 13 (4) , 434. https://doi.org/10.3390/bios13040434
    28. Ji Chen, Mengyin Chen, Ting F. Zhu. Directed evolution and selection of biostable l-DNA aptamers with a mirror-image DNA polymerase. Nature Biotechnology 2022, 40 (11) , 1601-1609. https://doi.org/10.1038/s41587-022-01337-8
    29. Hong-Rae Kim, Ji-Hong Bong, Tae-Hun Kim, Seung-Shick Shin, Min-Jung Kang, Won-Bo Shim, Do Young Lee, Dong Hee Son, Jae-Chul Pyun. One-Step Homogeneous Immunoassay for the Detection of Influenza Virus Using Switching Peptide and Graphene Quencher. BioChip Journal 2022, 16 (3) , 334-341. https://doi.org/10.1007/s13206-022-00076-x
    30. Ga Zhang, Lefu Mei, Junjie Ding, Ke Su, Qingfeng Guo, Guocheng Lv, Libing Liao. Recent progress on lanthanide complexes/clay minerals hybrid luminescent materials. Journal of Rare Earths 2022, 40 (9) , 1360-1370. https://doi.org/10.1016/j.jre.2022.01.006
    31. Ilgim Gokturk, Monireh Bakhshpour, Duygu Cimen, Fatma Yilmaz, Nilay Bereli, Adil Denizli. SPR Signal Enhancement With Silver Nanoparticle-Assisted Plasmonic Sensor for Selective Adenosine Detection. IEEE Sensors Journal 2022, 22 (15) , 14862-14869. https://doi.org/10.1109/JSEN.2022.3186518
    32. JingJing Zhang, Tian Lan, Yi Lu. Overcoming Major Barriers to Developing Successful Sensors for Practical Applications Using Functional Nucleic Acids. Annual Review of Analytical Chemistry 2022, 15 (1) , 151-171. https://doi.org/10.1146/annurev-anchem-061020-104216
    33. Xin X. Wang, Long J. Zhu, Shu T. Li, Yang Z. Zhang, Su Y. Liu, Kun L. Huang, Wen T. Xu. Fluorescent functional nucleic acid: Principles, properties and applications in bioanalyzing. TrAC Trends in Analytical Chemistry 2021, 141 , 116292. https://doi.org/10.1016/j.trac.2021.116292
    34. Xueying Chen, Xinrui Fu, Yuanyu Wu, Yifan Jin, Wei Li. A DNA tweezers-actuated regenerated DNAzyme nanoreactor: a fluorescence sensor for miRNA and adenosine detection. Analytical Methods 2020, 12 (12) , 1579-1586. https://doi.org/10.1039/D0AY00142B
    35. Xiaohui Wang, Chengyuan Qian, Xiaoyong Wang, Tuanjie Li, Zijian Guo. Guanine-guided time-resolved luminescence recognition of DNA modification and i-motif formation by a terbium(III)-platinum(II) complex. Biosensors and Bioelectronics 2020, 150 , 111841. https://doi.org/10.1016/j.bios.2019.111841
    36. Shanni Hong, Xiaoting Zhang, Ryan J. Lake, Gregory T. Pawel, Zijian Guo, Renjun Pei, Yi Lu. A photo-regulated aptamer sensor for spatiotemporally controlled monitoring of ATP in the mitochondria of living cells. Chemical Science 2020, 11 (3) , 713-720. https://doi.org/10.1039/C9SC04773E
    37. Paulina Ciepla, Ukrae Cho, James K. Chen. trLRET microscopy: Ultrasensitive imaging of lanthanide luminophores. 2020, 225-248. https://doi.org/10.1016/bs.mie.2020.04.030
    38. Baraa J. Alyamani, Omar A. Alsager, Mohammed Zourob. Label-Free Fluorescent Aptasensor for Small Targets via Displacement of Groove Bound Curcumin Molecules. Sensors 2019, 19 (19) , 4181. https://doi.org/10.3390/s19194181
    39. Yanping He, Anand Lopez, Zijie Zhang, Da Chen, Ronghua Yang, Juewen Liu. Nucleotide and DNA coordinated lanthanides: From fundamentals to applications. Coordination Chemistry Reviews 2019, 387 , 235-248. https://doi.org/10.1016/j.ccr.2019.02.020
    40. Xueting Liu, Huijun Zhang, Zhiping Song, Liangqia Guo, Fengfu Fu, Yongning Wu. A ratiometric nanoprobe for biosensing based on green fluorescent graphitic carbon nitride nanosheets as an internal reference and quenching platform. Biosensors and Bioelectronics 2019, 129 , 118-123. https://doi.org/10.1016/j.bios.2019.01.032
    41. Xiaoqiang Liu, Yunfei Tang, Peipei Liu, Liwei Yang, Lele Li, Qingyou Zhang, Yanmei Zhou, Md. Zaved Hossain Khan. A highly sensitive electrochemical aptasensor for detection of microcystin-LR based on a dual signal amplification strategy. The Analyst 2019, 144 (5) , 1671-1678. https://doi.org/10.1039/C8AN01971A
    42. Christian Wiraja, David C. Yeo, Daniel Chin Shiuan Lio, Mengjia Zheng, Chenjie Xu. Functional Imaging with Nucleic‐Acid‐Based Sensors: Technology, Application and Future Healthcare Prospects. ChemBioChem 2019, 20 (4) , 437-450. https://doi.org/10.1002/cbic.201800430
    43. Tingting Zhang, Ying Peng, Ruo Yuan, Yun Xiang. Target-catalyzed assembly formation of metal-ion dependent DNAzymes for non-enzymatic and label-free amplified ATP detection. Sensors and Actuators B: Chemical 2018, 273 , 70-75. https://doi.org/10.1016/j.snb.2018.06.043
    44. Zijie Zhang, Juewen Liu. An engineered one-site aptamer with higher sensitivity for label-free detection of adenosine on graphene oxide. Canadian Journal of Chemistry 2018, 96 (11) , 957-963. https://doi.org/10.1139/cjc-2017-0601
    45. Caiyun Kong, Linna Gao, Zhengbo Chen. Colorimetric adenosine aptasensor based on DNA cycling amplification and salt-induced aggregation of gold nanoparticles. Microchimica Acta 2018, 185 (10) https://doi.org/10.1007/s00604-018-3031-z
    46. Yang Zhao, Lu Tan, Xiaoshan Gao, Guifen Jie, Tingyu Huang. Silver nanoclusters-assisted ion-exchange reaction with CdTe quantum dots for photoelectrochemical detection of adenosine by target-triggering multiple-cycle amplification strategy. Biosensors and Bioelectronics 2018, 110 , 239-245. https://doi.org/10.1016/j.bios.2018.03.069
    47. Yanna Lin, Yuxue Dai, Yuanling Sun, Chaofan Ding, Weiyan Sun, Xiaodong Zhu, Hao Liu, Chuannan Luo. A turn-on chemiluminescence biosensor for selective and sensitive detection of adenosine based on HKUST-1 and QDs-luminol-aptamer conjugates. Talanta 2018, 182 , 116-124. https://doi.org/10.1016/j.talanta.2018.01.065
    48. Xia Li, Jianmei Yang, Jiaqing Xie, Bingying Jiang, Ruo Yuan, Yun Xiang. Cascaded signal amplification via target-triggered formation of aptazyme for sensitive electrochemical detection of ATP. Biosensors and Bioelectronics 2018, 102 , 296-300. https://doi.org/10.1016/j.bios.2017.11.005
    49. Anand Lopez, Juewen Liu. Self‐Assembly of Nucleobase, Nucleoside and Nucleotide Coordination Polymers: From Synthesis to Applications. ChemNanoMat 2017, 3 (10) , 670-684. https://doi.org/10.1002/cnma.201700154
    50. Haiyan Fu, Juanhua Yang, Lin Guo, Jinfang Nie, Qiaobo Yin, Lang Zhang, Yun Zhang. Using the Rubik's Cube to directly produce paper analytical devices for quantitative point-of-care aptamer-based assays. Biosensors and Bioelectronics 2017, 96 , 194-200. https://doi.org/10.1016/j.bios.2017.05.012
    51. Raju Laishram, Uday Maitra. Rapid Sensing of Specific Drugs at Sub‐Ppb Levels by Using a Hybrid Organic–Inorganic Photoluminescent Soft Material. Asian Journal of Organic Chemistry 2017, 6 (9) , 1235-1239. https://doi.org/10.1002/ajoc.201700156
    52. Lei Xu, Xin Shen, Bingzhi Li, Chunhong Zhu, Xuemin Zhou. G-quadruplex based Exo III-assisted signal amplification aptasensor for the colorimetric detection of adenosine. Analytica Chimica Acta 2017, 980 , 58-64. https://doi.org/10.1016/j.aca.2017.05.015
    53. Zijie Zhang, Olatunji Oni, Juewen Liu. New insights into a classic aptamer: binding sites, cooperativity and more sensitive adenosine detection. Nucleic Acids Research 2017, 45 (13) , 7593-7601. https://doi.org/10.1093/nar/gkx517
    54. Ali Mohamadi, Lawrence W. Miller. Efficient route to pre-organized and linear polyaminopolycarboxylates: Cy-TTHA, Cy-DTPA and mono/di- reactive, tert -butyl protected TTHA/Cy-TTHA. Tetrahedron Letters 2017, 58 (15) , 1441-1444. https://doi.org/10.1016/j.tetlet.2017.02.056
    55. Laurent Raibaut, William Vasseur, Geoffrey D. Shimberg, Christine Saint-Pierre, Jean-Luc Ravanat, Sarah L. J. Michel, Olivier Sénèque. Design of a synthetic luminescent probe from a biomolecule binding domain: selective detection of AU-rich mRNA sequences. Chemical Science 2017, 8 (2) , 1658-1664. https://doi.org/10.1039/C6SC04086A
    56. Yu-Dan Ye, Li Xia, Dang-Dang Xu, Xiao-Jing Xing, Dai-Wen Pang, Hong-Wu Tang. DNA-stabilized silver nanoclusters and carbon nanoparticles oxide: A sensitive platform for label-free fluorescence turn-on detection of HIV-DNA sequences. Biosensors and Bioelectronics 2016, 85 , 837-843. https://doi.org/10.1016/j.bios.2016.06.001
    57. Galina S. Zamay, Tatiana N. Zamay, Vasilii A. Kolovskii, Alexandr V. Shabanov, Yury E. Glazyrin, Dmitry V. Veprintsev, Alexey V. Krat, Sergey S. Zamay, Olga S. Kolovskaya, Ana Gargaun, Alexey E. Sokolov, Andrey A. Modestov, Ivan P. Artyukhov, Nikolay V. Chesnokov, Marina M. Petrova, Maxim V. Berezovski, Anna S. Zamay. Electrochemical aptasensor for lung cancer-related protein detection in crude blood plasma samples. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep34350
    58. Lihua Lu, Hai-Jing Zhong, Bingyong He, Chung-Hang Leung, Dik-Lung Ma. Development of a luminescent G-quadruplex-selective iridium(III) complex for the label-free detection of adenosine. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep19368
    59. Yun Zhang, Dong Gao, Jinlong Fan, Jinfang Nie, Shangwang Le, Wenyuan Zhu, Jiani Yang, Jianping Li. Naked-eye quantitative aptamer-based assay on paper device. Biosensors and Bioelectronics 2016, 78 , 538-546. https://doi.org/10.1016/j.bios.2015.12.003
    60. Zhanxian Li, Haixia Li, Caixia Shi, Mingming Yu, Liuhe Wei, Zhonghai Ni. Nanomolar colorimetric quantitative detection of Fe3+ and PPi with high selectivity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2016, 159 , 249-253. https://doi.org/10.1016/j.saa.2016.02.001
    61. Qiwang Wu, Haihui Shen, Hong Shen, Yue Sun, Lifang Song. Study on sensing strategy and performance of a microfluidic chemiluminescence aptazyme sensor. Talanta 2016, 150 , 531-538. https://doi.org/10.1016/j.talanta.2015.12.023
    62. Mei Pan, Bin‐Bin Du, Yi‐Xuan Zhu, Mei‐Qin Yue, Zhang‐Wen Wei, Cheng‐Yong Su. Highly Efficient Visible‐to‐NIR Luminescence of Lanthanide(III) Complexes with Zwitterionic Ligands Bearing Charge‐Transfer Character: Beyond Triplet Sensitization. Chemistry – A European Journal 2016, 22 (7) , 2440-2451. https://doi.org/10.1002/chem.201504344
    63. Haihua Huang, Xiaohai Yang, Kemin Wang, Qing Wang, Qiuping Guo, Jin Huang, Jianbo Liu, Chunxia Song. Amplified fluorescence detection of adenosine via catalyzed hairpin assembly and host–guest interactions between β-cyclodextrin polymer and pyrene. The Analyst 2016, 141 (8) , 2502-2507. https://doi.org/10.1039/C5AN02658J
    64. Xin Li, Ying Peng, Yaqin Chai, Ruo Yuan, Yun Xiang. A target responsive aptamer machine for label-free and sensitive non-enzymatic recycling amplification detection of ATP. Chemical Communications 2016, 52 (18) , 3673-3676. https://doi.org/10.1039/C6CC00110F
    65. Zhaojuan Zhou, Lu Xiao, Yu Xiang, Jun Zhou, Aijun Tong. A general approach for rational design of fluorescent DNA aptazyme sensors based on target-induced unfolding of DNA hairpins. Analytica Chimica Acta 2015, 889 , 179-186. https://doi.org/10.1016/j.aca.2015.06.036
    66. Piotr J. Cywiński, Lydia Olejko, Hans-Gerd Löhmannsröben. A time-resolved luminescent competitive assay to detect L-selectin using aptamers as recognition elements. Analytica Chimica Acta 2015, 887 , 209-215. https://doi.org/10.1016/j.aca.2015.06.045
    67. Bicheng Zhu, Omar A. Alsager, Shalen Kumar, Justin M. Hodgkiss, Jadranka Travas-Sejdic. Label-free electrochemical aptasensor for femtomolar detection of 17β-estradiol. Biosensors and Bioelectronics 2015, 70 , 398-403. https://doi.org/10.1016/j.bios.2015.03.050
    68. Liping Kang, Bin Yang, Xiaobing Zhang, Liang Cui, Hongmin Meng, Lei Mei, Cuichen Wu, Songlei Ren, Weihong Tan. Enzymatic cleavage and mass amplification strategy for small molecule detection using aptamer-based fluorescence polarization biosensor. Analytica Chimica Acta 2015, 879 , 91-96. https://doi.org/10.1016/j.aca.2015.03.030
    69. Seyed Mohammad Taghdisi, Noor Mohammad Danesh, Parirokh Lavaee, Mohammad Ramezani, Khalil Abnous. An aptasensor for selective, sensitive and fast detection of lead(II) based on polyethyleneimine and gold nanoparticles. Environmental Toxicology and Pharmacology 2015, 39 (3) , 1206-1211. https://doi.org/10.1016/j.etap.2015.04.013
    70. Seyed Mohammad Taghdisi, Noor Mohammad Danesh, Parirokh Lavaee, Ahmad Sarreshtehdar Emrani, Mohammad Ramezani, Khalil Abnous. Aptamer Biosensor for Selective and Rapid Determination of Insulin. Analytical Letters 2015, 48 (4) , 672-681. https://doi.org/10.1080/00032719.2014.956216
    71. Huina Dong, Xin Zu, Ping Zheng, Dawei Zhang. A rapid enzymatic assay for high‐throughput screening of adenosine‐producing strains. Microbial Biotechnology 2015, 8 (2) , 230-238. https://doi.org/10.1111/1751-7915.12189
    72. Szu-Ying Hung, Ya-Chen Shih, Wei-Lung Tseng. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity. Analytica Chimica Acta 2015, 857 , 64-70. https://doi.org/10.1016/j.aca.2014.11.038
    73. Hye-Weon Yu, Marilyn J. Halonen, Ian L. Pepper. Immunological Methods. 2015, 245-269. https://doi.org/10.1016/B978-0-12-394626-3.00012-0
    74. Charles P. Gerba, Ian L. Pepper. Drinking Water Treatment and Distribution. 2015, 633-643. https://doi.org/10.1016/B978-0-12-394626-3.00028-4
    75. Emma L. C. J. Blundell, Laura J. Mayne, Emily R. Billinge, Mark Platt. Emergence of tunable resistive pulse sensing as a biosensor. Analytical Methods 2015, 7 (17) , 7055-7066. https://doi.org/10.1039/C4AY03023K
    76. Yoshio Nakahara, Yoichi Tatsumi, Ikuko Akimoto, Shusuke Osaki, Motomichi Doi, Keiichi Kimura. Fluorescent silica nanoparticles modified chemically with terbium complexes as potential bioimaging probes: their fluorescence and colloidal properties in water. New Journal of Chemistry 2015, 39 (2) , 1452-1458. https://doi.org/10.1039/C4NJ01222D
    77. Seyed Hamid Jalalian, Seyed Mohammad Taghdisi, Noor Mohammad Danesh, Hadi Bakhtiari, Parirokh Lavaee, Mohammad Ramezani, Khalil Abnous. Sensitive and fast detection of tetracycline using an aptasensor. Analytical Methods 2015, 7 (6) , 2523-2528. https://doi.org/10.1039/C5AY00225G
    78. Qing Li, Yan-Dan Wang, Guo-Li Shen, Hao Tang, Ru-Qin Yu, Jian-Hui Jiang. Split aptamer mediated endonuclease amplification for small-molecule detection. Chemical Communications 2015, 51 (20) , 4196-4199. https://doi.org/10.1039/C5CC00390C
    79. Xiaohui Wang, Tao Yang, Jian Luo, Liu Yang, Cheng Yao. Site-selective recognition of peptide phosphorylation by a terbium( iii ) complex in aqueous solution. Chemical Communications 2015, 51 (38) , 8185-8188. https://doi.org/10.1039/C5CC01056J
    80. Yong Huang, Xiaoqian Liu, Ming Shi, Shulin Zhao, Kun Hu, Zhen‐Feng Chen, Hong Liang. Ultrasensitive Fluorescence Polarization Aptasensors Based on Exonuclease Signal Amplification and Polystyrene Nanoparticle Amplification. Chemistry – An Asian Journal 2014, 9 (10) , 2755-2760. https://doi.org/10.1002/asia.201402563
    81. Jin Huang, Yong He, Xiao-Hai Yang, Ke Quan, Ke-Min Wang. Inhibited aptazyme-based catalytic molecular beacon for amplified detection of adenosine. Chinese Chemical Letters 2014, 25 (9) , 1211-1214. https://doi.org/10.1016/j.cclet.2014.05.039
    82. Niko Hildebrandt, K. David Wegner, W. Russ Algar. Luminescent terbium complexes: Superior Förster resonance energy transfer donors for flexible and sensitive multiplexed biosensing. Coordination Chemistry Reviews 2014, 273-274 , 125-138. https://doi.org/10.1016/j.ccr.2014.01.020
    83. Xiaohui Wang, Hongjin Chang, Juan Xie, Baozhou Zhao, Botong Liu, Shuilin Xu, Wenbo Pei, Na Ren, Ling Huang, Wei Huang. Recent developments in lanthanide-based luminescent probes. Coordination Chemistry Reviews 2014, 273-274 , 201-212. https://doi.org/10.1016/j.ccr.2014.02.001
    84. Guifen Jie, Yanbin Zhao, Yingqiang Qin. A Fluorescent Polymeric Quantum Dot/Aptamer Superstructure and Its Application for Imaging of Cancer Cells. Chemistry – An Asian Journal 2014, 9 (5) , 1261-1264. https://doi.org/10.1002/asia.201301676
    85. Weibing Qiang, Haiping Liu, Wei Li, Xiang Chen, Danke Xu. Label-free detection of adenosine based on fluorescence resonance energy transfer between fluorescent silica nanoparticles and unmodified gold nanoparticles. Analytica Chimica Acta 2014, 828 , 92-98. https://doi.org/10.1016/j.aca.2014.04.043
    86. Seyed Mohammad Taghdisi, Somayeh Sarreshtehdar Emrani, Kaveh Tabrizian, Mohammad Ramezani, Khalil Abnous, Ahmad Sarreshtehdar Emrani. Ultrasensitive detection of lead (II) based on fluorescent aptamer-functionalized carbon nanotubes. Environmental Toxicology and Pharmacology 2014, 37 (3) , 1236-1242. https://doi.org/10.1016/j.etap.2014.04.020
    87. . Optimum Size and Volume of Nanoparticles Within Hollow Core Photonic Crystal Fiber. IEEE Journal of Selected Topics in Quantum Electronics 2014, 205-212. https://doi.org/10.1109/JSTQE.2013.2288301
    88. Jianlong Wang, H. Susan Zhou. Colorimetric biosensor for food chemical hazards detection. 2014, 291-313. https://doi.org/10.1002/9781118488553.ch10
    89. Kai Zhang, Ke Wang, Xue Zhu, Yun Gao, Minhao Xie. Rational design of signal-on biosensors by using photoinduced electron transfer between Ag nanoclusters and split G-quadruplex halves–hemin complexes. Chem. Commun. 2014, 50 (91) , 14221-14224. https://doi.org/10.1039/C4CC06664B
    90. Chanchal Hazra, Tuhin Samanta, Venkataramanan Mahalingam. A resonance energy transfer approach for the selective detection of aromatic amino acids. J. Mater. Chem. C 2014, 2 (47) , 10157-10163. https://doi.org/10.1039/C4TC01954G
    91. Yunfeng Bai, Feng Feng, Lu Zhao, Zezhong Chen, Haiyan Wang, Yali Duan. A turn-on fluorescent aptasensor for adenosine detection based on split aptamers and graphene oxide. The Analyst 2014, 139 (8) , 1843. https://doi.org/10.1039/c4an00084f
    92. Wenhu Zhou, Po-Jung Jimmy Huang, Jinsong Ding, Juewen Liu. Aptamer-based biosensors for biomedical diagnostics. The Analyst 2014, 139 (11) , 2627. https://doi.org/10.1039/c4an00132j
    93. Lina Ma, Lan Ma, Min Su, Zhenxin Wang. Exonuclease III assisted aptasensor for adenosine detection with gold nanoparticle probes. Analytical Methods 2014, 6 (12) , 4366. https://doi.org/10.1039/c4ay00754a
    94. Kim E. Sapsford, Bridget Wildt, Angela Mariani, Andrew B. Yeatts, Igor Medintz. Materials for FRET Analysis: Beyond Traditional Dye–Dye Combinations. 2013, 165-268. https://doi.org/10.1002/9783527656028.ch06
    95. Liu Tong, Jie Wu, Jie Li, Huangxian Ju, Feng Yan. Hybridization chain reaction engineered DNA nanopolylinker for amplified electrochemical sensing of biomarkers. The Analyst 2013, 138 (17) , 4870. https://doi.org/10.1039/c3an00824j
    96. Alfonso Latorre, Romina Lorca, Álvaro Somoza, . Fluorescent DNA Stabilized Silver Nanoclusters as Biosensors. Journal of Chemistry 2013, 2013 (1) https://doi.org/10.1155/2013/631421

    Analytical Chemistry

    Cite this: Anal. Chem. 2012, 84, 18, 7852–7856
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ac302167d
    Published August 15, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    2804

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.