ACS Publications. Most Trusted. Most Cited. Most Read
Metastable Group IV Allotropes and Solid Solutions: Nanoparticles and Nanowires
My Activity
    Review

    Metastable Group IV Allotropes and Solid Solutions: Nanoparticles and Nanowires
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    Chemistry of Materials

    Cite this: Chem. Mater. 2020, 32, 7, 2703–2741
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.9b04471
    Published March 16, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    In the past decades, group IV nanowires and nanoparticles have been the subject of extensive research. Beside tremendous progress in morphological control and integration in advanced device architectures, research on allotropes and metastable compositions has gained considerable interest. Several new approaches now allow the controlled formation of specific allotropes in the nanostructured form as well as chemical compositions not attainable by traditional synthesis protocols. The conditions applied to form these metastable solid solutions and allotropes are usually far from thermodynamic equilibrium or rely on unconventional templates. The increased interest in the field of metastable group IV nanostructures arises from their altered physical properties, including tunable, direct bandgaps with energies equivalent to the near- to mid-infrared spectral region as described for materials such as Ge1–xSnx and hexagonal Si1–xGex. The implementation of these material characteristics in complementary metal oxide semiconductor (CMOS) processes are desirable for applications in electronics, optoelectronics, sensors, optics, etc. but also their use as nonsurface bound nanoparticles in sensing, nanobiotechnology and nanomedicine can offer additional opportunities. This review article highlights both the important advancements and still open questions for the continued development of these nanoscaled materials for next-generation device concepts.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.chemmater.9b04471.

    • Description and estimation of Ge1–xSnx phase evolution in the temperature range 300–505 K (PDF)

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 29 publications.

    1. Fabrizio Rovaris, Wouter H. J. Peeters, Anna Marzegalli, Frank Glas, Laetitia Vincent, Leo Miglio, Erik P. A. M. Bakkers, Marcel A. Verheijen, Emilio Scalise. 2H–Si/Ge for Group-IV Photonics: on the Origin of Extended Defects in Core–Shell Nanowires. ACS Applied Nano Materials 2024, 7 (8) , 9396-9402. https://doi.org/10.1021/acsanm.4c00835
    2. Yubing Du, Guoshuai Du, Hongliang Dong, Jiayin Li, Wuxiao Han, Bin Chen, Yabin Chen. Structural Modulation and BC8 Enrichment of Silicon via Dynamic Decompression. The Journal of Physical Chemistry C 2024, 128 (11) , 4818-4825. https://doi.org/10.1021/acs.jpcc.4c00196
    3. Benedikt Köstler, Felix Jungwirth, Luisa Achenbach, Masiar Sistani, Michael Bolte, Hans-Wolfram Lerner, Philipp Albert, Matthias Wagner, Sven Barth. Mixed-Substituted Single-Source Precursors for Si1–xGex Thin Film Deposition. Inorganic Chemistry 2022, 61 (43) , 17248-17255. https://doi.org/10.1021/acs.inorgchem.2c02835
    4. Elham M. T. Fadaly, Anna Marzegalli, Yizhen Ren, Lin Sun, Alain Dijkstra, Diego de Matteis, Emilio Scalise, Andrey Sarikov, Marta De Luca, Riccardo Rurali, Ilaria Zardo, Jos E. M. Haverkort, Silvana Botti, Leo Miglio, Erik P. A. M. Bakkers, Marcel A. Verheijen. Unveiling Planar Defects in Hexagonal Group IV Materials. Nano Letters 2021, 21 (8) , 3619-3625. https://doi.org/10.1021/acs.nanolett.1c00683
    5. Kathryn A. Newton, Heather Renee Sully, Frank Bridges, Sue A. Carter, Susan M. Kauzlarich. Structural Characterization of Oleylamine- and Dodecanethiol-Capped Ge1–xSnx Alloy Nanocrystals. The Journal of Physical Chemistry C 2021, 125 (11) , 6401-6417. https://doi.org/10.1021/acs.jpcc.0c11637
    6. Subhajit Biswas, Jessica Doherty, Emmanuele Galluccio, Hugh G. Manning, Michele Conroy, Ray Duffy, Ursel Bangert, John J. Boland, Justin D. Holmes. Stretching the Equilibrium Limit of Sn in Ge1–xSnx Nanowires: Implications for Field Effect Transistors. ACS Applied Nano Materials 2021, 4 (2) , 1048-1056. https://doi.org/10.1021/acsanm.0c02569
    7. Katayoon Tabatabaei, Heather R. Sully, Zheng Ju, Kaitlin Hellier, Haipeng Lu, Christopher J. Perez, Kathryn A. Newton, Richard L. Brutchey, Frank Bridges, Sue A. Carter, Susan M. Kauzlarich. Structural Insights on Microwave-Synthesized Antimony-Doped Germanium Nanocrystals. ACS Nano 2021, 15 (1) , 1685-1700. https://doi.org/10.1021/acsnano.0c09352
    8. Michele Amato, Thanayut Kaewmaraya, Alberto Zobelli. Extrinsic Doping in Group IV Hexagonal-Diamond-Type Crystals. The Journal of Physical Chemistry C 2020, 124 (31) , 17290-17298. https://doi.org/10.1021/acs.jpcc.0c03713
    9. Fabrizio Rovaris, Anna Marzegalli, Francesco Montalenti, Emilio Scalise. Unraveling the atomic-scale pathways driving pressure-induced phase transitions in silicon. Materials Today Nano 2025, 29 , 100548. https://doi.org/10.1016/j.mtnano.2024.100548
    10. Jakub Ziembicki, Paweł Scharoch, Maciej P. Polak, Michał Wiśniewski, Robert Kudrawiec. Electronic and structural properties of group IV materials and their polytypes. Journal of Applied Physics 2024, 136 (15) https://doi.org/10.1063/5.0229832
    11. Guojia Ge, Fabrizio Rovaris, Daniele Lanzoni, Luca Barbisan, Xiaobin Tang, Leo Miglio, Anna Marzegalli, Emilio Scalise, Francesco Montalenti. Silicon phase transitions in nanoindentation: Advanced molecular dynamics simulations with machine learning phase recognition. Acta Materialia 2024, 263 , 119465. https://doi.org/10.1016/j.actamat.2023.119465
    12. S. Mandal, B. Nag Chowdhury, A. Tiwari, S. Kanungo, N. Rana, A. Banerjee, S. Chattopadhyay. Nonequilibrium VLS-grown stable ST12-Ge thin film on Si substrate: a study on strain-induced band engineering. Journal of Materials Science 2023, 58 (27) , 11159-11173. https://doi.org/10.1007/s10853-023-08724-9
    13. Linlin Fan, Ningxin Zhao, Deren Yang, Dongsheng Li. The phase selection law in the growth of hexagonal diamond silicon nanowires by controlling chemical potential. Micro and Nanostructures 2023, 179 , 207569. https://doi.org/10.1016/j.micrna.2023.207569
    14. Mohamed A. Nawwar, Magdy S. Abo Ghazala, Lobna M. Sharaf El-Deen, Badawi Anis, Abdelhamid El-Shaer, Ahmed Mourtada Elseman, Mohamed M. Rashad, Abd El-hady B. Kashyout. Controlling barrier height and spectral responsivity of p–i–n based GeSn photodetectors via arsenic incorporation. RSC Advances 2023, 13 (14) , 9154-9167. https://doi.org/10.1039/D3RA00805C
    15. Raphael Behrle, Vanessa Krause, Michael S. Seifner, Benedikt Köstler, Kimberly A. Dick, Matthias Wagner, Masiar Sistani, Sven Barth. Electrical and Structural Properties of Si1−xGex Nanowires Prepared from a Single-Source Precursor. Nanomaterials 2023, 13 (4) , 627. https://doi.org/10.3390/nano13040627
    16. Liang Wu, Qian Wang, Tao-Tao Zhuang, Guo-Zhen Zhang, Yi Li, Hui-Hui Li, Feng-Jia Fan, Shu-Hong Yu. A library of polytypic copper-based quaternary sulfide nanocrystals enables efficient solar-to-hydrogen conversion. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-33065-7
    17. A.V. Kuchuk, P.M. Lytvyn, Yu.I. Mazur, H. Stanchu, S.V. Kondratenko, F.M. de Oliveira, S.V. Malyuta, M.D. Teodoro, M. Benamara, S.-Q. Yu, G.J. Salamo. Sn-guided self-grown Ge stripes banded by GeSn Nanowires: Formation mechanism and electric-field-induced switching from p- to n-type conduction. Applied Surface Science 2022, 604 , 154443. https://doi.org/10.1016/j.apsusc.2022.154443
    18. Alexander Vinokurov, Vadim Popelensky, Sergei Bubenov, Nikolay Kononov, Kirill Cherednichenko, Tatyana Kuznetsova, Sergey Dorofeev. Recrystallization of Si Nanoparticles in Presence of Chalcogens: Improved Electrical and Optical Properties. Materials 2022, 15 (24) , 8842. https://doi.org/10.3390/ma15248842
    19. Hong Shen, Riyi Yang, Jian Zhou, Zhiyuan Yu, Ming Lu, Yuxiang Zheng, Rongjun Zhang, Liangyao Chen, Wan-Sheng Su, Songyou Wang. A new direct band gap Si–Ge allotrope with advanced electronic and optical properties. Physical Chemistry Chemical Physics 2022, 24 (26) , 16310-16316. https://doi.org/10.1039/D2CP01400A
    20. Ruiling Gong, Lulu Zheng, Pere Roca i Cabarrocas, Wanghua Chen. Rational Control of GeSn Nanowires. physica status solidi (RRL) – Rapid Research Letters 2022, 16 (5) https://doi.org/10.1002/pssr.202100554
    21. Jianping Deng, Wenlei Lv, Pengchao Zhang, Wendeng Huang. Large-scale preparation of ultra-long ZnSe–PbSe heterojunction nanowires for flexible broadband photodetectors. Journal of Science: Advanced Materials and Devices 2022, 7 (1) , 100396. https://doi.org/10.1016/j.jsamd.2021.09.003
    22. Andrian V. Kuchuk, P.M. Lytvyn, Yu.I. Mazur, H. Stanchu, S.V. Kondratenko, F.M. de Oliveira, S. V. Malyuta, M.D. Teodoro, M. Benamara, S.-Q. Yu, G. J. Salamo. Sn-Guided Self-Grown Ge Stripes Banded by Gesn Nanowires: Formation Mechanism and Electric-Field-Induced Switching from P- to N-Type Conduction. SSRN Electronic Journal 2022, 2021 https://doi.org/10.2139/ssrn.4097333
    23. , Ana-Maria LEPADATU,  Ionel  STAVARACHE, , Catalin PALADE, ,  Adrian SLAV, ,  Valentin A. MARALOIU, , Ioana DASCALESCU, , Ovidiu  COJOCARU, , Valentin S. TEODORESCU, , Toma STOICA, ,  Magdalena L. CIUREA, . FROM Si NANOWIRES TO Ge NANOCRYSTALS FOR VIS-NIR-SWIR SENSORS AND NON-VOLATILE MEMORIES: A REVIEW. Annals of the Academy of Romanian Scientists Series on Physics and Chemistry 2022, 7 (1) , 53-87. https://doi.org/10.56082/annalsarsciphyschem.2022.1.53
    24. Ovidiu Cojocaru, Ana-Maria Lepadatu, George Alexandru Nemnes, Toma Stoica, Magdalena Lidia Ciurea. Bandgap atomistic calculations on hydrogen-passivated GeSi nanocrystals. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-92936-z
    25. Susan M. Kauzlarich, Zheng Ju, Emily Tseng, Jesse Lundervold. Recent developments in germanium containing clusters in intermetallics and nanocrystals. Chemical Society Reviews 2021, 50 (23) , 13236-13252. https://doi.org/10.1039/D1CS00538C
    26. Linlin Fan, Deren Yang, Dongsheng Li. A Review on Metastable Silicon Allotropes. Materials 2021, 14 (14) , 3964. https://doi.org/10.3390/ma14143964
    27. Thomas B. Shiell, Li Zhu, Brenton A. Cook, Jodie E. Bradby, Dougal G. McCulloch, Timothy A. Strobel. Bulk Crystalline 4 H -Silicon through a Metastable Allotropic Transition. Physical Review Letters 2021, 126 (21) https://doi.org/10.1103/PhysRevLett.126.215701
    28. E. Scalise, A. Sarikov, L. Barbisan, A. Marzegalli, D.B. Migas, F. Montalenti, L. Miglio. Thermodynamic driving force in the formation of hexagonal-diamond Si and Ge nanowires. Applied Surface Science 2021, 545 , 148948. https://doi.org/10.1016/j.apsusc.2021.148948
    29. Thomas B. Shiell, Timothy A. Strobel. Compression of sodium-filled and empty open-framework Si 24 under quasihydrostatic and nonhydrostatic conditions. Physical Review B 2020, 102 (9) https://doi.org/10.1103/PhysRevB.102.094107

    Chemistry of Materials

    Cite this: Chem. Mater. 2020, 32, 7, 2703–2741
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.9b04471
    Published March 16, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    2768

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.