ACS Publications. Most Trusted. Most Cited. Most Read
Near-Infrared Luminescence and Inner Filter Effects of Lanthanide Coordination Polymers with 1,2-Di(4-pyridyl)ethylene
My Activity
    Article

    Near-Infrared Luminescence and Inner Filter Effects of Lanthanide Coordination Polymers with 1,2-Di(4-pyridyl)ethylene
    Click to copy article linkArticle link copied!

    View Author Information
    Institut für Anorganische Chemie and Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
    *E-mail: [email protected]. Fax: (+)49-931-3184785. Phone: (+)49-931-3188724.
    Other Access OptionsSupporting Information (1)

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2016, 55, 15, 7396–7406
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.inorgchem.6b00447
    Published July 11, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A series of 12 lanthanide coordination polymers was synthesized from anhydrous LnCl3 and 1,2-di(4-pyridyl)ethylene (dpe) under solvothermal conditions in either thiazole (thz) or pyridine (py). The reactions yielded 1[Ln2Cl6(dpe)2(thz)4]·dpe with Ln = Ce (1), Nd (2), 1[LnCl3 (dpe)(py)2]·(dpe/py) with Ln = Gd (3), Er (4), and 1[LnCl3(dpe) (thz)2](dpe/thz) with Ln = Sm (5), Gd (6), Tb (7), Dy (8), Er (9), Yb (10), as well as 1[HoCl3(dpe)(thz)2]·thz (11) and 2[La2Cl6(dpe)3(py)2]·dpe (12). One-dimensional coordination polymers (CPs) and a two-dimensional network of five different constitutions are formed by connection of LnCl3 units via dpe molecules. As free ligand, dpe shows an excimer effect that is reduced in the coordination polymers. In addition, dipyridylethylene proves to be a suitable sensitizer for the photoluminescence of lanthanides in the near-infrared region (NIR) only. Thereby, dpe differs from the related ligand 1,2-di(4-pyridyl)ethane. For the compounds presented, four different luminescence effects were detected: luminescence based on fluorescence of the linker dpe is observed in the visible region, whereas ligand-sensitized 4f–4f NIR emission is dominating for trivalent Nd, Er, and Yb. The Er-containing CPs show an inner-filter effect of Er3+, which is based on reabsorption of emission of dpe triggering the erbium NIR emission.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorgchem.6b00447. Further information was deposited at the Cambridge Crystallographic Data Centre, CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. (e-mail: [email protected]) and may be requested by citing the deposition numbers CCDC Nd (2) 1414645, Gd (3) 1023748, Sm (5) 1414642, Dy (8) 1414641, Yb (10) 1414643, Ho (11) 1414644, and La (12) 1023749, or the names of the authors and the literature citation.

    • Additional crystal structure information, figures, selected interatomic distances and angles, excitation spectra, luminescence decay times, additional spectroscopic and thermal investigations. (PDF)

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 39 publications.

    1. Maksim A. Zhernakov, Alexander E. Sedykh, Yuriy G. Denisenko, Maxim S. Molokeev, Ildar I. Mirzayanov, Jonathan Becker, Valery G. Shtyrlin, Klaus Müller-Buschbaum. Luminescent Thermometer Systems Dy3+/Eu3+ and Tb3+/Sm3+ Based on Coordination Compounds: New Pairs to the Approved Tb3+/Eu3+?. Chemistry of Materials 2024, 36 (19) , 9704-9717. https://doi.org/10.1021/acs.chemmater.4c01851
    2. Ming-li Liu, Quan Shi, Lei-fang Liu, Wen-bo Li. Lanthanide-Aromatic Iminodiacetate Frameworks with Helical Tubes: Structure, Properties, and Low-Temperature Heat Capacity. ACS Omega 2021, 6 (15) , 10475-10485. https://doi.org/10.1021/acsomega.1c01052
    3. Yun-Guang Wang, Yu-Qian Li, Hui-Hui Tang, Li-Rong Lin, Li-Hua Ma. Near-Infrared Photoluminescence and Reversible Trans-to-Cis Photoisomerization of Mononuclear and Binuclear Ytterbium(III) Complexes Functionalized by Azobenzene Groups. ACS Omega 2018, 3 (5) , 5480-5490. https://doi.org/10.1021/acsomega.8b00386
    4. Duarte Ananias, Ana D. G. Firmino, Ricardo F. Mendes, Filipe A. Almeida Paz, Mariela Nolasco, Luís D. Carlos, and João Rocha . Excimer Formation in a Terbium Metal–Organic Framework Assists Luminescence Thermometry. Chemistry of Materials 2017, 29 (21) , 9547-9554. https://doi.org/10.1021/acs.chemmater.7b03817
    5. Xiao-Feng Tan, Jian Zhou, Hua-Hong Zou, Lianshe Fu, and Qiuling Tang . A Series of Lanthanide–Germanate Oxo Clusters Decorated by 1,10-Phenanthroline Chromophores. Inorganic Chemistry 2017, 56 (17) , 10361-10369. https://doi.org/10.1021/acs.inorgchem.7b01271
    6. Papri Sutar and Tapas Kumar Maji . Coordination Polymer Gels with Modular Nanomorphologies, Tunable Emissions, and Stimuli-Responsive Behavior Based on an Amphiphilic Tripodal Gelator. Inorganic Chemistry 2017, 56 (16) , 9417-9425. https://doi.org/10.1021/acs.inorgchem.7b01002
    7. Tatjana Ribbeck, Sven H. Zottnick, Christoph Kerpen, Johannes Landmann, Nikolai V. Ignat’ev, Klaus Müller-Buschbaum, and Maik Finze . Anhydrous, Homoleptic Lanthanide Frameworks with the Pentafluoroethyltricyanoborate Anion. Inorganic Chemistry 2017, 56 (4) , 2278-2286. https://doi.org/10.1021/acs.inorgchem.6b02984
    8. Sourajyoti Ray, Shyam Goswami, Ankur K Guha, Purabi Sarmah, Sanchay J Bora. A Self‐Assembled Trinuclear Co(II) Catalyst for Efficient C─H Activation of Benzaldehydes under Solvent‐Free Condition. ChemistrySelect 2025, 10 (12) https://doi.org/10.1002/slct.202500127
    9. Hongsheng Wang, Hui Li, Xinhua Chen. Structure and luminescent properties of Nd(III) and Tb(III) coordination polymers with 2,4,6-pyridinetricarboxylate. Structural Chemistry 2025, 36 (1) , 191-198. https://doi.org/10.1007/s11224-024-02358-6
    10. M. Tahir Abbas, M. Szymczak, V. Kinzhybalo, D. Szymanski, M. Drozd, L. Marciniak. Expanding the horizons of phase transition-based luminescence thermometry. Journal of Materials Chemistry C 2025, 7 https://doi.org/10.1039/D5TC00435G
    11. Jiewen Zhao, Jiaojie Yuan. Empowering IoT connectivity: unveiling the potential of IoT.Js for enhanced interconnectivity. Smart Science 2024, 16 , 1-11. https://doi.org/10.1080/23080477.2024.2390724
    12. Ruo-Nan Yang, Xing Liu, Jian Zhou, Chun-Mei Huang, Ming-Xiong Tan, Congrui Ouyang. A sole organic hybrid europium(Ⅲ) chloride as a luminescent sensor for Cu2+ ion. Journal of Alloys and Compounds 2023, 939 , 168699. https://doi.org/10.1016/j.jallcom.2023.168699
    13. Alexander E. Sedykh, Mariia Becker, Marcel T. Seuffert, Dominik Heuler, Moritz Maxeiner, Dirk G. Kurth, Catherine E. Housecroft, Edwin C. Constable, Klaus Müller‐Buschbaum. Air‐Stable Solid‐State Photoluminescence Standards for Quantitative Measurements Based on 4′‐Phenyl‐2,2′ : 6′,2′′‐Terpyridine Complexes with Trivalent Lanthanides. ChemPhotoChem 2023, 7 (2) https://doi.org/10.1002/cptc.202200244
    14. Mohamed Essalhi, Midhun Mohan, Gabriel Marineau-Plante, Adrien Schlachter, Thierry Maris, Pierre D. Harvey, Adam Duong. S-Heptazine N-ligand based luminescent coordination materials: synthesis, structural and luminescent studies of lanthanide–cyamelurate networks. Dalton Transactions 2022, 51 (39) , 15005-15016. https://doi.org/10.1039/D2DT01924H
    15. Heba Youssef, Thomas Schäfer, Jonathan Becker, Alexander E. Sedykh, Leonardo Basso, Clemens Pietzonka, Ilya V. Taydakov, Florian Kraus, Klaus Müller-Buschbaum. 3D-Frameworks and 2D-networks of lanthanide coordination polymers with 3-pyridylpyrazole: photophysical and magnetic properties. Dalton Transactions 2022, 51 (38) , 14673-14685. https://doi.org/10.1039/D2DT01999J
    16. Maksim A. Zhernakov, Alexander E. Sedykh, Jonathan Becker, Moritz Maxeiner, Klaus Müller‐Buschbaum, Valery G. Shtyrlin. Three ytterbium(III) complexes with aromatic N‐donors: Synthesis, structure, photophysical properties and thermal stability. Zeitschrift für anorganische und allgemeine Chemie 2022, 648 (18) https://doi.org/10.1002/zaac.202200230
    17. Yuriy G. Denisenko, Victor V. Atuchin, Maxim S. Molokeev, Alexander E. Sedykh, Nikolay A. Khritokhin, Aleksandr S. Aleksandrovsky, Aleksandr S. Oreshonkov, Nikolai P. Shestakov, Sergey V. Adichtchev, Alexey M. Pugachev, Elena I. Sal’nikova, Oleg V. Andreev, Illaria A. Razumkova, Klaus Müller-Buschbaum. Exploration of the Crystal Structure and Thermal and Spectroscopic Properties of Monoclinic Praseodymium Sulfate Pr2(SO4)3. Molecules 2022, 27 (13) , 3966. https://doi.org/10.3390/molecules27133966
    18. Suwadee Jiajaroen, Winya Dungkaew, Filip Kielar, Mongkol Sukwattanasinitt, Somboon Sahasithiwat, Hikaru Zenno, Shinya Hayami, Mohammad Azam, Saud I. Al-Resayes, Kittipong Chainok. Four series of lanthanide coordination polymers based on the tetrabromobenzene-1,4-dicarboxylate ligand: structural diversity and multifunctional properties. Dalton Transactions 2022, 51 (19) , 7420-7435. https://doi.org/10.1039/D2DT00007E
    19. Khurnia Krisna Puji Pamungkas, Toshifumi Maruyama, Toshiaki Murai. 5- N -Arylaminothiazoles with pyridyl groups and their first-row transition metal complexes: synthesis, photophysical properties, and Zn sensing. RSC Advances 2022, 12 (23) , 14698-14706. https://doi.org/10.1039/D2RA01694J
    20. Yu.G. Denisenko, V.V. Atuchin, Maxim Molokeev, A.E. Sedykh, N.A. Khritokhin, A.S. Aleksandrovsky, A.S. Oreshonkov, N.P. Shestakov, S.V. Adichtchev, A.M. Pugachev, E.I. Sal’nikova, O.V. Andreev, I.A. Razumkova, K. Müller-Buschbaum. Exploration of the Crystal Structure, Thermal and Spectroscopic Properties of Monoclinic Praseodymium Sulfate Pr2(So4)3. SSRN Electronic Journal 2022, 46 https://doi.org/10.2139/ssrn.4115305
    21. Min Liu, Haoran Li, Lan Bai, Kai Zheng, Zhipeng Zhao, Zhao Chen, Seik Weng Ng, Liwen Ding, Chenghui Zeng. Real-time and visual sensing devices based on pH-control assembled lanthanide-barium nano-cluster. Journal of Hazardous Materials 2021, 413 , 125291. https://doi.org/10.1016/j.jhazmat.2021.125291
    22. Torvid Feiler, Biswajit Bhattacharya, Adam A. L. Michalchuk, Vincent Schröder, Emil List-Kratochvil, Franziska Emmerling. Mechanochemical Syntheses of Isostructural Luminescent Cocrystals of 9-Anthracenecarboxylic Acid with two Dipyridines Coformers. Crystals 2020, 10 (10) , 889. https://doi.org/10.3390/cryst10100889
    23. Alexander E. Sedykh, Robin Bissert, Dirk G. Kurth, Klaus Müller-Buschbaum. Structural diversity of salts of terpyridine derivatives with europium(III) located in both, cation and anion, in comparison to molecular complexes. Zeitschrift für Kristallographie - Crystalline Materials 2020, 235 (8-9) , 353-363. https://doi.org/10.1515/zkri-2020-0053
    24. Yoriko Sonoda, Norimitsu Tohnai, Yukihiro Shimoi. Crystal Structures and Fluorescence Spectroscopic Properties of a Series of α,ω‐Di(4‐pyridyl)polyenes: Effect of Aggregation‐Induced Emission. ChemPlusChem 2020, 85 (9) , 1968-1980. https://doi.org/10.1002/cplu.202000285
    25. L. X. Zhong, M. Y. Liu, B. W. Zhang, Y. Q. Sun, Y. Y. Xu, D. Z. Gao. Syntheses, Crystal Structures, Visible, and Near-Infrared Luminescence Properties of 3d–4f Coordination Polymers Cu2Er2 and Eu2Ni2. Russian Journal of Coordination Chemistry 2020, 46 (4) , 290-296. https://doi.org/10.1134/S1070328420040090
    26. Xing Ze Wang, Xin Rui Wang, Yuan Yuan Liu, Jian Zhong Huo, Yong Li, Qian Wang, Kun Liu, Bin Ding. Ultrasonic preparation of near-infrared emission cluster-based YbIII and NdIII coordination materials: Ratiometric temperature sensing, selective antibiotics detection and “turn-on” discrimination of l-arginine. Ultrasonics Sonochemistry 2019, 59 , 104734. https://doi.org/10.1016/j.ultsonch.2019.104734
    27. Giorgio Mercuri, Giuliano Giambastiani, Andrea Rossin. Thiazole- and Thiadiazole-Based Metal–Organic Frameworks and Coordination Polymers for Luminescent Applications. Inorganics 2019, 7 (12) , 144. https://doi.org/10.3390/inorganics7120144
    28. Alexander E. Sedykh, Dirk G. Kurth, Klaus Müller‐Buschbaum. Two Series of Lanthanide Coordination Polymers and Complexes with 4′‐Phenylterpyridine and their Luminescence Properties. European Journal of Inorganic Chemistry 2019, 2019 (42) , 4564-4571. https://doi.org/10.1002/ejic.201900872
    29. Xiangxiang Shi, Xuejian Qu, Juan Chai, Chengxia Tong, Yong Fan, Li Wang. Stable coordination polymers with linear dependence color tuning and luminescent properties for detection of metal ions and explosives. Dyes and Pigments 2019, 170 , 107583. https://doi.org/10.1016/j.dyepig.2019.107583
    30. Flavia Artizzu, Matteo Atzori, Jing Liu, Dimitrije Mara, Kristof Van Hecke, Rik Van Deun. Solution-processable Yb/Er 2D-layered metallorganic frameworks with high NIR-emission quantum yields. Journal of Materials Chemistry C 2019, 7 (36) , 11207-11214. https://doi.org/10.1039/C9TC03698A
    31. Sven H. Zottnick, Jens R. Sorg, Klaus Müller‐Buschbaum, Claude Fouassier. Luminescence. 2019, 1-22. https://doi.org/10.1002/9781119951438.eibc0114.pub2
    32. Xing Li, Feng Zhang, Chenghui Zeng, Chongliang Li, Zongying Zhang, Hongxueyang Zheng, Yangyi Yang. An instant reused luminescent mixed matrix membrane sensor for convenient phenolic nitro-explosives detection. Journal of Photochemistry and Photobiology A: Chemistry 2019, 370 , 51-57. https://doi.org/10.1016/j.jphotochem.2018.10.029
    33. Zhi-Peng Zhao, Kai Zheng, Hao-Ran Li, Cheng-Hui Zeng, Shengliang Zhong, Seik Weng Ng, Yanqiong Zheng, Yun Chen. Structure variation and luminescence of 3D, 2D and 1D lanthanide coordination polymers with 1,3-adamantanediacetic acid. Inorganica Chimica Acta 2018, 482 , 340-346. https://doi.org/10.1016/j.ica.2018.06.027
    34. Kai Zheng, Li-Wen Ding, Cheng-Hui Zeng. Highly luminescent lanthanide complexes constructed by Bis-tridentate ligand and as sensor for Et2O. Inorganic Chemistry Communications 2018, 95 , 95-99. https://doi.org/10.1016/j.inoche.2018.07.016
    35. Kai Zheng, Zi-Qi Liu, Yi Huang, Fei Chen, Cheng-Hui Zeng, Shengliang Zhong, Seik Weng Ng. Highly luminescent Ln-MOFs based on 1,3-adamantanediacetic acid as bifunctional sensor. Sensors and Actuators B: Chemical 2018, 257 , 705-713. https://doi.org/10.1016/j.snb.2017.11.009
    36. Dong-Hui Chen, Ling Lin, Tian-Lu Sheng, Yue-Hong Wen, Xiao-Quan Zhu, Lin-Tao Zhang, Sheng-Min Hu, Rui-Biao Fu, Xin-Tao Wu. Syntheses, structures, luminescence and magnetic properties of seven isomorphous metal–organic frameworks based on 2,7-bis(4-benzoic acid)- N -(4-benzoic acid)carbazole. New Journal of Chemistry 2018, 42 (4) , 2830-2837. https://doi.org/10.1039/C7NJ04048B
    37. Nicole Dannenbauer, Sven H. Zottnick, Klaus Müller‐Buschbaum. Sensitization of NIR Photoluminescence of Lanthanides in [ Ln Cl 3 (tppe) 2 (thz) 2 ] by trans ‐1‐(2‐pyridyl)‐2‐(pyridyl)ethylene. Zeitschrift für anorganische und allgemeine Chemie 2017, 643 (23) , 1991-1996. https://doi.org/10.1002/zaac.201700273
    38. Nicole Dannenbauer, Sven H. Zottnick, Klaus Müller‐Buschbaum. Thiazole and the Diazines Pyrazine and Pyrimidine as Sensitizers for Lanthanide Luminescence from VIS to NIR. Zeitschrift für anorganische und allgemeine Chemie 2017, 643 (21) , 1513-1518. https://doi.org/10.1002/zaac.201700232
    39. Weimin Chen, Shasha Li, Cheng-Hui Zeng, Shengliang Zhong. Eu-Based Coordination Polymers Micro-Flowers: Preparation and Luminescence Properties. Journal of Inorganic and Organometallic Polymers and Materials 2017, 27 (2) , 598-604. https://doi.org/10.1007/s10904-017-0505-0

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2016, 55, 15, 7396–7406
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.inorgchem.6b00447
    Published July 11, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    1241

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.