ACS Publications. Most Trusted. Most Cited. Most Read
Reduction of CO2 by Hydrosilanes in the Presence of Formamidinates of Group 13 and 12 Elements
My Activity
    Article

    Reduction of CO2 by Hydrosilanes in the Presence of Formamidinates of Group 13 and 12 Elements
    Click to copy article linkArticle link copied!

    • Weiheng Huang
      Weiheng Huang
      Organometallics: Materials and Catalysis laboratories, Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35700 Rennes, France
    • Thierry Roisnel
      Thierry Roisnel
      Centre de diffraction X, Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35700 Rennes, France
    • Vincent Dorcet
      Vincent Dorcet
      Centre de diffraction X, Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35700 Rennes, France
    • Clement Orione
      Clement Orione
      CRMPO, Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35700 Rennes, France
    • Evgueni Kirillov*
      Evgueni Kirillov
      Organometallics: Materials and Catalysis laboratories, Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35700 Rennes, France
      *E-mail for E.K.: [email protected]
    Other Access OptionsSupporting Information (1)

    Organometallics

    Cite this: Organometallics 2020, 39, 5, 698–710
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.organomet.9b00853
    Published February 24, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Homoleptic complexes 1-M of group 13 and 12 elements (M = B–In and M = Zn, respectively) incorporating electron-withdrawing formamidinate ligands {(C6F5)N═CHN(C6F5)} ({NCN}) were synthesized and isolated in high yields. The compounds were characterized by X-ray crystallography, NMR spectroscopy, and elemental analysis. While the single-component 1-M appeared to be sluggishly active or inactive in the reduction of CO2 with hydrosilanes, a good catalytic performance was achieved with the two-component systems derived from combinations of 1-M and E(C6F5)3 (E = B, Al). In particular, the binary combination 1-Al/B(C6F5)3 showed the best performance within the whole series, thus providing quantitative hydrosilane (Et3SiH) conversions under a range of conditions (PCO2, temperature, benzene or bromobenzene solvent) and affording mainly CH2(OSiEt3)2 and CH4 as products. Kinetic and mechanistic studies revealed that at the initiation step the binary catalytic systems undergo a complex transformation in the presence of CO2/Et3SiH, affording the products of 1-Al decomposition: namely, (C6F5)N(H)SiEt3, (C6F5)N(Me)SiEt3, {NCN}SiEt3, and also some unidentified aluminum species. Thus, the overall process of the reduction of CO2 with hydrosilanes is presumed to be catalyzed by complex multisite systems, evolved from the formamidinate precursor 1-Al, implicating different tandem combinations of N-base/B(C6F5)3 with putative Al-containing species.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.organomet.9b00853.

    • Selected catalytic results, NMR data, and kinetic plots (PDF)

    Accession Codes

    CCDC 19502081950214 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing [email protected], or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 31 publications.

    1. Nathan De Riggi, Arnaud Imberdis, Emmanuel Nicolas, Thibault Cantat. Production of Methane by Catalytic Decarboxylation of Methyl Formate as a Liquid Surrogate. Organometallics 2024, 43 (20) , 2466-2471. https://doi.org/10.1021/acs.organomet.4c00023
    2. Sheetal Kathayat Bisht, Deepti Sharma, Ramkumar Kannan, Thayalan Rajeshkumar, Laurent Maron, Ajay Venugopal. Quest for Active Species in Al/B-Catalyzed CO2 Hydrosilylation. Inorganic Chemistry 2023, 62 (45) , 18543-18552. https://doi.org/10.1021/acs.inorgchem.3c02771
    3. Tatyana S. Koptseva, Alexandra A. Skatova, Sergey Yu. Ketkov, Elena A. Rychagova, Roman V. Rumyantcev, Igor L. Fedushkin. Hydroboration of a Diolate Complex Obtained by Carbon Dioxide Capture with Acenaphthenediimine Aluminum Hydride. Organometallics 2023, 42 (1) , 123-131. https://doi.org/10.1021/acs.organomet.2c00547
    4. Imogen A. Z. Squire, Christopher A. Goult, Benedict C. Thompson, Elias Alexopoulos, Adrian C. Whitwood, Theo F. N. Tanner, Luke A. Wilkinson. Enhancing the Air Stability of Dimolybdenum Paddlewheel Complexes: Redox Tuning through Fluorine Substituents. Inorganic Chemistry 2022, 61 (48) , 19144-19155. https://doi.org/10.1021/acs.inorgchem.2c02746
    5. Ganesan Mani, Ashok Kumar, Rohit Gupta, Vasudevan Subramaniyan. DMSO catalyzed CO2 reduction with 9-BBN: selective formation of either formoxy- or methoxyborane under mild conditions and C-methylenation of indoles. Catalysis Science & Technology 2025, https://doi.org/10.1039/D4CY01327A
    6. Nicholas A. Phillips, Joshua S. Sapsford, Dániel Csókás, Bianka Kótai, Ines Perez‐Tabarnero, Silvia Díez‐González, Daniel J. Scott, Imre Pápai, Andrew E. Ashley. Convenient Partial Reduction of CO 2 to a Useful C 1 Building Block: Efficient Access to 13 C‐Labelled N‐Heterocyclic Carbenes. ChemCatChem 2024, 48 https://doi.org/10.1002/cctc.202401179
    7. Sarah Desmons, Julien Bonin, Marc Robert, Sébastien Bontemps. Four-electron reduction of CO 2 : from formaldehyde and acetal synthesis to complex transformations. Chemical Science 2024, 15 (37) , 15023-15086. https://doi.org/10.1039/D4SC02888K
    8. M. V. Moskalev, A. A. Skatova, A. А. Bazanov, E. V. Baranov, I. L. Fedushkin. Reactions of carbon dioxide bound to aluminum diimine hydride with borane dimethyl sulfide and ammonia. Координационная химия 2024, 50 (3) https://doi.org/10.31857/S0132344X24030031
    9. Kavin Raj Kumar Chandramohan, Issam Abdalghani, Thierry Roisnel, Evgueni Kirillov. Aluminum Complexes Supported by Ph 2 P‐Functionalized Anilido‐Pyridine Ligand Platform: Synthesis, Structure and Evaluation as Frustrated Lewis Pairs. European Journal of Inorganic Chemistry 2024, 27 (18) https://doi.org/10.1002/ejic.202400089
    10. M. V. Moskalev, A. A. Skatova, A. A. Bazanov, E. V. Baranov, I. L. Fedushkin. Reactions of Carbon Dioxide Bound to Aluminum Diimine Hydride with Borane Dimethyl Sulfide and Ammonia. Russian Journal of Coordination Chemistry 2024, 50 (2) , 118-129. https://doi.org/10.1134/S1070328423600936
    11. Md. Nasim Khan, Yara van Ingen, Tribani Boruah, Adam McLauchlan, Thomas Wirth, Rebecca L. Melen. Advances in CO 2 activation by frustrated Lewis pairs: from stoichiometric to catalytic reactions. Chemical Science 2023, 14 (47) , 13661-13695. https://doi.org/10.1039/D3SC03907B
    12. Mamta Bhandari, Sandeep Rawat, Mandeep Kaur, Sanjay Singh. Catalytic Hydrosilylation of Imines by Aluminum Hydride Cations. European Journal of Organic Chemistry 2023, 26 (36) https://doi.org/10.1002/ejoc.202300674
    13. Ruxu Yao, Youjie Li, Jiahuan Wang, Jinzhu Chen, Yisheng Xu. Crown ether as organocatalyst for reductive upgrading of CO2 to N-containing benzoheterocyclics and N-formamides. Journal of Catalysis 2023, 418 , 78-89. https://doi.org/10.1016/j.jcat.2023.01.005
    14. Peifeng Su, Jinyu Ni, Zhuofeng Ke. Recent Advances in Homogeneous Catalytic Systems for CO 2 Hydrosilylation and Related Transformations. Chinese Journal of Organic Chemistry 2023, 43 (10) , 3526. https://doi.org/10.6023/cjoc202306007
    15. Trinath Biswal, Krushna Prasad Shadangi, Prakash Kumar Sarangi, Rajesh K. Srivastava. Conversion of carbon dioxide to methanol: A comprehensive review. Chemosphere 2022, 298 , 134299. https://doi.org/10.1016/j.chemosphere.2022.134299
    16. Hassan A. Baalbaki, Julia Shu, Kudzanai Nyamayaro, Hyuk-Joon Jung, Parisa Mehrkhodavandi. Thermally stable zinc hydride catalyst for hydrosilylation of CO 2 to silyl formate at atmospheric pressure. Chemical Communications 2022, 58 (42) , 6192-6195. https://doi.org/10.1039/D2CC01498J
    17. Serge Ruccolo, David Sambade, Daniel G. Shlian, Erika Amemiya, Gerard Parkin. Catalytic reduction of carbon dioxide by a zinc hydride compound, [Tptm]ZnH, and conversion to the methanol level. Dalton Transactions 2022, 51 (15) , 5868-5877. https://doi.org/10.1039/D1DT04156H
    18. Nianjie Liang, Qiaosheng Li, Mengyuan Ge, Defa Gu, Yuzhou Liu. Mild Synthesis of a Dimethoxy‐Terminated Siloxane through a Ring‐Opening Reaction. ChemistrySelect 2022, 7 (7) https://doi.org/10.1002/slct.202104617
    19. Dragoslav Vidović. Aluminum Complexes in Organic Synthesis. 2022, 335-381. https://doi.org/10.1016/B978-0-12-820206-7.00052-4
    20. Christoph Helling, Stephan Schulz. Gallium, Indium, and Thallium. 2022, 370-406. https://doi.org/10.1016/B978-0-12-820206-7.00126-8
    21. Tongtong Wang, Maotong Xu, Andrew R. Jupp, Zheng‐Wang Qu, Stefan Grimme, Douglas W. Stephan. Selective Catalytic Frustrated Lewis Pair Hydrogenation of CO 2 in the Presence of Silylhalides. Angewandte Chemie 2021, 133 (49) , 25975-25979. https://doi.org/10.1002/ange.202112233
    22. Tongtong Wang, Maotong Xu, Andrew R. Jupp, Zheng‐Wang Qu, Stefan Grimme, Douglas W. Stephan. Selective Catalytic Frustrated Lewis Pair Hydrogenation of CO 2 in the Presence of Silylhalides. Angewandte Chemie International Edition 2021, 60 (49) , 25771-25775. https://doi.org/10.1002/anie.202112233
    23. Kejian Chang, Iker del Rosal, Xizhou Zheng, Laurent Maron, Xin Xu. Hydrosilylative reduction of carbon dioxide by a homoleptic lanthanum aryloxide catalyst with high activity and selectivity. Dalton Transactions 2021, 50 (22) , 7804-7809. https://doi.org/10.1039/D1DT01074C
    24. Sven C. Richter, Martin Oestreich. Chemoselective Deoxygenation of 2° Benzylic Alcohols through a Sequence of Formylation and B(C 6 F 5 ) 3 ‐Catalyzed Reduction. European Journal of Organic Chemistry 2021, 2021 (14) , 2103-2106. https://doi.org/10.1002/ejoc.202100148
    25. Wen‐Duo Li, Jie Chen, Dao‐Yong Zhu, Ji‐Bao Xia. Fe‐Catalyzed Pictet‐Spengler‐Type Cyclization via Selective Four‐Electron Reductive Functionalization of CO 2 . Chinese Journal of Chemistry 2021, 39 (3) , 614-620. https://doi.org/10.1002/cjoc.202000521
    26. Debashis Ghosh, George Rajendra Kumar, Saravanan Subramanian, Koji Tanaka. More Than Just a Reagent: The Rise of Renewable Organohydrides for Catalytic Reduction of Carbon Dioxide. ChemSusChem 2021, 14 (3) , 824-841. https://doi.org/10.1002/cssc.202002660
    27. Alexa Caise, Jamie Hicks, M. Ángeles Fuentes, Jose M. Goicoechea, Simon Aldridge. Partnering a Three‐Coordinate Gallium Cation with a Hydroborate Counter‐Ion for the Catalytic Hydrosilylation of CO 2. Chemistry – A European Journal 2021, 27 (6) , 2138-2148. https://doi.org/10.1002/chem.202004408
    28. Florian Ritter, Thomas P. Spaniol, Iskander Douair, Laurent Maron, Jun Okuda. Molekulare Zinkhydridkationen [ZnH] + : Synthese, Struktur und CO 2 ‐Hydrosilylierungskatalyse. Angewandte Chemie 2020, 132 (51) , 23535-23543. https://doi.org/10.1002/ange.202011480
    29. Florian Ritter, Thomas P. Spaniol, Iskander Douair, Laurent Maron, Jun Okuda. Molecular Zinc Hydride Cations [ZnH] + : Synthesis, Structure, and CO 2 Hydrosilylation Catalysis. Angewandte Chemie International Edition 2020, 59 (51) , 23335-23342. https://doi.org/10.1002/anie.202011480
    30. Sreejyothi P., Swadhin K. Mandal. From CO 2 activation to catalytic reduction: a metal-free approach. Chemical Science 2020, 11 (39) , 10571-10593. https://doi.org/10.1039/D0SC03528A
    31. Wesley Sattler, Daniel G. Shlian, David Sambade, Gerard Parkin. Synthesis and structural characterization of bis(2-pyridylthio)(p-tolylthio)methyl zinc complexes and the catalytic hydrosilylation of CO2. Polyhedron 2020, 187 , 114542. https://doi.org/10.1016/j.poly.2020.114542

    Organometallics

    Cite this: Organometallics 2020, 39, 5, 698–710
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.organomet.9b00853
    Published February 24, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    1531

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.