ACS Publications. Most Trusted. Most Cited. Most Read
Self-Assembly of Silver Metal Clusters of Small Atomicity on Cyclic Peptide Nanotubes
My Activity
    Article

    Self-Assembly of Silver Metal Clusters of Small Atomicity on Cyclic Peptide Nanotubes
    Click to copy article linkArticle link copied!

    View Author Information
    Center for Research in Biological Chemistry and Molecular Materials (CIQUS), Organic Chemistry Department, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
    Technological Research Institute (IIT), Physical Chemistry Department, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
    *Address correspondence to [email protected], [email protected]
    Other Access OptionsSupporting Information (2)

    ACS Nano

    Cite this: ACS Nano 2015, 9, 11, 10834–10843
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.5b03445
    Published October 6, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Subnanometric noble metal clusters, composed by only a few atoms, behave like molecular entities and display magnetic, luminescent and catalytic activities. However, noncovalent interactions of molecular metal clusters, lacking of any ligand or surfactant, have not been seen at work. Theoretically attractive and experimentally discernible, van der Waals forces and noncovalent interactions at the metal/organic interfaces will be crucial to understand and develop the next generation of hybrid nanomaterials. Here, we present experimental and theoretical evidence of noncovalent interactions between subnanometric metal (0) silver clusters and aromatic rings and their application in the preparation of 1D self-assembled hybrid architectures with ditopic peptide nanotubes. Atomic force microscopy, fluorescence experiments, circular dichroism and computational simulations verified the occurrence of these interactions in the clean and mild formation of a novel peptide nanotube and metal cluster hybrid material. The findings reported here confirmed the sensitivity of silver metal clusters of small atomicity toward noncovalent interactions, a concept that could find multiple applications in nanotechnology. We conclude that induced supramolecular forces are optimal candidates for the precise spatial positioning and properties modulation of molecular metal clusters. The reported results herein outline and generalize the possibilities that noncovalent interactions will have in this emerging field.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.5b03445.

    • Full experimental and computational details. (PDF)

    • Video S1. (MPG)

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 49 publications.

    1. Qiao Song, Zihe Cheng, Maria Kariuki, Stephen C. L. Hall, Sophie K. Hill, Julia Y. Rho, Sébastien Perrier. Molecular Self-Assembly and Supramolecular Chemistry of Cyclic Peptides. Chemical Reviews 2021, 121 (22) , 13936-13995. https://doi.org/10.1021/acs.chemrev.0c01291
    2. Martin Calvelo, Charlotte I. Lynch, Juan R. Granja, Mark S. P. Sansom, Rebeca Garcia-Fandiño. Effect of Water Models on Transmembrane Self-Assembled Cyclic Peptide Nanotubes. ACS Nano 2021, 15 (4) , 7053-7064. https://doi.org/10.1021/acsnano.1c00155
    3. Chizuru Kogame-Asahara, Hitomi Iguchi, Kenichiro Honda, Hajime Shigemitsu, Toshiyuki Kida. Terminal Trialkylsilyl Substituent Effect of Janus-type Molecular Tubes on the Inclusion of Unsaturated Fatty Acid Esters. ACS Omega 2021, 6 (4) , 3227-3231. https://doi.org/10.1021/acsomega.0c05672
    4. Toshimi Shimizu, Wuxiao Ding, Naohiro Kameta. Soft-Matter Nanotubes: A Platform for Diverse Functions and Applications. Chemical Reviews 2020, 120 (4) , 2347-2407. https://doi.org/10.1021/acs.chemrev.9b00509
    5. Ignacio Insua, Javier Montenegro. 1D to 2D Self Assembly of Cyclic Peptides. Journal of the American Chemical Society 2020, 142 (1) , 300-307. https://doi.org/10.1021/jacs.9b10582
    6. Polina G. Lisinetskaya, Roland Mitrić. Collective Response in DNA-Stabilized Silver Cluster Assemblies from First-Principles Simulations. The Journal of Physical Chemistry Letters 2019, 10 (24) , 7884-7889. https://doi.org/10.1021/acs.jpclett.9b03136
    7. Mojtaba Shamsipur, Karam Molaei, Fatemeh Molaabasi, Saman Hosseinkhani, Avat Taherpour, Morteza Sarparast, Seyyed Ebrahim Moosavifard, Ali Barati. Aptamer-Based Fluorescent Biosensing of Adenosine Triphosphate and Cytochrome c via Aggregation-Induced Emission Enhancement on Novel Label-Free DNA-Capped Silver Nanoclusters/Graphene Oxide Nanohybrids. ACS Applied Materials & Interfaces 2019, 11 (49) , 46077-46089. https://doi.org/10.1021/acsami.9b14487
    8. Makoto Yoneya, Shin-ya Sugisawa. Simulation of Colloidal Silver Nanoparticle Formation from a Precursor Complex. The Journal of Physical Chemistry C 2019, 123 (17) , 11257-11263. https://doi.org/10.1021/acs.jpcc.9b01360
    9. Puru Jena, Qiang Sun. Super Atomic Clusters: Design Rules and Potential for Building Blocks of Materials. Chemical Reviews 2018, 118 (11) , 5755-5870. https://doi.org/10.1021/acs.chemrev.7b00524
    10. Nuria Rodríguez-Vázquez, Rebeca García-Fandiño, María J. Aldegunde, José Brea, María Isabel Loza, Manuel Amorín, and Juan R. Granja . cis-Platinum Complex Encapsulated in Self-Assembling Cyclic Peptide Dimers. Organic Letters 2017, 19 (10) , 2560-2563. https://doi.org/10.1021/acs.orglett.7b00871
    11. Merle I. S. Röhr, Polina G. Lisinetskaya, and Roland Mitric . Excitonic Properties of Ordered Metal Nanocluster Arrays: 2D Silver Clusters at Multiporphyrin Templates. The Journal of Physical Chemistry A 2016, 120 (26) , 4465-4472. https://doi.org/10.1021/acs.jpca.6b04243
    12. Ruicong Feng, Xianjia Yan, Yufeng Sang, Xindi Liu, Zhi Luo, Zhenhua Xie, Yubin Ke, Qiao Song. Transitioning Room‐Temperature Phosphorescence from Solid States to Aqueous Phases via a Cyclic Peptide‐Based Supramolecular Scaffold. Angewandte Chemie 2024, https://doi.org/10.1002/ange.202421729
    13. Ruicong Feng, Xianjia Yan, Yufeng Sang, Xindi Liu, Zhi Luo, Zhenhua Xie, Yubin Ke, Qiao Song. Transitioning Room‐Temperature Phosphorescence from Solid States to Aqueous Phases via a Cyclic Peptide‐Based Supramolecular Scaffold. Angewandte Chemie International Edition 2024, https://doi.org/10.1002/anie.202421729
    14. Yong Wu, Yuqian Wang, Xu Yu, Qiao Song. Comprehensive Study of Artificial Light‐Harvesting Systems with a Multi‐Step Sequential Energy Transfer Mechanism. Advanced Science 2024, 11 (31) https://doi.org/10.1002/advs.202404269
    15. Yuqing Lei, Yuqian Wang, Sophie K. Hill, Zihe Cheng, Qiao Song, Sébastien Perrier. Supra‐Fluorophores: Ultrabright Fluorescent Supramolecular Assemblies Derived from Conventional Fluorophores in Water. Advanced Materials 2024, 36 (25) https://doi.org/10.1002/adma.202401346
    16. Haicheng Lu, Yuqian Wang, Sophie K. Hill, Hanqiu Jiang, Yubin Ke, Shaohui Huang, Dunjin Zheng, Sébastien Perrier, Qiao Song. Supra‐Cyanines: Ultrabright Cyanine‐Based Fluorescent Supramolecular Materials in Solution and in the Solid State. Angewandte Chemie 2023, 135 (48) https://doi.org/10.1002/ange.202311224
    17. Haicheng Lu, Yuqian Wang, Sophie K. Hill, Hanqiu Jiang, Yubin Ke, Shaohui Huang, Dunjin Zheng, Sébastien Perrier, Qiao Song. Supra‐Cyanines: Ultrabright Cyanine‐Based Fluorescent Supramolecular Materials in Solution and in the Solid State. Angewandte Chemie International Edition 2023, 62 (48) https://doi.org/10.1002/anie.202311224
    18. Samuel E. Clark, Andrew W. Heard, Charlie T. McTernan, Tanya K. Ronson, Barbara Rossi, Petr Rozhin, Silvia Marchesan, Jonathan R. Nitschke. A Double‐Walled Tetrahedron with Ag I 4 Vertices Binds Different Guests in Distinct Sites**. Angewandte Chemie 2023, 135 (16) https://doi.org/10.1002/ange.202301612
    19. Samuel E. Clark, Andrew W. Heard, Charlie T. McTernan, Tanya K. Ronson, Barbara Rossi, Petr Rozhin, Silvia Marchesan, Jonathan R. Nitschke. A Double‐Walled Tetrahedron with Ag I 4 Vertices Binds Different Guests in Distinct Sites**. Angewandte Chemie International Edition 2023, 62 (16) https://doi.org/10.1002/anie.202301612
    20. Tomasz Rojek, Katarzyna Ślepokura, Vasyl Kinzhybalo, Marek Duczmal, Agnieszka Wojciechowska, Ewa Matczak-Jon. Synthesis, structural, spectroscopic and magnetic studies of tetranuclear Ni(II) and Co(II) clusters based on cyclobutyl and cyclopentyl-substituted analogues of zoledronic acid. Polyhedron 2023, 233 , 116301. https://doi.org/10.1016/j.poly.2023.116301
    21. Alpana Boruah, Arup Roy. Advances in hybrid peptide-based self-assembly systems and their applications. Biomaterials Science 2022, 10 (17) , 4694-4723. https://doi.org/10.1039/D2BM00775D
    22. Qiao Song, Jingyu Zhang, Xinxin Yu, Zihe Cheng, Jie Yang, Stephen C. L. Hall, Sébastien Perrier. Tailoring the luminescence of FRET systems built using supramolecular polymeric nanotubes. Polymer Chemistry 2022, 13 (30) , 4366-4371. https://doi.org/10.1039/D2PY00557C
    23. Juan M. Priegue, Iria Louzao, Iván Gallego, Javier Montenegro, Juan R. Granja. 1D alignment of proteins and other nanoparticles by using reversible covalent bonds on cyclic peptide nanotubes. Organic Chemistry Frontiers 2022, 9 (5) , 1226-1233. https://doi.org/10.1039/D1QO01349A
    24. Chenlei Wang, Linping Fu, Zhiyuan Hu, Yeteng Zhong. A mini-review on peptide-based self-assemblies and their biological applications. Nanotechnology 2022, 33 (6) , 062004. https://doi.org/10.1088/1361-6528/ac2fe3
    25. Alejandro Méndez-Ardoy, Ignacio Insua, Juan R. Granja, Javier Montenegro. Cyclization and Self-Assembly of Cyclic Peptides. 2022, 449-466. https://doi.org/10.1007/978-1-0716-1689-5_24
    26. Federica Novelli, Marcos Vilela, Antía Pazó, Manuel Amorín, Juan R. Granja. Molecular Plumbing to Bend Self‐Assembling Peptide Nanotubes. Angewandte Chemie 2021, 133 (34) , 18986-18992. https://doi.org/10.1002/ange.202107034
    27. Federica Novelli, Marcos Vilela, Antía Pazó, Manuel Amorín, Juan R. Granja. Molecular Plumbing to Bend Self‐Assembling Peptide Nanotubes. Angewandte Chemie International Edition 2021, 60 (34) , 18838-18844. https://doi.org/10.1002/anie.202107034
    28. Manzar Abbas, Atia Atiq, Ruirui Xing, Xuehai Yan. Silver-incorporating peptide and protein supramolecular nanomaterials for biomedical applications. Journal of Materials Chemistry B 2021, 9 (22) , 4444-4458. https://doi.org/10.1039/D1TB00025J
    29. Farzane Abasi Joozdani, Majid Taghdir. A molecular dynamics investigation on transporting mechanism of glucose through a cyclic peptide nanotube. Journal of Biomolecular Structure and Dynamics 2021, 39 (6) , 2230-2241. https://doi.org/10.1080/07391102.2020.1751292
    30. Toshimi Shimizu. Cyclic Peptide-Based and Cyclic Peptide–Polymer-Based Nanotubes. 2021, 203-240. https://doi.org/10.1007/978-981-16-2685-2_6
    31. Samaneh Pasban, Heidar Raissi. New insights into Hexakis macrocycles as a novel nano-carrier for highly potent anti-cancer treatment: A new challenge in drug delivery. Colloids and Surfaces B: Biointerfaces 2021, 197 , 111402. https://doi.org/10.1016/j.colsurfb.2020.111402
    32. Martín I. Taccone, Ricardo A. Fernández, Franco L. Molina, Ignacio Gustín, Cristián G. Sánchez, Sergio A. Dassie, Gustavo A. Pino. On the photophysics of electrochemically generated silver nanoclusters: spectroscopic and theoretical characterization. Physical Chemistry Chemical Physics 2020, 22 (29) , 16813-16821. https://doi.org/10.1039/D0CP02136A
    33. Martín Calvelo, Alejandro Lamas, Arcadio Guerra, Manuel Amorín, Rebeca Garcia‐Fandino, Juan R. Granja. Parallel Versus Antiparallel β‐Sheet Structure in Cyclic Peptide Hybrids Containing γ‐ or δ‐Cyclic Amino Acids. Chemistry – A European Journal 2020, 26 (26) , 5846-5858. https://doi.org/10.1002/chem.201905554
    34. Alejandro Méndez‐Ardoy, Alfonso Bayón‐Fernández, Ziyi Yu, Chris Abell, Juan R. Granja, Javier Montenegro. Spatially Controlled Supramolecular Polymerization of Peptide Nanotubes by Microfluidics. Angewandte Chemie 2020, 132 (17) , 6969-6975. https://doi.org/10.1002/ange.202000103
    35. Alejandro Méndez‐Ardoy, Alfonso Bayón‐Fernández, Ziyi Yu, Chris Abell, Juan R. Granja, Javier Montenegro. Spatially Controlled Supramolecular Polymerization of Peptide Nanotubes by Microfluidics. Angewandte Chemie International Edition 2020, 59 (17) , 6902-6908. https://doi.org/10.1002/anie.202000103
    36. Andrea Pizzi, Haxel Lionel Ozores, Martín Calvelo, Rebeca García‐Fandiño, Manuel Amorín, Nicola Demitri, Giancarlo Terraneo, Silvia Bracco, Angiolina Comotti, Piero Sozzani, Charl X. Bezuidenhout, Pierangelo Metrangolo, Juan R. Granja. Tight Xenon Confinement in a Crystalline Sandwich‐like Hydrogen‐Bonded Dimeric Capsule of a Cyclic Peptide. Angewandte Chemie 2019, 131 (41) , 14614-14618. https://doi.org/10.1002/ange.201906599
    37. Andrea Pizzi, Haxel Lionel Ozores, Martín Calvelo, Rebeca García‐Fandiño, Manuel Amorín, Nicola Demitri, Giancarlo Terraneo, Silvia Bracco, Angiolina Comotti, Piero Sozzani, Charl X. Bezuidenhout, Pierangelo Metrangolo, Juan R. Granja. Tight Xenon Confinement in a Crystalline Sandwich‐like Hydrogen‐Bonded Dimeric Capsule of a Cyclic Peptide. Angewandte Chemie International Edition 2019, 58 (41) , 14472-14476. https://doi.org/10.1002/anie.201906599
    38. Richard Booth, Ignacio Insua, Ghibom Bhak, Javier Montenegro. Self-assembled micro-fibres by oxime connection of linear peptide amphiphiles. Organic & Biomolecular Chemistry 2019, 17 (7) , 1984-1991. https://doi.org/10.1039/C8OB02243G
    39. Yusuke Kamano, Yuki Tabata, Hirotaka Uji, Shunsaku Kimura. Chiral and random arrangements of flavin chromophores along cyclic peptide nanotubes on gold influencing differently on surface potential and piezoelectricity. RSC Advances 2019, 9 (7) , 3618-3624. https://doi.org/10.1039/C8RA10466B
    40. Alejandro Lamas, Arcadio Guerra, Manuel Amorín, Juan R. Granja. New self-assembling peptide nanotubes of large diameter using δ-amino acids. Chemical Science 2018, 9 (43) , 8228-8233. https://doi.org/10.1039/C8SC02276C
    41. Federica Novelli, Serena De Santis, Stefano Morosetti, Mattia Titubante, Giancarlo Masci, Anita Scipioni. Peptides with regularly alternating enantiomeric sequence: From ion channel models to bioinspired nanotechnological applications. Peptide Science 2018, 110 (5) https://doi.org/10.1002/pep2.24043
    42. Alejandro Méndez-Ardoy, Juan R. Granja, Javier Montenegro. pH-Triggered self-assembly and hydrogelation of cyclic peptide nanotubes confined in water micro-droplets. Nanoscale Horizons 2018, 3 (4) , 391-396. https://doi.org/10.1039/C8NH00009C
    43. Andrea Nitti, Aurora Pacini, Dario Pasini. Chiral Nanotubes. Nanomaterials 2017, 7 (7) , 167. https://doi.org/10.3390/nano7070167
    44. Alberto Fuertes, Haxel Lionel Ozores, Manuel Amorín, Juan R. Granja. Self-assembling Venturi-like peptide nanotubes. Nanoscale 2017, 9 (2) , 748-753. https://doi.org/10.1039/C6NR08174F
    45. Alberto Fuertes, Marisa Juanes, Juan R. Granja, Javier Montenegro. Supramolecular functional assemblies: dynamic membrane transporters and peptide nanotubular composites. Chemical Communications 2017, 53 (56) , 7861-7871. https://doi.org/10.1039/C7CC02997G
    46. N. Rodríguez-Vázquez, M. Amorín, J. R. Granja. Recent advances in controlling the internal and external properties of self-assembling cyclic peptide nanotubes and dimers. Organic & Biomolecular Chemistry 2017, 15 (21) , 4490-4505. https://doi.org/10.1039/C7OB00351J
    47. Hirotaka Uji, Hyunji Kim, Tomoya Imai, Shota Mitani, Junji Sugiyama, Shunsaku Kimura. Electronic properties of tetrathiafulvalene‐modified cyclic‐β‐peptide nanotube. Peptide Science 2016, 106 (3) , 275-282. https://doi.org/10.1002/bip.22850
    48. Nuria Rodríguez‐Vázquez, Manuel Amorín, Ignacio Alfonso, Juan R. Granja. Anion Recognition and Induced Self‐Assembly of an α,γ‐Cyclic Peptide To Form Spherical Clusters. Angewandte Chemie International Edition 2016, 55 (14) , 4504-4508. https://doi.org/10.1002/anie.201511857
    49. Nuria Rodríguez‐Vázquez, Manuel Amorín, Ignacio Alfonso, Juan R. Granja. Anion Recognition and Induced Self‐Assembly of an α,γ‐Cyclic Peptide To Form Spherical Clusters. Angewandte Chemie 2016, 128 (14) , 4580-4584. https://doi.org/10.1002/ange.201511857

    ACS Nano

    Cite this: ACS Nano 2015, 9, 11, 10834–10843
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.5b03445
    Published October 6, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    3032

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.