ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Production of Sactipeptides in Escherichia coli: Probing the Substrate Promiscuity of Subtilosin A Biosynthesis

View Author Information
Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, United States
Cite this: ACS Chem. Biol. 2016, 11, 6, 1737–1744
Publication Date (Web):March 28, 2016
https://doi.org/10.1021/acschembio.6b00042
Copyright © 2016 American Chemical Society

    Article Views

    2846

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Sactipeptides are peptide-derived natural products that are processed by remarkable, radical-mediated cysteine sulfur to α-carbon coupling reactions. The resulting sactionine thioether linkages give rise to the unique defined structures and concomitant biological activities of sactipeptides. An E. coli heterologous expression system, based on the biosynthesis of one such sactipeptide, subtilosin A, is described and this expression system is exploited to probe the promiscuity of the subtilosin A sactionine bond-forming enzyme, AlbA. These efforts allowed the facile expression and isolation of a small library of mutant sactipeptides based on the subtilosin A precursor peptide, demonstrating broad substrate promiscuity where none was previously known. Importantly, we show that the positions of the sactionine linkages can be moved, giving rise to new, unnatural sactipeptide structures. E. coli heterologous expression also allowed incorporation of unnatural amino acids into sactipeptides by means of amber-suppression technology, potentially opening up new chemistry and new applications for unnatural sactipeptides.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acschembio.6b00042.

    • Experimental details, including molecular biology and isolation procedures, LC/MS, and MS/MS analysis techniques (PDF)

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 45 publications.

    1. Karsten A. S. Eastman, Marcus C. Mifflin, Paul F. Oblad, Andrew G. Roberts, Vahe Bandarian. A Promiscuous rSAM Enzyme Enables Diverse Peptide Cross-linking. ACS Bio & Med Chem Au 2023, 3 (6) , 480-493. https://doi.org/10.1021/acsbiomedchemau.3c00043
    2. Karsten A. S. Eastman, William M. Kincannon, Vahe Bandarian. Leveraging Substrate Promiscuity of a Radical S-Adenosyl-L-methionine RiPP Maturase toward Intramolecular Peptide Cross-Linking Applications. ACS Central Science 2022, 8 (8) , 1209-1217. https://doi.org/10.1021/acscentsci.2c00501
    3. Leah B. Bushin, Brett C. Covington, Britta E. Rued, Michael J. Federle, Mohammad R. Seyedsayamdost. Discovery and Biosynthesis of Streptosactin, a Sactipeptide with an Alternative Topology Encoded by Commensal Bacteria in the Human Microbiome. Journal of the American Chemical Society 2020, 142 (38) , 16265-16275. https://doi.org/10.1021/jacs.0c05546
    4. Steven R. Fleming, Paul M. Himes, Swapnil V. Ghodge, Yuki Goto, Hiroaki Suga, Albert A. Bowers. Exploring the Post-translational Enzymology of PaaA by mRNA Display. Journal of the American Chemical Society 2020, 142 (11) , 5024-5028. https://doi.org/10.1021/jacs.0c01576
    5. Hyunbin Lee, Mingyu Choi, Jung-Un Park, Heejin Roh, Seokhee Kim. Genome Mining Reveals High Topological Diversity of ω-Ester-Containing Peptides and Divergent Evolution of ATP-Grasp Macrocyclases. Journal of the American Chemical Society 2020, 142 (6) , 3013-3023. https://doi.org/10.1021/jacs.9b12076
    6. Graham A. Hudson, Brandon J. Burkhart, Adam J. DiCaprio, Christopher J. Schwalen, Bryce Kille, Taras V. Pogorelov, Douglas A. Mitchell. Bioinformatic Mapping of Radical S-Adenosylmethionine-Dependent Ribosomally Synthesized and Post-Translationally Modified Peptides Identifies New Cα, Cβ, and Cγ-Linked Thioether-Containing Peptides. Journal of the American Chemical Society 2019, 141 (20) , 8228-8238. https://doi.org/10.1021/jacs.9b01519
    7. Julian D. Hegemann, Silvia C. Bobeica, Mark C. Walker, Ian R. Bothwell, Wilfred A. van der Donk. Assessing the Flexibility of the Prochlorosin 2.8 Scaffold for Bioengineering Applications. ACS Synthetic Biology 2019, 8 (5) , 1204-1214. https://doi.org/10.1021/acssynbio.9b00080
    8. Tyler L. Grove, Paul M. Himes, Sungwon Hwang, Hayretin Yumerefendi, Jeffrey B. Bonanno, Brian Kuhlman, Steven C. Almo, and Albert A. Bowers . Structural Insights into Thioether Bond Formation in the Biosynthesis of Sactipeptides. Journal of the American Chemical Society 2017, 139 (34) , 11734-11744. https://doi.org/10.1021/jacs.7b01283
    9. Brandon J. Burkhart, Nidhi Kakkar, Graham A. Hudson, Wilfred A. van der Donk, and Douglas A. Mitchell . Chimeric Leader Peptides for the Generation of Non-Natural Hybrid RiPP Products. ACS Central Science 2017, 3 (6) , 629-638. https://doi.org/10.1021/acscentsci.7b00141
    10. Ivan Sugrue, R. Paul Ross, Colin Hill. Bacteriocin diversity, function, discovery and application as antimicrobials. Nature Reviews Microbiology 2024, 40 https://doi.org/10.1038/s41579-024-01045-x
    11. Rabeb Teber, Shuichi Asakawa. In Silico Screening of Bacteriocin Gene Clusters within a Set of Marine Bacillota Genomes. International Journal of Molecular Sciences 2024, 25 (5) , 2566. https://doi.org/10.3390/ijms25052566
    12. He Li, Wei Ding, Qi Zhang. Discovery and engineering of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. RSC Chemical Biology 2024, 5 (2) , 90-108. https://doi.org/10.1039/D3CB00172E
    13. . Peptide Natural Products I: RiPPs. 2022, 100-149. https://doi.org/10.1039/BK9781839165641-00100
    14. Kenzie A. Clark, Brett C. Covington, Mohammad R. Seyedsayamdost. Biosynthesis-guided discovery reveals enteropeptins as alternative sactipeptides containing N-methylornithine. Nature Chemistry 2022, 14 (12) , 1390-1398. https://doi.org/10.1038/s41557-022-01063-3
    15. Muaaz Mutaz Alajlani. Characterization of subtilosin gene in wild type Bacillus spp. and possible physiological role. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-13804-y
    16. Bei‐Bei He, Zhuo Cheng, Zheng Zhong, Ying Gao, Hongyan Liu, Yong‐Xin Li. Expanded Sequence Space of Radical S‐Adenosylmethionine‐Dependent Enzymes Involved in Post‐translational Macrocyclization**. Angewandte Chemie 2022, 134 (48) https://doi.org/10.1002/ange.202212447
    17. Bei‐Bei He, Zhuo Cheng, Zheng Zhong, Ying Gao, Hongyan Liu, Yong‐Xin Li. Expanded Sequence Space of Radical S‐Adenosylmethionine‐Dependent Enzymes Involved in Post‐translational Macrocyclization**. Angewandte Chemie International Edition 2022, 61 (48) https://doi.org/10.1002/anie.202212447
    18. Ataurehman Ali, Dominic Happel, Jan Habermann, Katrin Schoenfeld, Arturo Macarrón Palacios, Sebastian Bitsch, Simon Englert, Hendrik Schneider, Olga Avrutina, Sebastian Fabritz, Harald Kolmar. Untersuchungen zur Substrattoleranz von Sactisynthasen für die Generierung Thioether‐verbrückter Sactipeptide mit neuen Eigenschaften. Angewandte Chemie 2022, 134 (45) https://doi.org/10.1002/ange.202210883
    19. Ataurehman Ali, Dominic Happel, Jan Habermann, Katrin Schoenfeld, Arturo Macarrón Palacios, Sebastian Bitsch, Simon Englert, Hendrik Schneider, Olga Avrutina, Sebastian Fabritz, Harald Kolmar. Sactipeptide Engineering by Probing the Substrate Tolerance of a Thioether‐Bond‐Forming Sactisynthase. Angewandte Chemie International Edition 2022, 61 (45) https://doi.org/10.1002/anie.202210883
    20. A. Alloul, W. Van Kampen, M. Cerruti, S. Wittouck, M. Pabst, D.G. Weissbrodt. Exploring the role of antimicrobials in the selective growth of purple phototrophic bacteria through genome mining and agar spot assays. Letters in Applied Microbiology 2022, 75 (5) , 1275-1285. https://doi.org/10.1111/lam.13795
    21. Emerson Glassey, Andrew M. King, Daniel A. Anderson, Zhengan Zhang, Christopher A. Voigt, . Functional expression of diverse post-translational peptide-modifying enzymes in Escherichia coli under uniform expression and purification conditions. PLOS ONE 2022, 17 (9) , e0266488. https://doi.org/10.1371/journal.pone.0266488
    22. Runze Wu, Wei Ding, Qi Zhang. Consecutive Methylation Catalyzed by TsrM , an Atypical Class B Radical SAM Methylase. Chinese Journal of Chemistry 2022, 40 (14) , 1693-1698. https://doi.org/10.1002/cjoc.202200174
    23. Sebastian L. Wenski, Sirinthra Thiengmag, Eric J.N. Helfrich. Complex peptide natural products: Biosynthetic principles, challenges and opportunities for pathway engineering. Synthetic and Systems Biotechnology 2022, 7 (1) , 631-647. https://doi.org/10.1016/j.synbio.2022.01.007
    24. Amila S. N. W. Pahalagedara, Ruy Jauregui, Paul Maclean, Eric Altermann, Steve Flint, Jon Palmer, Gale Brightwell, Tanushree Barua Gupta. Culture and genome-based analysis of four soil Clostridium isolates reveal their potential for antimicrobial production. BMC Genomics 2021, 22 (1) https://doi.org/10.1186/s12864-021-08005-2
    25. Zhiyong Wu, Youran Li, Liang Zhang, Zhongyang Ding, Guiyang Shi. Microbial production of small peptide: pathway engineering and synthetic biology. Microbial Biotechnology 2021, 14 (6) , 2257-2278. https://doi.org/10.1111/1751-7915.13743
    26. Dake Liu, Garret M. Rubin, Dipesh Dhakal, Manyun Chen, Yousong Ding. Biocatalytic synthesis of peptidic natural products and related analogues. iScience 2021, 24 (5) , 102512. https://doi.org/10.1016/j.isci.2021.102512
    27. Manuel Montalbán-López, Thomas A. Scott, Sangeetha Ramesh, Imran R. Rahman, Auke J. van Heel, Jakob H. Viel, Vahe Bandarian, Elke Dittmann, Olga Genilloud, Yuki Goto, María José Grande Burgos, Colin Hill, Seokhee Kim, Jesko Koehnke, John A. Latham, A. James Link, Beatriz Martínez, Satish K. Nair, Yvain Nicolet, Sylvie Rebuffat, Hans-Georg Sahl, Dipti Sareen, Eric W. Schmidt, Lutz Schmitt, Konstantin Severinov, Roderich D. Süssmuth, Andrew W. Truman, Huan Wang, Jing-Ke Weng, Gilles P. van Wezel, Qi Zhang, Jin Zhong, Jörn Piel, Douglas A. Mitchell, Oscar P. Kuipers, Wilfred A. van der Donk. New developments in RiPP discovery, enzymology and engineering. Natural Product Reports 2021, 38 (1) , 130-239. https://doi.org/10.1039/D0NP00027B
    28. Dongwon Park, Girish Swayambhu, Blaine A Pfeifer. Heterologous biosynthesis as a platform for producing new generation natural products. Current Opinion in Biotechnology 2020, 66 , 123-130. https://doi.org/10.1016/j.copbio.2020.06.014
    29. Clémence Balty, Alain Guillot, Laura Fradale, Clémence Brewee, Benjamin Lefranc, Christian Herrero, Corine Sandström, Jérôme Leprince, Olivier Berteau, Alhosna Benjdia. Biosynthesis of the sactipeptide Ruminococcin C by the human microbiome: Mechanistic insights into thioether bond formation by radical SAM enzymes. Journal of Biological Chemistry 2020, 295 (49) , 16665-16677. https://doi.org/10.1074/jbc.RA120.015371
    30. Yunliang Chen, Yunpeng Yang, Xinjian Ji, Ran Zhao, Guoquan Li, Yang Gu, Aiping Shi, Weihong Jiang, Qi Zhang. The SCIFF‐Derived Ranthipeptides Participate in Quorum Sensing in Solventogenic Clostridia. Biotechnology Journal 2020, 15 (10) https://doi.org/10.1002/biot.202000136
    31. Clarisse Roblin, Steve Chiumento, Olivier Bornet, Matthieu Nouailler, Christina S. Müller, Katy Jeannot, Christian Basset, Sylvie Kieffer-Jaquinod, Yohann Couté, Stéphane Torelli, Laurent Le Pape, Volker Schünemann, Hamza Olleik, Bruno De La Villeon, Philippe Sockeel, Eric Di Pasquale, Cendrine Nicoletti, Nicolas Vidal, Leonora Poljak, Olga Iranzo, Thierry Giardina, Michel Fons, Estelle Devillard, Patrice Polard, Marc Maresca, Josette Perrier, Mohamed Atta, Françoise Guerlesquin, Mickael Lafond, Victor Duarte. The unusual structure of Ruminococcin C1 antimicrobial peptide confers clinical properties. Proceedings of the National Academy of Sciences 2020, 117 (32) , 19168-19177. https://doi.org/10.1073/pnas.2004045117
    32. Torsten Stein. Oxygen-Limiting Growth Conditions and Deletion of the Transition State Regulator Protein Abrb in Bacillus subtilis 6633 Result in an Increase in Subtilosin Production and a Decrease in Subtilin Production. Probiotics and Antimicrobial Proteins 2020, 12 (2) , 725-731. https://doi.org/10.1007/s12602-019-09547-4
    33. Wei Ding, Xinjian Ji, Yuting Zhong, Kuang Xu, Qi Zhang. Adenosylation reactions catalyzed by the radical S-adenosylmethionine superfamily enzymes. Current Opinion in Chemical Biology 2020, 55 , 86-95. https://doi.org/10.1016/j.cbpa.2020.01.007
    34. Harsh Mathur, Mary C. Rea, Colin Hill, R. Paul Ross, Paul D. Cotter. Don’t RiPP Into the Sactipeptides!. 2020, 65-87. https://doi.org/10.1016/B978-0-12-409547-2.14564-0
    35. Kelly E. Bird, Albert A. Bowers. Chemistry and Chemical Biology of Thiopeptide Natural Products. 2020, 166-192. https://doi.org/10.1016/B978-0-12-409547-2.14679-7
    36. William M. Kincannon, Vahe Bandarian. Radical SAM Enzymes Involved in Modifications of RiPP Natural Products. 2020, 489-519. https://doi.org/10.1016/B978-0-12-409547-2.14858-9
    37. Clémence Balty, Alain Guillot, Laura Fradale, Clémence Brewee, Mylène Boulay, Xavier Kubiak, Alhosna Benjdia, Olivier Berteau. Ruminococcin C, an anti-clostridial sactipeptide produced by a prominent member of the human microbiota Ruminococcus gnavus. Journal of Biological Chemistry 2019, 294 (40) , 14512-14525. https://doi.org/10.1074/jbc.RA119.009416
    38. Steve Chiumento, Clarisse Roblin, Sylvie Kieffer-Jaquinod, Sybille Tachon, Chloé Leprètre, Christian Basset, Dwi Aditiyarini, Hamza Olleik, Cendrine Nicoletti, Olivier Bornet, Olga Iranzo, Marc Maresca, Renaud Hardré, Michel Fons, Thierry Giardina, Estelle Devillard, Françoise Guerlesquin, Yohann Couté, Mohamed Atta, Josette Perrier, Mickael Lafond, Victor Duarte. Ruminococcin C, a promising antibiotic produced by a human gut symbiont. Science Advances 2019, 5 (9) https://doi.org/10.1126/sciadv.aaw9969
    39. Ruihua Zhang, Chenyi Li, Jian Wang, Yaping Yang, Yajun Yan. Microbial production of small medicinal molecules and biologics: From nature to synthetic pathways. Biotechnology Advances 2018, 36 (8) , 2219-2231. https://doi.org/10.1016/j.biotechadv.2018.10.009
    40. Graham A Hudson, Douglas A Mitchell. RiPP antibiotics: biosynthesis and engineering potential. Current Opinion in Microbiology 2018, 45 , 61-69. https://doi.org/10.1016/j.mib.2018.02.010
    41. Yi Zhang, Manyun Chen, Steven D. Bruner, Yousong Ding. Heterologous Production of Microbial Ribosomally Synthesized and Post-translationally Modified Peptides. Frontiers in Microbiology 2018, 9 https://doi.org/10.3389/fmicb.2018.01801
    42. Beatriz Mesa-Pereira, Mary C. Rea, Paul D. Cotter, Colin Hill, R. Paul Ross. Heterologous Expression of Biopreservative Bacteriocins With a View to Low Cost Production. Frontiers in Microbiology 2018, 9 https://doi.org/10.3389/fmicb.2018.01654
    43. L. N. Ikryannikova, M. V. Malakhova, G. G. Lominadze, I. Yu. Karpova, E. S. Kostryukova, N. A. Mayansky, A. N. Kruglov, E. A. Klimova, E. S. Lisitsina, E. N. Ilina, V. M. Govorun. Inhibitory effect of streptococci on the growth of M. catarrhalis strains and the diversity of putative bacteriocin-like gene loci in the genomes of S. pneumoniae and its relatives. AMB Express 2017, 7 (1) https://doi.org/10.1186/s13568-017-0521-z
    44. Alhosna Benjdia, Clémence Balty, Olivier Berteau. Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs). Frontiers in Chemistry 2017, 5 https://doi.org/10.3389/fchem.2017.00087
    45. Maike Bartholomae, Andrius Buivydas, Jakob H. Viel, Manuel Montalbán‐López, Oscar P. Kuipers. Major gene‐regulatory mechanisms operating in ribosomally synthesized and post‐translationally modified peptide (RiPP) biosynthesis. Molecular Microbiology 2017, 106 (2) , 186-206. https://doi.org/10.1111/mmi.13764

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect