ACS Publications. Most Trusted. Most Cited. Most Read
Elucidation of Peptide-Directed Palladium Surface Structure for Biologically Tunable Nanocatalysts
My Activity
    Article

    Elucidation of Peptide-Directed Palladium Surface Structure for Biologically Tunable Nanocatalysts
    Click to copy article linkArticle link copied!

    View Author Information
    Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
    Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
    § Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
    X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
    Department of Physics, Yeshiva University, New York, New York 10016, United States
    # Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48858, United States
    Other Access OptionsSupporting Information (2)

    ACS Nano

    Cite this: ACS Nano 2015, 9, 5, 5082–5092
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.5b00168
    Published April 23, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Peptide-enabled synthesis of inorganic nanostructures represents an avenue to access catalytic materials with tunable and optimized properties. This is achieved via peptide complexity and programmability that is missing in traditional ligands for catalytic nanomaterials. Unfortunately, there is limited information available to correlate peptide sequence to particle structure and catalytic activity to date. As such, the application of peptide-enabled nanocatalysts remains limited to trial and error approaches. In this paper, a hybrid experimental and computational approach is introduced to systematically elucidate biomolecule-dependent structure/function relationships for peptide-capped Pd nanocatalysts. Synchrotron X-ray techniques were used to uncover substantial particle surface structural disorder, which was dependent upon the amino acid sequence of the peptide capping ligand. Nanocatalyst configurations were then determined directly from experimental data using reverse Monte Carlo methods and further refined using molecular dynamics simulation, obtaining thermodynamically stable peptide-Pd nanoparticle configurations. Sequence-dependent catalytic property differences for C–C coupling and olefin hydrogenation were then elucidated by identification of the catalytic active sites at the atomic level and quantitative prediction of relative reaction rates. This hybrid methodology provides a clear route to determine peptide-dependent structure/function relationships, enabling the generation of guidelines for catalyst design through rational tailoring of peptide sequences.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Supporting Movie S1 and materials and methods. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.5b00168.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 92 publications.

    1. Maichong Xie, Joseph M. Slocik, Patrick B. Dennis, Marc R. Knecht. Substrate Effects on Remote Optical Control of Pt Nanoparticle-Driven Olefin Hydrogenation. ACS Applied Nano Materials 2024, 7 (11) , 13251-13259. https://doi.org/10.1021/acsanm.4c01787
    2. Krishan Kanhaiya, Michael Nathanson, Pieter J. in ’t Veld, Cheng Zhu, Ilia Nikiforov, Ellad B. Tadmor, Yeol Kyo Choi, Wonpil Im, Ratan K. Mishra, Hendrik Heinz. Accurate Force Fields for Atomistic Simulations of Oxides, Hydroxides, and Organic Hybrid Materials up to the Micrometer Scale. Journal of Chemical Theory and Computation 2023, 19 (22) , 8293-8322. https://doi.org/10.1021/acs.jctc.3c00750
    3. Bijil Subhash, Raymond R. Unocic, William Hadinata Lie, Leighanne C. Gallington, Joshua Wright, Soshan Cheong, Richard D. Tilley, Nicholas M. Bedford. Resolving Atomic-Scale Structure and Chemical Coordination in High-Entropy Alloy Electrocatalysts for Structure–Function Relationship Elucidation. ACS Nano 2023, 17 (22) , 22299-22312. https://doi.org/10.1021/acsnano.3c03884
    4. Cheng Zhu, Samuel E. Hoff, Miryana Hémadi, Hendrik Heinz. Accurate and Ultrafast Simulation of Molecular Recognition and Assembly on Metal Surfaces in Four Dimensions. ACS Nano 2023, 17 (11) , 9938-9952. https://doi.org/10.1021/acsnano.2c10953
    5. Constantine Tsounis, Xunyu Lu, Nicholas M. Bedford, Bijil Subhash, Lars Thomsen, Qingran Zhang, Zhipeng Ma, Kostya (Ken) Ostrikov, Avi Bendavid, Jason A. Scott, Rose Amal, Zhaojun Han. Valence Alignment of Mixed Ni–Fe Hydroxide Electrocatalysts through Preferential Templating on Graphene Edges for Enhanced Oxygen Evolution. ACS Nano 2020, 14 (9) , 11327-11340. https://doi.org/10.1021/acsnano.0c03380
    6. Matthias J. Young, Nicholas M. Bedford, Angel Yanguas-Gil, Steven Letourneau, Matthew Coile, David J. Mandia, Bachir Aoun, Andrew S. Cavanagh, Steven M. George, Jeffrey W. Elam. Probing the Atomic-Scale Structure of Amorphous Aluminum Oxide Grown by Atomic Layer Deposition. ACS Applied Materials & Interfaces 2020, 12 (20) , 22804-22814. https://doi.org/10.1021/acsami.0c01905
    7. Lesli O. Mark, Cheng Zhu, J. Will Medlin, Hendrik Heinz. Understanding the Surface Reactivity of Ligand-Protected Metal Nanoparticles for Biomass Upgrading. ACS Catalysis 2020, 10 (10) , 5462-5474. https://doi.org/10.1021/acscatal.9b04772
    8. Joseph M. Slocik, Patrick B. Dennis, Alexander O. Govorov, Nicholas M. Bedford, Yang Ren, Rajesh R. Naik. Chiral Restructuring of Peptide Enantiomers on Gold Nanomaterials. ACS Biomaterials Science & Engineering 2020, 6 (5) , 2612-2620. https://doi.org/10.1021/acsbiomaterials.9b00933
    9. Katharine I. Hunter, Nicholas Bedford, Katelyn Schramke, Uwe R. Kortshagen. Probing Dopant Locations in Silicon Nanocrystals via High Energy X-ray Diffraction and Reverse Monte Carlo Simulation. Nano Letters 2020, 20 (2) , 852-859. https://doi.org/10.1021/acs.nanolett.9b03025
    10. Frederick G. Baddour, Emily J. Roberts, Anh T. To, Lu Wang, Susan E. Habas, Daniel A. Ruddy, Nicholas M. Bedford, Joshua Wright, Connor P. Nash, Joshua A. Schaidle, Richard L. Brutchey, Noah Malmstadt. An Exceptionally Mild and Scalable Solution-Phase Synthesis of Molybdenum Carbide Nanoparticles for Thermocatalytic CO2 Hydrogenation. Journal of the American Chemical Society 2020, 142 (2) , 1010-1019. https://doi.org/10.1021/jacs.9b11238
    11. Amanda Garley, Samuel E. Hoff, Nabanita Saikia, Sumanth Jamadagni, Arif Baig, Hendrik Heinz. Adsorption and Substitution of Metal Ions on Hydroxyapatite as a Function of Crystal Facet and Electrolyte pH. The Journal of Physical Chemistry C 2019, 123 (27) , 16982-16993. https://doi.org/10.1021/acs.jpcc.9b02808
    12. Mikhail V. Polynski, Valentine P. Ananikov. Modeling Key Pathways Proposed for the Formation and Evolution of “Cocktail”-Type Systems in Pd-Catalyzed Reactions Involving ArX Reagents. ACS Catalysis 2019, 9 (5) , 3991-4005. https://doi.org/10.1021/acscatal.9b00207
    13. Brittney Hellner, Seong Beom Lee, Akshay Subramaniam, Venkat R. Subramanian, François Baneyx. Modeling the Cooperative Adsorption of Solid-Binding Proteins on Silica: Molecular Insights from Surface Plasmon Resonance Measurements. Langmuir 2019, 35 (14) , 5013-5020. https://doi.org/10.1021/acs.langmuir.9b00283
    14. Aruni Gankanda, Nikki S. Rentz, Lauren F. Greenlee. Influence of Ligand Size and Chelation Strength on Zerovalent Iron Nanoparticle Adsorption and Oxidation Behavior in the Presence of Water Vapor and Liquid Water. The Journal of Physical Chemistry C 2019, 123 (4) , 2474-2487. https://doi.org/10.1021/acs.jpcc.8b07850
    15. Marta Rosa, Rosa Di Felice, Stefano Corni. Adsorption Mechanisms of Nucleobases on the Hydrated Au(111) Surface. Langmuir 2018, 34 (49) , 14749-14756. https://doi.org/10.1021/acs.langmuir.8b00065
    16. Marion J. Limo, Anna Sola-Rabada, Estefania Boix, Veeranjaneyulu Thota, Zayd C. Westcott, Valeria Puddu, Carole C. Perry. Interactions between Metal Oxides and Biomolecules: from Fundamental Understanding to Applications. Chemical Reviews 2018, 118 (22) , 11118-11193. https://doi.org/10.1021/acs.chemrev.7b00660
    17. Zak E. Hughes, Tiffany R. Walsh. Distinct Differences in Peptide Adsorption on Palladium and Gold: Introducing a Polarizable Model for Pd(111). The Journal of Physical Chemistry C 2018, 122 (34) , 19625-19638. https://doi.org/10.1021/acs.jpcc.8b05860
    18. Juan Liu, Emrys Tennessen, Jianwei Miao, Yu Huang, James M. Rondinelli, Hendrik Heinz. Understanding Chemical Bonding in Alloys and the Representation in Atomistic Simulations. The Journal of Physical Chemistry C 2018, 122 (26) , 14996-15009. https://doi.org/10.1021/acs.jpcc.8b01891
    19. Mohamed A. M. Abdalla, Huiqing Peng, Di Wu, Lenna Abusin, Tawum J. Mbah. Prediction of Hydrophobic Reagent for Flotation Process Using Molecular Modeling. ACS Omega 2018, 3 (6) , 6483-6496. https://doi.org/10.1021/acsomega.8b00413
    20. Jacob R. Gissinger, Chandrani Pramanik, Bradley Newcomb, Satish Kumar, and Hendrik Heinz . Nanoscale Structure–Property Relationships of Polyacrylonitrile/CNT Composites as a Function of Polymer Crystallinity and CNT Diameter. ACS Applied Materials & Interfaces 2018, 10 (1) , 1017-1027. https://doi.org/10.1021/acsami.7b09739
    21. Chandrani Pramanik, Jacob R. Gissinger, Satish Kumar, and Hendrik Heinz . Carbon Nanotube Dispersion in Solvents and Polymer Solutions: Mechanisms, Assembly, and Preferences. ACS Nano 2017, 11 (12) , 12805-12816. https://doi.org/10.1021/acsnano.7b07684
    22. Catherine J. Munro and Marc R. Knecht . Solution Effects on Peptide-Mediated Reduction and Stabilization of Au Nanoparticles. Langmuir 2017, 33 (48) , 13757-13765. https://doi.org/10.1021/acs.langmuir.7b01896
    23. Tiffany R. Walsh and Marc R. Knecht . Biointerface Structural Effects on the Properties and Applications of Bioinspired Peptide-Based Nanomaterials. Chemical Reviews 2017, 117 (20) , 12641-12704. https://doi.org/10.1021/acs.chemrev.7b00139
    24. Hui Zhang, Runmin Zhang, Katelyn S. Schramke, Nicholas M. Bedford, Katharine Hunter, Uwe R. Kortshagen, and Peter Nordlander . Doped Silicon Nanocrystal Plasmonics. ACS Photonics 2017, 4 (4) , 963-970. https://doi.org/10.1021/acsphotonics.7b00026
    25. Nicholas A. Merrill, Tadeusz T. Nitka, Erik M. McKee, Kyle C. Merino, Lawrence F. Drummy, Sungsik Lee, Benjamin Reinhart, Yang Ren, Catherine J. Munro, Svitlana Pylypenko, Anatoly I. Frenkel, Nicholas M. Bedford, and Marc R. Knecht . Effects of Metal Composition and Ratio on Peptide-Templated Multimetallic PdPt Nanomaterials. ACS Applied Materials & Interfaces 2017, 9 (9) , 8030-8040. https://doi.org/10.1021/acsami.6b11651
    26. Stephanie L. Candelaria, Nicholas M. Bedford, Taylor J. Woehl, Nikki S. Rentz, Allison R. Showalter, Svitlana Pylypenko, Bruce A. Bunker, Sungsik Lee, Benjamin Reinhart, Yang Ren, S. Piril Ertem, E. Bryan Coughlin, Nicholas A. Sather, James L. Horan, Andrew M. Herring, and Lauren F. Greenlee . Multi-Component Fe–Ni Hydroxide Nanocatalyst for Oxygen Evolution and Methanol Oxidation Reactions under Alkaline Conditions. ACS Catalysis 2017, 7 (1) , 365-379. https://doi.org/10.1021/acscatal.6b02552
    27. Randy L. Lawrence, Billy Scola, Yue Li, Chang-Keun Lim, Yang Liu, Paras N. Prasad, Mark T. Swihart, and Marc R. Knecht . Remote Optically Controlled Modulation of Catalytic Properties of Nanoparticles through Reconfiguration of the Inorganic/Organic Interface. ACS Nano 2016, 10 (10) , 9470-9477. https://doi.org/10.1021/acsnano.6b04555
    28. Sushmit Goyal, Hyun-Hang Park, Sung Hoon Lee, Elizabeth Savoy, Mathew E. McKenzie, Aravind R. Rammohan, John C. Mauro, Hyunbin Kim, Kyoungmin Min, and Eunseog Cho . Characterizing the Fundamental Adhesion of Polyimide Monomers on Crystalline and Glassy Silica Surfaces: A Molecular Dynamics Study. The Journal of Physical Chemistry C 2016, 120 (41) , 23631-23639. https://doi.org/10.1021/acs.jpcc.6b08081
    29. Nicholas M. Bedford, Allison R. Showalter, Taylor J. Woehl, Zak E. Hughes, Sungsik Lee, Benjamin Reinhart, S. Piril Ertem, E. Bryan Coughlin, Yang Ren, Tiffany R. Walsh, and Bruce A. Bunker . Peptide-Directed PdAu Nanoscale Surface Segregation: Toward Controlled Bimetallic Architecture for Catalytic Materials. ACS Nano 2016, 10 (9) , 8645-8659. https://doi.org/10.1021/acsnano.6b03963
    30. Catherine J. Munro, Zak E. Hughes, Tiffany R. Walsh, and Marc R. Knecht . Peptide Sequence Effects Control the Single Pot Reduction, Nucleation, and Growth of Au Nanoparticles. The Journal of Physical Chemistry C 2016, 120 (33) , 18917-18924. https://doi.org/10.1021/acs.jpcc.6b06046
    31. Anas M. Sultan, Zayd C. Westcott, Zak E. Hughes, J. Pablo Palafox-Hernandez, Tristan Giesa, Valeria Puddu, Markus J. Buehler, Carole C. Perry, and Tiffany R. Walsh . Aqueous Peptide–TiO2 Interfaces: Isoenergetic Binding via Either Entropically or Enthalpically Driven Mechanisms. ACS Applied Materials & Interfaces 2016, 8 (28) , 18620-18630. https://doi.org/10.1021/acsami.6b05200
    32. Guglielmo Fernandez Garcia, Alessandro Lunghi, Federico Totti, and Roberta Sessoli . Toward Mesoscale Properties of Self-Assembled Monolayers of SMM on Au(111): An Integrated Ad Hoc FF and DFT Study. The Journal of Physical Chemistry C 2016, 120 (27) , 14774-14781. https://doi.org/10.1021/acs.jpcc.6b05017
    33. Tzu-Jen Lin and Hendrik Heinz . Accurate Force Field Parameters and pH Resolved Surface Models for Hydroxyapatite to Understand Structure, Mechanics, Hydration, and Biological Interfaces. The Journal of Physical Chemistry C 2016, 120 (9) , 4975-4992. https://doi.org/10.1021/acs.jpcc.5b12504
    34. Nicholas M. Bedford, Zak E. Hughes, Zhenghua Tang, Yue Li, Beverly D. Briggs, Yang Ren, Mark T. Swihart, Valeri G. Petkov, Rajesh R. Naik, Marc R. Knecht, and Tiffany R. Walsh . Sequence-Dependent Structure/Function Relationships of Catalytic Peptide-Enabled Gold Nanoparticles Generated under Ambient Synthetic Conditions. Journal of the American Chemical Society 2016, 138 (2) , 540-548. https://doi.org/10.1021/jacs.5b09529
    35. J. Pablo Palafox-Hernandez, Chang-Keun Lim, Zhenghua Tang, Kurt L. M. Drew, Zak E. Hughes, Yue Li, Mark T. Swihart, Paras N. Prasad, Marc R. Knecht, and Tiffany R. Walsh . Optical Actuation of Inorganic/Organic Interfaces: Comparing Peptide-Azobenzene Ligand Reconfiguration on Gold and Silver Nanoparticles. ACS Applied Materials & Interfaces 2016, 8 (1) , 1050-1060. https://doi.org/10.1021/acsami.5b11989
    36. Nicholas A. Merrill, Erik M. McKee, Kyle C. Merino, Lawrence F. Drummy, Sungsik Lee, Benjamin Reinhart, Yang Ren, Anatoly I. Frenkel, Rajesh R. Naik, Nicholas M. Bedford, and Marc R. Knecht . Identifying the Atomic-Level Effects of Metal Composition on the Structure and Catalytic Activity of Peptide-Templated Materials. ACS Nano 2015, 9 (12) , 11968-11979. https://doi.org/10.1021/acsnano.5b04665
    37. Jordan J. Winetrout, Krishan Kanhaiya, Joshua Kemppainen, Pieter J. in ‘t Veld, Geeta Sachdeva, Ravindra Pandey, Behzad Damirchi, Adri van Duin, Gregory M. Odegard, Hendrik Heinz. Implementing reactivity in molecular dynamics simulations with harmonic force fields. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-50793-0
    38. Zhe-Wei Li, Tsuei-Yun Fang, Tai-Hsiang Wei, Shi-Yow Lin, Wen-Chi Tseng. Nanoparticles of Noble Metal Stabilized by Soluble Multi-l-Arginyl-Poly-l-Aspartate (Cyanophycin): A Comparative Study of Photothermal Effect, Cytotoxicity, Catalysis. Journal of Polymers and the Environment 2023, 31 (12) , 5099-5109. https://doi.org/10.1007/s10924-023-02931-w
    39. Charles J. Corulli, Emily A. Groover, John D. Attelah, Carley B. Miller, Beverly B. Penland. Rational design of peptides for biomimetic palladium nanoparticle catalysis with Suzuki and Heck coupling in ethanol. Colloid and Interface Science Communications 2023, 54 , 100708. https://doi.org/10.1016/j.colcom.2023.100708
    40. Adithya Polasa, Imann Mosleh, James Losey, Alireza Abbaspourrad, Robert Beitle, Mahmoud Moradi. Developing a rational approach to designing recombinant proteins for peptide-directed nanoparticle synthesis. Nanoscale Advances 2022, 4 (15) , 3161-3171. https://doi.org/10.1039/D2NA00212D
    41. Sharad Maheshwari, Yawei Li, Michael J. Janik. The Fe 2 O 3 (0001) Surface Under Electroreduction Conditions: A DFT Study of L-Cysteine Adsorption. Journal of The Electrochemical Society 2022, 169 (6) , 064513. https://doi.org/10.1149/1945-7111/ac7826
    42. Yunan Huang, Imann Mosleh, Alireza Abbaspourrad. Impact of protein/peptide templates on metallic nanoparticle synthesis and applications. Nano-Structures & Nano-Objects 2022, 30 , 100864. https://doi.org/10.1016/j.nanoso.2022.100864
    43. Yani Pan, Amy Szuchmacher Blum, Lena Simine, Janine Mauzeroll. Nanometals templated by tobacco mosaic virus coat protein with enhanced catalytic activity. Applied Catalysis B: Environmental 2021, 298 , 120540. https://doi.org/10.1016/j.apcatb.2021.120540
    44. Krishan Kanhaiya, Seonghan Kim, Wonpil Im, Hendrik Heinz. Accurate simulation of surfaces and interfaces of ten FCC metals and steel using Lennard–Jones potentials. npj Computational Materials 2021, 7 (1) https://doi.org/10.1038/s41524-020-00478-1
    45. M. Carmen Herrera-Beurnio, Jesús Hidalgo-Carrillo, Francisco J. López-Tenllado, Juan Martin-Gómez, Rafael C. Estévez, Francisco J. Urbano, Alberto Marinas. Bio-Templating: An Emerging Synthetic Technique for Catalysts. A Review. Catalysts 2021, 11 (11) , 1364. https://doi.org/10.3390/catal11111364
    46. Shiyi Wang, Enbo Zhu, Yu Huang, Hendrik Heinz. Direct correlation of oxygen adsorption on platinum-electrolyte interfaces with the activity in the oxygen reduction reaction. Science Advances 2021, 7 (24) https://doi.org/10.1126/sciadv.abb1435
    47. Kai Wang, Jiapeng Liu, Zhenghua Tang, Ligui Li, Zheng Wang, Muhammad Zubair, Francesco Ciucci, Lars Thomsen, Joshua Wright, Nicholas M. Bedford. Establishing structure/property relationships in atomically dispersed Co–Fe dual site M–N x catalysts on microporous carbon for the oxygen reduction reaction. Journal of Materials Chemistry A 2021, 9 (22) , 13044-13055. https://doi.org/10.1039/D1TA02925H
    48. Guangchao Zheng, Erjun Liang, Shenli Wang. Proteins Engineer the Size and Morphology of Noble Metal Nanoparticles. 2021, 333-354. https://doi.org/10.1039/9781839163623-00333
    49. Yani Pan, Waldemir J. Paschoalino, Amy Szuchmacher Blum, Janine Mauzeroll. Recent Advances in Bio‐Templated Metallic Nanomaterial Synthesis and Electrocatalytic Applications. ChemSusChem 2021, 14 (3) , 758-791. https://doi.org/10.1002/cssc.202002532
    50. Hasti Iranmanesh, Bijil Subhash, Dominic J. Glover, Nicholas M. Bedford. Proteins and peptides for functional nanomaterials: Current efforts and new opportunities. MRS Bulletin 2020, 45 (12) , 1005-1016. https://doi.org/10.1557/mrs.2020.299
    51. Charles N. Loney, Sharad Maheshwari, Nuttanit Pramounmat, Michael J. Janik, Julie N. Renner. Effects of Peptide-Functionalized Surfaces on the Electrochemical Hydrogen Evolution Reaction. Journal of Electrochemical Energy Conversion and Storage 2020, 17 (4) https://doi.org/10.1115/1.4046415
    52. Imann Mosleh, Hamid R. Shahsavari, Robert Beitle, M. Hassan Beyzavi. Recombinant Peptide Fusion Protein‐Templated Palladium Nanoparticles for Suzuki‐Miyaura and Stille Coupling Reactions. ChemCatChem 2020, 12 (11) , 2942-2946. https://doi.org/10.1002/cctc.201902099
    53. Jose Isagani B. Janairo, Kathleen B. Aviso, Michael Angelo B. Promentilla, Raymond R. Tan. Enhanced Hyperbox Classifier Model for Nanomaterial Discovery. AI 2020, 1 (2) , 299-311. https://doi.org/10.3390/ai1020020
    54. Rita Tejada‐Vaprio, Imann Mosleh, Rudra Palash Mukherjee, Hazim Aljewari, McKinzie Fruchtl, Ahmed Elmasheiti, Nicholas Bedford, Lauren Greenlee, M. Hassan Beyzavi, Robert Beitle. Recombinant peptide fusion construction for protein‐templated catalytic palladium nanoparticles. Biotechnology Progress 2020, 36 (3) https://doi.org/10.1002/btpr.2956
    55. Ameya D. Bendre, Viraj P. Patil, Santosh S. Terdale, Kisan M. Kodam, Suresh B. Waghmode. A simple, efficient and green approach for the synthesis of palladium nanoparticles using Oxytocin: Application for ligand free Suzuki reaction and total synthesis of aspongpyrazine A. Journal of Organometallic Chemistry 2020, 909 , 121093. https://doi.org/10.1016/j.jorganchem.2019.121093
    56. Chandrani Pramanik, Tariq Jamil, Jacob R. Gissinger, Darice Guittet, Pedro J. Arias‐Monje, Satish Kumar, Hendrik Heinz. Polyacrylonitrile Interactions with Carbon Nanotubes in Solution: Conformations and Binding as a Function of Solvent, Temperature, and Concentration. Advanced Functional Materials 2019, 29 (50) https://doi.org/10.1002/adfm.201905247
    57. Manuel A. Ortuño, Núria López. Reaction mechanisms at the homogeneous–heterogeneous frontier: insights from first-principles studies on ligand-decorated metal nanoparticles. Catalysis Science & Technology 2019, 9 (19) , 5173-5185. https://doi.org/10.1039/C9CY01351B
    58. Tariq Jamil, Jacob R. Gissinger, Amanda Garley, Nabanita Saikia, Arun K. Upadhyay, Hendrik Heinz. Dynamics of carbohydrate strands in water and interactions with clay minerals: influence of pH, surface chemistry, and electrolytes. Nanoscale 2019, 11 (23) , 11183-11194. https://doi.org/10.1039/C9NR01867K
    59. Masahiro Ehara, U. Deva Priyakumar. Gold‐Palladium Nanocluster Catalysts for Homocoupling: Electronic Structure and Interface Dynamics. The Chemical Record 2019, 19 (5) , 947-959. https://doi.org/10.1002/tcr.201800177
    60. Jose Isagani B. Janairo. Predictive Analytics for Biomineralization Peptide Binding Affinity. BioNanoScience 2019, 9 (1) , 74-78. https://doi.org/10.1007/s12668-018-0578-4
    61. Luyang Zhao, Qianli Zou, Xuehai Yan. Self-Assembling Peptide-Based Nanoarchitectonics. Bulletin of the Chemical Society of Japan 2019, 92 (1) , 70-79. https://doi.org/10.1246/bcsj.20180248
    62. S.R. Ede, S. Anantharaj, K. Sakthikumar, K. Karthick, Subrata Kundu. Investigation of various synthetic protocols for self-assembled nanomaterials and their role in catalysis: progress and perspectives. Materials Today Chemistry 2018, 10 , 31-78. https://doi.org/10.1016/j.mtchem.2018.07.003
    63. Isidro Lorenzo Geada, Hadi Ramezani-Dakhel, Tariq Jamil, Marialore Sulpizi, Hendrik Heinz. Insight into induced charges at metal surfaces and biointerfaces using a polarizable Lennard–Jones potential. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-03137-8
    64. Yiming Wang, Nitya Sai Reddy Satyavolu, Yi Lu. Sequence-specific control of inorganic nanomaterials morphologies by biomolecules. Current Opinion in Colloid & Interface Science 2018, 38 , 158-169. https://doi.org/10.1016/j.cocis.2018.10.009
    65. Juan Liu, Zewei Wang, Jin Zeng, Hendrik Heinz. Molecular structure and assembly of peptide-derived nanomaterials. Current Opinion in Green and Sustainable Chemistry 2018, 12 , 38-46. https://doi.org/10.1016/j.cogsc.2018.05.007
    66. Catherine J. Munro, Marc R. Knecht. Applications and advancements of peptides in the design of metallic nanomaterials. Current Opinion in Green and Sustainable Chemistry 2018, 12 , 63-68. https://doi.org/10.1016/j.cogsc.2018.06.002
    67. Zak E. Hughes, Tiffany R. Walsh. Probing nano-patterned peptide self-organisation at the aqueous graphene interface. Nanoscale 2018, 10 (1) , 302-311. https://doi.org/10.1039/C7NR06441A
    68. Ratan K. Mishra, Aslam Kunhi Mohamed, David Geissbühler, Hegoi Manzano, Tariq Jamil, Rouzbeh Shahsavari, Andrey G. Kalinichev, Sandra Galmarini, Lei Tao, Hendrik Heinz, Roland Pellenq, Adri C.T. van Duin, Stephen C. Parker, Robert J. Flatt, Paul Bowen. : A force field database for cementitious materials including validations, applications and opportunities. Cement and Concrete Research 2017, 102 , 68-89. https://doi.org/10.1016/j.cemconres.2017.09.003
    69. Chamila C. Dharmawardhana, Krishan Kanhaiya, Tzu-Jen Lin, Amanda Garley, Marc R. Knecht, Jihan Zhou, Jianwei Miao, Hendrik Heinz. Reliable computational design of biological-inorganic materials to the large nanometer scale using Interface-FF. Molecular Simulation 2017, 43 (13-16) , 1394-1405. https://doi.org/10.1080/08927022.2017.1332414
    70. Niloofar Nayebi, Sibel Cetinel, Sara Ibrahim Omar, Jack A. Tuszynski, Carlo Montemagno. A computational method for selecting short peptide sequences for inorganic material binding. Proteins: Structure, Function, and Bioinformatics 2017, 85 (11) , 2024-2035. https://doi.org/10.1002/prot.25356
    71. Stefano Corra, Michal S Shoshan, Helma Wennemers. Peptide mediated formation of noble metal nanoparticles — controlling size and spatial arrangement. Current Opinion in Chemical Biology 2017, 40 , 138-144. https://doi.org/10.1016/j.cbpa.2017.09.005
    72. Madhulika Gupta, Tuhin S. Khan, Shelaka Gupta, Md. Imteyaz Alam, Manish Agarwal, M. Ali Haider. Non-bonding and bonding interactions of biogenic impurities with the metal catalyst and the design of bimetallic alloys. Journal of Catalysis 2017, 352 , 542-556. https://doi.org/10.1016/j.jcat.2017.06.027
    73. Matthias J. Young, Nicholas M. Bedford, Naisheng Jiang, Deqing Lin, Liming Dai. In situ electrochemical high-energy X-ray diffraction using a capillary working electrode cell geometry. Journal of Synchrotron Radiation 2017, 24 (4) , 787-795. https://doi.org/10.1107/S1600577517006282
    74. Hendrik Heinz, Chandrani Pramanik, Ozge Heinz, Yifu Ding, Ratan K. Mishra, Delphine Marchon, Robert J. Flatt, Irina Estrela-Lopis, Jordi Llop, Sergio Moya, Ronald F. Ziolo. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications. Surface Science Reports 2017, 72 (1) , 1-58. https://doi.org/10.1016/j.surfrep.2017.02.001
    75. Younan Xia, Kyle D. Gilroy, Hsin‐Chieh Peng, Xiaohu Xia. Keimvermitteltes Wachstum kolloidaler Metallnanokristalle. Angewandte Chemie 2017, 129 (1) , 60-98. https://doi.org/10.1002/ange.201604731
    76. Younan Xia, Kyle D. Gilroy, Hsin‐Chieh Peng, Xiaohu Xia. Seed‐Mediated Growth of Colloidal Metal Nanocrystals. Angewandte Chemie International Edition 2017, 56 (1) , 60-95. https://doi.org/10.1002/anie.201604731
    77. Zak E. Hughes, Michelle A. Nguyen, Yue Li, Mark T. Swihart, Tiffany R. Walsh, Marc R. Knecht. Elucidating the influence of materials-binding peptide sequence on Au surface interactions and colloidal stability of Au nanoparticles. Nanoscale 2017, 9 (1) , 421-432. https://doi.org/10.1039/C6NR07890G
    78. Hao Zhou, Lin Che, Xuyun Guo, Xue Wang, Jingjing Zhan, Minghuo Wu, Yufeng Hu, Xianliang Yi, Xuwang Zhang, Lifen Liu. Interface modulation of bacteriogenic Ag/AgCl nanoparticles by boosting the catalytic activity for reduction reactions using Co 2+ ions. Chemical Communications 2017, 53 (36) , 4946-4949. https://doi.org/10.1039/C7CC00684E
    79. Hadi Ramezani-Dakhel, Nicholas M. Bedford, Taylor J. Woehl, Marc R. Knecht, Rajesh R. Naik, Hendrik Heinz. Nature of peptide wrapping onto metal nanoparticle catalysts and driving forces for size control. Nanoscale 2017, 9 (24) , 8401-8409. https://doi.org/10.1039/C7NR02813J
    80. Qiang Li, Marcos Rellán-Piñeiro, Neyvis Almora-Barrios, Miquel Garcia-Ratés, Ioannis N. Remediakis, Núria López. Shape control in concave metal nanoparticles by etching. Nanoscale 2017, 9 (35) , 13089-13094. https://doi.org/10.1039/C7NR03889E
    81. Wei Wang, Caleb F. Anderson, Zongyuan Wang, Wei Wu, Honggang Cui, Chang-Jun Liu. Peptide-templated noble metal catalysts: syntheses and applications. Chem. Sci. 2017, 8 (5) , 3310-3324. https://doi.org/10.1039/C7SC00069C
    82. Kai Liu, Ruiyun Zhang, Yongxin Li, Tifeng Jiao, Dan Ding, Xuehai Yan. Tunable Aggregation‐Induced Emission of Tetraphenylethylene via Short Peptide‐Directed Self‐Assembly. Advanced Materials Interfaces 2017, 4 (1) https://doi.org/10.1002/admi.201600183
    83. Liliana Carreño-Fuentes, Daniel Bahena, Laura Palomares, Octavio Ramírez, Miguel José-Yacamán, Germán Plascencia-Villa. Molecular Docking and Aberration-Corrected STEM of Palladium Nanoparticles on Viral Templates. Metals 2016, 6 (9) , 200. https://doi.org/10.3390/met6090200
    84. Yuanyuan Zhu, Catherine J Munro, Matthew J Olszta, Danny J Edwards, Adam B Braunschweig, Marc R Knecht, Nigel D Browning. Dose-rate controlled energy dispersive x-ray spectroscopic mapping of the metallic components in a biohybrid nanosystem. Semiconductor Science and Technology 2016, 31 (8) , 084002. https://doi.org/10.1088/0268-1242/31/8/084002
    85. Hendrik Heinz. Adsorption of biomolecules and polymers on silicates, glasses, and oxides: mechanisms, predictions, and opportunities by molecular simulation. Current Opinion in Chemical Engineering 2016, 11 , 34-41. https://doi.org/10.1016/j.coche.2015.12.003
    86. Jose Isagani B. Janairo. Biomineralization and the Sequence: Function Effects on the Peptide. 2016, 19-35. https://doi.org/10.1007/978-981-10-0858-0_2
    87. V.L. Pecoraro. Preface. 2016, xvii-xxii. https://doi.org/10.1016/S0076-6879(16)30242-7
    88. N.M. Bedford, C.J. Munro, M.R. Knecht. Peptide Binding for Bio-Based Nanomaterials. 2016, 581-598. https://doi.org/10.1016/bs.mie.2016.05.010
    89. Hendrik Heinz, Hadi Ramezani-Dakhel. Simulations of inorganic–bioorganic interfaces to discover new materials: insights, comparisons to experiment, challenges, and opportunities. Chemical Society Reviews 2016, 45 (2) , 412-448. https://doi.org/10.1039/C5CS00890E
    90. Zak E. Hughes, Tiffany R. Walsh. Non-covalent adsorption of amino acid analogues on noble-metal nanoparticles: influence of edges and vertices. Physical Chemistry Chemical Physics 2016, 18 (26) , 17525-17533. https://doi.org/10.1039/C6CP02323A
    91. Binay Prasai, A. R. Wilson, B. J. Wiley, Y. Ren, Valeri Petkov. On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments. Nanoscale 2015, 7 (42) , 17902-17922. https://doi.org/10.1039/C5NR04678E
    92. Beverly D. Briggs, Nicholas M. Bedford, Soenke Seifert, Hilmar Koerner, Hadi Ramezani-Dakhel, Hendrik Heinz, Rajesh R. Naik, Anatoly I. Frenkel, Marc R. Knecht. Atomic-scale identification of Pd leaching in nanoparticle catalyzed C–C coupling: effects of particle surface disorder. Chemical Science 2015, 6 (11) , 6413-6419. https://doi.org/10.1039/C5SC01424G

    ACS Nano

    Cite this: ACS Nano 2015, 9, 5, 5082–5092
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.5b00168
    Published April 23, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    2067

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.