Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Imaging Pancreatic Cancer with a Peptide−Nanoparticle Conjugate Targeted to Normal Pancreas
My Activity

Figure 1Loading Img
    Article

    Imaging Pancreatic Cancer with a Peptide−Nanoparticle Conjugate Targeted to Normal Pancreas
    Click to copy article linkArticle link copied!

    View Author Information
    Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Charlestown, Massachusetts 02129
    Other Access Options

    Bioconjugate Chemistry

    Cite this: Bioconjugate Chem. 2006, 17, 4, 905–911
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bc060035+
    Published May 26, 2006
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Designing molecules that bind to targets that become upregulated or overexpressed as normal cells become cancerous is an important strategy for both therapeutic and diagnostic drug design. We hypothesized that pancreatic ductal adenocarcinoma (PDAC) might be imaged with the inverse strategy, that is by the design of a nanoparticle−conjugate targeted to bombesin (BN) receptors present on normal acinar cells of the pancreas. Using the fluorescein hapten visualization method to assess the presence of bombesin (BN) receptors, we first demonstrated BN receptors in the normal mouse and human pancreas, but then the lack of BN binding receptors in 13 out of 13 specimens of PDAC. The BN peptide−nanoparticle conjugate, BN−CLIO(Cy5.5), was synthesized and accumulated in the mouse pancreas in receptor dependent fashion, but not in a receptor dependent fashion in other tissues, based on tissue fluorescence measurements. The BN−CLIO(Cy5.5) nanoparticle decreased the T2 of normal pancreas and enhanced the ability to visualize tumor in a model of pancreatic cancer by MRI. The use of BN−CLIO(Cy5.5) nanoparticle as a normal tissue-targeted, T2-reducing contrast agent offers a promising approach to imaging PDAC.

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     Corresponding author. Fax:  617-726-5708. Phone:  617-726-5788. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 111 publications.

    1. Xin Yi Wong, Amadeo Sena-Torralba, Ruslan Álvarez-Diduk, Kasturi Muthoosamy, Arben Merkoçi. Nanomaterials for Nanotheranostics: Tuning Their Properties According to Disease Needs. ACS Nano 2020, 14 (3) , 2585-2627. https://doi.org/10.1021/acsnano.9b08133
    2. Sophie Richard, Ana Saric, Marianne Boucher, Christian Slomianny, Françoise Geffroy, Sébastien Mériaux, Yoann Lalatonne, Patrice X. Petit, and Laurence Motte . Antioxidative Theranostic Iron Oxide Nanoparticles toward Brain Tumors Imaging and ROS Production. ACS Chemical Biology 2016, 11 (10) , 2812-2819. https://doi.org/10.1021/acschembio.6b00558
    3. Francesca Stanzione and Arthi Jayaraman . Computational Design of Oligopeptide Containing Poly(ethylene glycol) Brushes for Stimuli-Responsive Drug Delivery. The Journal of Physical Chemistry B 2015, 119 (42) , 13309-13320. https://doi.org/10.1021/acs.jpcb.5b06838
    4. Chengli Yang, Tingting Hu, Hua Cao, Lijing Zhang, Pengxiang Zhou, Gu He, Xiangrong Song, Aiping Tong, Gang Guo, Fan Yang, Xiaoning Zhang, Zhiyong Qian, Xiaorong Qi, Liangxue Zhou, and Yu Zheng . Facile Construction of Chloroquine Containing PLGA-Based pDNA Delivery System for Efficient Tumor and Pancreatitis Targeting in Vitro and in Vivo. Molecular Pharmaceutics 2015, 12 (6) , 2167-2179. https://doi.org/10.1021/acs.molpharmaceut.5b00155
    5. Shou-Cheng Wu, Yu-Jen Chen, Yi-Jan Lin, Tung-Ho Wu, and Yun-Ming Wang . Development of a Mucin4-Targeting SPIO Contrast Agent for Effective Detection of Pancreatic Tumor Cells in Vitro and in Vivo. Journal of Medicinal Chemistry 2013, 56 (22) , 9100-9109. https://doi.org/10.1021/jm401060z
    6. Cheng-An J. Lin, Wen-Kai Chuang, Zih-Yun Huang, Shih-Tsung Kang, Ching-Yi Chang, Ching-Ta Chen, Jhih-Liang Li, Jimmy K. Li, Hsueh-Hsiao Wang, Fu-Chen Kung, Ji-Lin Shen, Wen-Hsiung Chan, Chih-Kuang Yeh, Hung-I Yeh, Wen-Fu T. Lai, and Walter H. Chang . Rapid Transformation of Protein-Caged Nanomaterials into Microbubbles As Bimodal Imaging Agents. ACS Nano 2012, 6 (6) , 5111-5121. https://doi.org/10.1021/nn300768d
    7. Carlos Tassa, Stanley Y. Shaw, and Ralph Weissleder . Dextran-Coated Iron Oxide Nanoparticles: A Versatile Platform for Targeted Molecular Imaging, Molecular Diagnostics, and Therapy. Accounts of Chemical Research 2011, 44 (10) , 842-852. https://doi.org/10.1021/ar200084x
    8. Yang Xu, Alokita Karmakar, Daoyuan Wang, Meena W. Mahmood, Fumiya Watanabe, Yongbin Zhang, Ashley Fejleh, Phillip Fejleh, Zhongrui Li, Ganesh Kannarpady, Syed Ali, Alexandru R. Biris and Alexandru S. Biris . Multifunctional Fe3O4 Cored Magnetic-Quantum Dot Fluorescent Nanocomposites for RF Nanohyperthermia of Cancer Cells. The Journal of Physical Chemistry C 2010, 114 (11) , 5020-5026. https://doi.org/10.1021/jp9103036
    9. Edyta Podstawka and Leonard M. Proniewicz . The Orientation of BN-Related Peptides Adsorbed on SERS-Active Silver Nanoparticles: Comparison with a Silver Electrode Surface. The Journal of Physical Chemistry B 2009, 113 (14) , 4978-4985. https://doi.org/10.1021/jp8110716
    10. Ken-Tye Yong, Hong Ding, Indrajit Roy, Wing-Cheung Law, Earl J. Bergey, Anirban Maitra and Paras N. Prasad . Imaging Pancreatic Cancer Using Bioconjugated InP Quantum Dots. ACS Nano 2009, 3 (3) , 502-510. https://doi.org/10.1021/nn8008933
    11. Sophie Laurent, Delphine Forge, Marc Port, Alain Roch, Caroline Robic, Luce Vander Elst and Robert N. Muller. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews 2008, 108 (6) , 2064-2110. https://doi.org/10.1021/cr068445e
    12. Kevin J. Landmark, Stassi DiMaggio, Jesse Ward, Christopher Kelly, Stefan Vogt, Seungpyo Hong, Alina Kotlyar, Andrzej Myc, Thommey P. Thomas, James E. Penner-Hahn, James R. Baker, Jr., Mark M. Banaszak Holl and Bradford G. Orr . Synthesis, Characterization, and in Vitro Testing of Superparamagnetic Iron Oxide Nanoparticles Targeted Using Folic Acid-Conjugated Dendrimers. ACS Nano 2008, 2 (4) , 773-783. https://doi.org/10.1021/nn800034w
    13. Xiaoke Peng, David Julian McClements, Xuebo Liu, Fuguo Liu. EGCG-based nanoparticles: synthesis, properties, and applications. Critical Reviews in Food Science and Nutrition 2024, 10 , 1-22. https://doi.org/10.1080/10408398.2024.2328184
    14. Moupia Tajrin Oyshi, Md. Zillur Rahman, Suresh Sagadevan. Synthesis of Silicon Quantum Dots for Bioimaging Applications and Their Impact on Public Health. 2024, 41-63. https://doi.org/10.1007/978-3-031-63961-6_2
    15. Monu Kumar Shukla, Arpana Parihar, Chandrabose Karthikeyan, Deepak Kumar, Raju Khan. Multifunctional GQDs for receptor targeting, drug delivery, and bioimaging in pancreatic cancer. Nanoscale 2023, 15 (36) , 14698-14716. https://doi.org/10.1039/D3NR03161F
    16. Beata Paulina Rurarz, Małgorzata Bukowczyk, Natalia Gibka, Agnieszka Wanda Piastowska-Ciesielska, Urszula Karczmarczyk, Piotr Ulański. Nanostrategies for Therapeutic and Diagnostic Targeting of Gastrin-Releasing Peptide Receptor. International Journal of Molecular Sciences 2023, 24 (4) , 3455. https://doi.org/10.3390/ijms24043455
    17. Ehsan Ullah Rashid, Shahid Nawaz, Junaid Munawar, Aniruddha Sarker, Shahid Hussain, Hafiz M.N. Iqbal, Muhammad Bilal. Organic and inorganic nanoparticles. 2023, 93-119. https://doi.org/10.1016/B978-0-323-91611-0.00014-1
    18. S. Panda, S. Hajra, A. Kaushik, H.G. Rubahn, Y.K. Mishra, H.J. Kim. Smart nanomaterials as the foundation of a combination approach for efficient cancer theranostics. Materials Today Chemistry 2022, 26 , 101182. https://doi.org/10.1016/j.mtchem.2022.101182
    19. Mehdi Azizi, Hadi Kokabi, Hassan Dianat-Moghadam, Mohammad Mehrmohammadi. Tumor-specific imaging probes in preclinical applications and clinical trials. 2022, 49-138. https://doi.org/10.1016/B978-0-12-824513-2.00004-8
    20. Nabil A. Alhakamy, Osama A. A. Ahmed, Usama A. Fahmy, Shadab Md. Apamin-Conjugated Alendronate Sodium Nanocomplex for Management of Pancreatic Cancer. Pharmaceuticals 2021, 14 (8) , 729. https://doi.org/10.3390/ph14080729
    21. Muhammad Shehroz Zeeshan, Zeeshan Ramzan. Current controversies and advances in the management of pancreatic adenocarcinoma. World Journal of Gastrointestinal Oncology 2021, 13 (6) , 472-494. https://doi.org/10.4251/wjgo.v13.i6.472
    22. Lala Sabir Gadzhiyeva, Gyul’tekin Dzhumzhud Abbasova, Gyunel’ Rovshan Safarli. STUDY OF STABLE STRUCTURES OF THE PENTAPEPTIDE MOLECULE. Chronos 2021, 6 (2(52)) , 5-9. https://doi.org/10.52013/2658-7556-52-2-1
    23. Leela R. Jaidev, Laxmi S. Chede, Hemanth K. Kandikattu. Theranostic Nanoparticles for Pancreatic Cancer Treatment. Endocrine, Metabolic & Immune Disorders - Drug Targets 2021, 21 (2) , 203-214. https://doi.org/10.2174/1871530320666200516164911
    24. Ahmad Amirshaghaghi, Zhiliang Cheng, Lee Josephson, Andrew Tsourkas. Magnetic Nanoparticles. 2021, 679-698. https://doi.org/10.1016/B978-0-12-816386-3.00033-8
    25. Dilip Kumar Patel, Roohi Kesharwani, Vikas Kumar. Nanoparticles: an emerging platform for medical imaging. 2021, 113-126. https://doi.org/10.1016/B978-0-12-821163-2.00007-8
    26. Jaspreet Kalra, Vandana Krishna, BollaReddy S.V. Reddy, Arti Dhar, Venkata V.K. Venuganti, Audesh Bhat. Nanoparticles in medical imaging. 2021, 175-210. https://doi.org/10.1016/B978-0-12-821163-2.00010-8
    27. Sameer Alshehri, Wei Fan, Wenting Zhang, Jered C. Garrison. In Vitro Evaluation and Biodistribution Studies of HPMA Copolymers Targeting the Gastrin Releasing Peptide Receptor in Prostate Cancer. Pharmaceutical Research 2020, 37 (11) https://doi.org/10.1007/s11095-020-02952-3
    28. Jin Hee Lee, Gun Gyun Kim, Sang Wook Kim, Joo-Hee Park. Zr-89 Labeled PAMAM Dendrimers 5G without a Chelator for a Cancer Diagnostic Agent. Journal of the Korean Physical Society 2020, 77 (5) , 409-413. https://doi.org/10.3938/jkps.77.409
    29. Henry A. Adeola, Saheed Sabiu, Tayo A. Adekiya, Raphael T. Aruleba, Christiana E. Aruwa, Babatunji E. Oyinloye. Prospects of nanodentistry for the diagnosis and treatment of maxillofacial pathologies and cancers. Heliyon 2020, 6 (9) , e04890. https://doi.org/10.1016/j.heliyon.2020.e04890
    30. E. M. N. Oliveira, G. I. Selli, A. von Schmude, C. Miguel, S. Laurent, M. R. M. Vianna, R. M. Papaléo. Developmental toxicity of iron oxide nanoparticles with different coatings in zebrafish larvae. Journal of Nanoparticle Research 2020, 22 (4) https://doi.org/10.1007/s11051-020-04800-2
    31. Anne C. Conibear, Alanca Schmid, Meder Kamalov, Christian F.W. Becker, Claudia Bello. Recent Advances in Peptide-Based Approaches for Cancer Treatment. Current Medicinal Chemistry 2020, 27 (8) , 1174-1205. https://doi.org/10.2174/0929867325666171123204851
    32. G.Dzh. Abbasova, L.S. Gadzhieva. STUDY OF THE SPATIAL STRUCTURE OF THE MOLECULE CYS-ARG-GLU-LYS-ALA. Chronos Journal 2020, (2(41)) https://doi.org/10.31618/2658-7556-2020-41-2-5
    33. Deep Pooja, Anusha Gunukula, Nitin Gupta, David J. Adams, Hitesh Kulhari. Bombesin receptors as potential targets for anticancer drug delivery and imaging. The International Journal of Biochemistry & Cell Biology 2019, 114 , 105567. https://doi.org/10.1016/j.biocel.2019.105567
    34. Xiangjun Han, Ke Xu, Olena Taratula, Khashayar Farsad. Applications of nanoparticles in biomedical imaging. Nanoscale 2019, 11 (3) , 799-819. https://doi.org/10.1039/C8NR07769J
    35. Ruma Rani, Khushboo Sethi, Geeta Singh. Nanomaterials and Their Applications in Bioimaging. 2019, 429-450. https://doi.org/10.1007/978-3-030-16379-2_15
    36. Sally A. El-Zahaby, Yosra S.R. Elnaggar, Ossama Y. Abdallah. Reviewing two decades of nanomedicine implementations in targeted treatment and diagnosis of pancreatic cancer: An emphasis on state of art. Journal of Controlled Release 2019, 293 , 21-35. https://doi.org/10.1016/j.jconrel.2018.11.013
    37. Willemieke S. Tummers, Juergen K. Willmann, Bert A. Bonsing, Alexander L. Vahrmeijer, Sanjiv S. Gambhir, Rutger-Jan Swijnenburg. Advances in Diagnostic and Intraoperative Molecular Imaging of Pancreatic Cancer. Pancreas 2018, 47 (6) , 675-689. https://doi.org/10.1097/MPA.0000000000001075
    38. S. Zanganeh, J.Q. Ho, M. Aieneravaie, M. Erfanzadeh, M. Pauliah, R. Spitler. Drug Delivery. 2018, 247-271. https://doi.org/10.1016/B978-0-08-101925-2.00008-5
    39. Anupam Guleria, Kalpana Priyatharchini, Dinesh Kumar. Biomedical Applications of Magnetic Nanomaterials. 2018, 345-389. https://doi.org/10.1016/B978-0-08-101971-9.00013-2
    40. Pengcheng Zhang, Yonggang Cui, Caleb F. Anderson, Chunli Zhang, Yaping Li, Rongfu Wang, Honggang Cui. Peptide-based nanoprobes for molecular imaging and disease diagnostics. Chemical Society Reviews 2018, 47 (10) , 3490-3529. https://doi.org/10.1039/C7CS00793K
    41. Pilar de la Puente, Abdel Kareem Azab. Nanoparticle delivery systems, general approaches, and their implementation in multiple myeloma. European Journal of Haematology 2017, 98 (6) , 529-541. https://doi.org/10.1111/ejh.12870
    42. Francisco Silva, Lurdes Gano, Maria Paula Cabral Campello, Rosa Marques, Isabel Prudêncio, Ajit Zambre, Anandhi Upendran, António Paulo, Raghuraman Kannan. In vitro/in vivo “peeling” of multilayered aminocarboxylate gold nanoparticles evidenced by a kinetically stable 99m Tc-label. Dalton Transactions 2017, 46 (42) , 14572-14583. https://doi.org/10.1039/C7DT00864C
    43. Srinivas Patnaik. Nanomedicine Magic Bullet for Human Cancer. 2017, 382-407. https://doi.org/10.4018/978-1-5225-0549-5.ch014
    44. Kristof Zarschler, Louise Rocks, Nadia Licciardello, Luca Boselli, Ester Polo, Karina Pombo Garcia, Luisa De Cola, Holger Stephan, Kenneth A. Dawson. Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine 2016, 12 (6) , 1663-1701. https://doi.org/10.1016/j.nano.2016.02.019
    45. Jing Huang, Yuancheng Li, Anamaria Orza, Qiong Lu, Peng Guo, Liya Wang, Lily Yang, Hui Mao. Magnetic Nanoparticle Facilitated Drug Delivery for Cancer Therapy with Targeted and Image‐Guided Approaches. Advanced Functional Materials 2016, 26 (22) , 3818-3836. https://doi.org/10.1002/adfm.201504185
    46. Chongjie Zhang, Yuzhong Yan, Qi Zou, Jie Chen, Chunsheng Li. Superparamagnetic iron oxide nanoparticles for MR imaging of pancreatic cancer: Potential for early diagnosis through targeted strategies. Asia-Pacific Journal of Clinical Oncology 2016, 12 (1) , 13-21. https://doi.org/10.1111/ajco.12437
    47. Harshita Sharma, Krishan Kumar, Chetan Choudhary, Pawan K. Mishra, Bhuvaneshwar Vaidya. Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Artificial Cells, Nanomedicine, and Biotechnology 2016, 44 (2) , 672-679. https://doi.org/10.3109/21691401.2014.978980
    48. Radhakrishnan Narayanaswamy, Samikannu Kanagesan, Ashokkumar Pandurangan, Parasuraman Padmanabhan. Basics to different imaging techniques, different nanobiomaterials for image enhancement. 2016, 101-129. https://doi.org/10.1016/B978-0-323-41736-5.00004-2
    49. Emir Baki Denkbaş, Ekin Çelik, Ebru Erdal, Doğa Kavaz, Öznur Akbal, Göknur Kara, Cem Bayram. Magnetically based nanocarriers in drug delivery. 2016, 285-331. https://doi.org/10.1016/B978-0-323-42866-8.00009-5
    50. Shyamasree Ghosh, Soham Saha, Abhinav Sur. Nanoparticles: Cancer Management Applications. 2015, 5510-5533. https://doi.org/10.1081/E-EBPP-120050073
    51. Wei Cao, Xiaowei Zeng, Gan Liu, Zhen Li, Xiaobin Zeng, Lijun Wang, Laiqiang Huang, Si-Shen Feng, Lin Mei. Porphine functionalized nanoparticles of star-shaped poly(ε-caprolactone)-b-D-α-tocopheryl polyethylene glycol 1000 succinate biodegradable copolymer for chemophotodynamic therapy on cervical cancer. Acta Biomaterialia 2015, 26 , 145-158. https://doi.org/10.1016/j.actbio.2015.08.016
    52. A. Mahajan, V. Goh, S. Basu, R. Vaish, A.J. Weeks, M.H. Thakur, G.J. Cook. Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine?. Clinical Radiology 2015, 70 (10) , 1060-1082. https://doi.org/10.1016/j.crad.2015.06.082
    53. Irene Ramos-Álvarez, Paola Moreno, Samuel A. Mantey, Taichi Nakamura, Bernardo Nuche-Berenguer, Terry W. Moody, David H. Coy, Robert T. Jensen. Insights into bombesin receptors and ligands: Highlighting recent advances. Peptides 2015, 72 , 128-144. https://doi.org/10.1016/j.peptides.2015.04.026
    54. Yolandy Lemmer, Lonji Kalombo, Ray-Dean Pietersen, Arwyn T. Jones, Boitumelo Semete-Makokotlela, Sandra Van Wyngaardt, Bathabile Ramalapa, Anton C. Stoltz, Bienyameen Baker, Jan A. Verschoor, Hulda S. Swai, Chantal de Chastellier. Mycolic acids, a promising mycobacterial ligand for targeting of nanoencapsulated drugs in tuberculosis. Journal of Controlled Release 2015, 211 , 94-104. https://doi.org/10.1016/j.jconrel.2015.06.005
    55. Nina Raabe, Evelyn Forberich, Barbara Freund, Oliver T. Bruns, Markus Heine, Michael G. Kaul, Ulrich Tromsdorf, Lena Herich, Peter Nielsen, Rudolph Reimer, Heinrich Hohenberg, Horst Weller, U. Schumacher, Gerhard Adam, Harald Ittrich. Determination of liver‐specific r 2 * of a highly monodisperse USPIO by 59 Fe iron core‐labeling in mice at 3 T MRI. Contrast Media & Molecular Imaging 2015, 10 (2) , 153-162. https://doi.org/10.1002/cmmi.1612
    56. Atefeh Jafari, Mojtaba Salouti, Saber Farjami Shayesteh, Zahra Heidari, Ahmad Bitarafan Rajabi, Komail Boustani, Ali Nahardani. Synthesis and characterization of Bombesin-superparamagnetic iron oxide nanoparticles as a targeted contrast agent for imaging of breast cancer using MRI. Nanotechnology 2015, 26 (7) , 075101. https://doi.org/10.1088/0957-4484/26/7/075101
    57. Laurent Vinet, Smaragda Lamprianou, Andrej Babič, Norbert Lange, Fabrizio Thorel, Pedro Luis Herrera, Xavier Montet, Paolo Meda. Targeting GLP-1 receptors for repeated magnetic resonance imaging differentiates graded losses of pancreatic beta cells in mice. Diabetologia 2015, 58 (2) , 304-312. https://doi.org/10.1007/s00125-014-3442-2
    58. Vikas Nandwana, Mrinmoy De, Shihyao Chu, Manish Jaiswal, Matt Rotz, Thomas J. Meade, Vinayak P. Dravid. Theranostic Magnetic Nanostructures (MNS) for Cancer. 2015, 51-83. https://doi.org/10.1007/978-3-319-16555-4_3
    59. Xavier Montet, Smaragda Lamprianou, Laurent Vinet, Paolo Meda, Alfredo Fort. Approaches for Imaging Pancreatic Islets: Recent Advances and Future Prospects. 2015, 59-81. https://doi.org/10.1007/978-94-007-6686-0_39
    60. Srinivas Patnaik. Nanomedicine Magic Bullet for Human Cancer. 2015, 167-191. https://doi.org/10.4018/978-1-4666-6363-3.ch009
    61. Oscar Bomati-Miguel, Nuria Miguel-Sancho, Ibane Abasolo, Ana Paula Candiota, Alejandro G. Roca, Milena Acosta, Simó Schwartz, Carles Arus, Clara Marquina, Gema Martinez, Jesus Santamaria. Ex vivo assessment of polyol coated-iron oxide nanoparticles for MRI diagnosis applications: toxicological and MRI contrast enhancement effects. Journal of Nanoparticle Research 2014, 16 (3) https://doi.org/10.1007/s11051-014-2292-7
    62. Andrew Gdowski, Amalendu P. Ranjan, Anindita Mukerjee, Jamboor K. Vishwanatha. Nanobiosensors: Role in Cancer Detection and Diagnosis. 2014, 33-58. https://doi.org/10.1007/978-81-322-1777-0_4
    63. Xavier Montet, Smaragda Lamprianou, Laurent Vinet, Paolo Meda, Alfredo Fort. Approaches for Imaging Pancreatic Islets: Recent Advances and Future Prospects. 2014, 1-21. https://doi.org/10.1007/978-94-007-6884-0_39-2
    64. Xin Nie, Jiakun Zhang, Qing Xu, Xiaoguang Liu, Yaping Li, Yan Wu, Chunying Chen. Targeting peptide iRGD-conjugated amphiphilic chitosan-co-PLA/DPPE drug delivery system for enhanced tumor therapy. Journal of Materials Chemistry B 2014, 2 (21) , 3232. https://doi.org/10.1039/c3tb21744b
    65. Gregory A. Coté, Jeffrey Smith, Stuart Sherman, Kimberly Kelly. Technologies for Imaging the Normal and Diseased Pancreas. Gastroenterology 2013, 144 (6) , 1262-1271.e1. https://doi.org/10.1053/j.gastro.2013.01.076
    66. Hongmin Chen, Zipeng Zhen, Trever Todd, Paul K. Chu, Jin Xie. Nanoparticles for improving cancer diagnosis. Materials Science and Engineering: R: Reports 2013, 74 (3) , 35-69. https://doi.org/10.1016/j.mser.2013.03.001
    67. Raunak Varshney, Puja P. Hazari, P. Fernandez, J. Schulz, M. Allard, Anil K. Mishra. 68Ga-Labeled Bombesin Analogs for Receptor-Mediated Imaging. 2013, 221-256. https://doi.org/10.1007/978-3-642-27994-2_12
    68. Yonglan He, Wei Song, Jing Lei, Zhuo Li, Jian Cao, Shuai Huang, Jie Meng, Haiyan Xu, Zhengyu Jin, Huadan Xue. Anti-CXCR4 monoclonal antibody conjugated to ultrasmall superparamagnetic iron oxide nanoparticles in an application of MR molecular imaging of pancreatic cancer cell lines. Acta Radiologica 2012, 53 (9) , 1049-1058. https://doi.org/10.1258/ar.2012.120055
    69. Feng Yang, Chen Jin, Sabin Subedi, Chong Lek Lee, Qiang Wang, Yongjian Jiang, Ji Li, Yang Di, Deliang Fu. Emerging inorganic nanomaterials for pancreatic cancer diagnosis and treatment. Cancer Treatment Reviews 2012, 38 (6) , 566-579. https://doi.org/10.1016/j.ctrv.2012.02.003
    70. Pericles Pericleous, Maria Gazouli, Anna Lyberopoulou, Spyros Rizos, Nikolaos Nikiteas, Efstathios P Efstathopoulos. Quantum dots hold promise for early cancer imaging and detection. International Journal of Cancer 2012, 131 (3) , 519-528. https://doi.org/10.1002/ijc.27528
    71. Paul D Sykes, John P Neoptolemos, Eithne Costello, Christopher M Halloran. Nanotechnology advances in upper gastrointestinal, liver and pancreatic cancer. Expert Review of Gastroenterology & Hepatology 2012, 6 (3) , 343-356. https://doi.org/10.1586/egh.12.13
    72. Chao Ying Wu, Yu Pu, Gang Liu, Yang Shao, Qing Song Ma, Xiao Ming Zhang. MR imaging of human pancreatic cancer xenograft labeled with superparamagnetic iron oxide in nude mice. Contrast Media & Molecular Imaging 2012, 7 (1) , 51-58. https://doi.org/10.1002/cmmi.465
    73. Ruirui QIAO, Qiaojuan JIA, Jianfeng ZENG, Mingyuan GAO. Magnetic Iron Oxide Nanoparticles and Their Applications in Magnetic Resonance Imaging. ACTA BIOPHYSICA SINICA 2011, 27 (4) , 272-288. https://doi.org/10.3724/SP.J.1260.2011.00272
    74. Omid Veiseh, Forrest M. Kievit, Richard G. Ellenbogen, Miqin Zhang. Cancer Cell Invasion: Treatment and Monitoring Opportunities in Nanomedicine. Advanced Drug Delivery Reviews 2011, 63 (8) , 582-596. https://doi.org/10.1016/j.addr.2011.01.010
    75. Edyta Podstawka-Proniewicz, Yukihiro Ozaki, Younkyoo Kim, Yizhuang Xu, Leonard M. Proniewicz. Surface-enhanced Raman scattering studies on bombesin, its selected fragments and related peptides adsorbed at the silver colloidal surface. Applied Surface Science 2011, 257 (19) , 8246-8252. https://doi.org/10.1016/j.apsusc.2011.02.012
    76. Gary R. Hutchison, Eva M. Malone. Nanotoxicity. 2011, 419-434. https://doi.org/10.1007/978-1-4419-6956-9_18
    77. Morteza Mahmoudi, Shilpa Sant, Ben Wang, Sophie Laurent, Tapas Sen. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Advanced Drug Delivery Reviews 2011, 63 (1-2) , 24-46. https://doi.org/10.1016/j.addr.2010.05.006
    78. Wael R. Abd-Elgaliel, Zobeida Cruz-Monserrate, Craig D. Logsdon, Ching-Hsuan Tung. Molecular imaging of Cathepsin E-positive tumors in mice using a novel protease-activatable fluorescent probe. Molecular BioSystems 2011, 7 (12) , 3207. https://doi.org/10.1039/c1mb05215b
    79. Jason R. McCarthy, Jayeeta Bhaumik, Mark R. Karver, S. Sibel Erdem, Ralph Weissleder. Targeted nanoagents for the detection of cancers. Molecular Oncology 2010, 4 (6) , 511-528. https://doi.org/10.1016/j.molonc.2010.08.003
    80. Stephanie R. Lane, Prasanta Nanda, Tammy L. Rold, Gary L. Sieckman, Said D. Figueroa, Timothy J. Hoffman, Silvia S. Jurisson, Charles J. Smith. Optimization, biological evaluation and microPET imaging of copper-64-labeled bombesin agonists, [64Cu-NO2A-(X)-BBN(7–14)NH2], in a prostate tumor xenografted mouse model. Nuclear Medicine and Biology 2010, 37 (7) , 751-761. https://doi.org/10.1016/j.nucmedbio.2010.04.016
    81. Jason H. Sakamoto, Anne L. van de Ven, Biana Godin, Elvin Blanco, Rita E. Serda, Alessandro Grattoni, Arturas Ziemys, Ali Bouamrani, Tony Hu, Shivakumar I. Ranganathan, Enrica De Rosa, Jonathan O. Martinez, Christine A. Smid, Rachel M. Buchanan, Sei-Young Lee, Srimeenakshi Srinivasan, Matthew Landry, Anne Meyn, Ennio Tasciotti, Xuewu Liu, Paolo Decuzzi, Mauro Ferrari. Enabling individualized therapy through nanotechnology. Pharmacological Research 2010, 62 (2) , 57-89. https://doi.org/10.1016/j.phrs.2009.12.011
    82. Amanda L. Martin, Jennifer L. Hickey, Amber L. Ablack, John D. Lewis, Leonard G. Luyt, Elizabeth R. Gillies. Synthesis of bombesin-functionalized iron oxide nanoparticles and their specific uptake in prostate cancer cells. Journal of Nanoparticle Research 2010, 12 (5) , 1599-1608. https://doi.org/10.1007/s11051-009-9681-3
    83. Omid Veiseh, Jonathan W. Gunn, Miqin Zhang. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced Drug Delivery Reviews 2010, 62 (3) , 284-304. https://doi.org/10.1016/j.addr.2009.11.002
    84. Frank Alexis, Eric M. Pridgen, Robert Langer, Omid C. Farokhzad. Nanoparticle Technologies for Cancer Therapy. 2010, 55-86. https://doi.org/10.1007/978-3-642-00477-3_2
    85. Kenjiro Hanaoka. Development of Responsive Lanthanide-Based Magnetic Resonance Imaging and Luminescent Probes for Biological Applications. Chemical and Pharmaceutical Bulletin 2010, 58 (10) , 1283-1294. https://doi.org/10.1248/cpb.58.1283
    86. VickyV Mody, Rodney Siwale, Ajay Singh, HardikR Mody. Introduction to metallic nanoparticles. Journal of Pharmacy And Bioallied Sciences 2010, 2 (4) , 282. https://doi.org/10.4103/0975-7406.72127
    87. Timo Duchrow, Timur Shtatland, Daniel Guettler, Misha Pivovarov, Stefan Kramer, Ralph Weissleder. Enhancing navigation in biomedical databases by community voting and database-driven text classification. BMC Bioinformatics 2009, 10 (1) https://doi.org/10.1186/1471-2105-10-317
    88. Mingming Huang, Zhongwei Qiao, Fei Miao, Nengqin Jia, Hebai Shen. Biofunctional magnetic nanoparticles as contrast agents for magnetic resonance imaging of pancreas cancer. Microchimica Acta 2009, 167 (1-2) , 27-34. https://doi.org/10.1007/s00604-009-0210-y
    89. Satish K Nune, Padmaja Gunda, Praveen K Thallapally, Ying-Ying Lin, M Laird Forrest, Cory J Berkland. Nanoparticles for biomedical imaging. Expert Opinion on Drug Delivery 2009, 6 (11) , 1175-1194. https://doi.org/10.1517/17425240903229031
    90. Caroline Wyss, Stephan C. Schaefer, Lucienne Juillerat-Jeanneret, Lucienne Lagopoulos, Hans-Anton Lehr, Christoph D. Becker, Xavier Montet. Molecular imaging by micro-CT: specific E-selectin imaging. European Radiology 2009, 19 (10) , 2487-2494. https://doi.org/10.1007/s00330-009-1434-2
    91. N. Alieva, D. Abbasova, N.M. Gojayev. Conformational and dynamical properties of the CREKA molecule. 2009, 1-5. https://doi.org/10.1109/ICAICT.2009.5372512
    92. U. Ayanthi Gunasekera, Quentin A. Pankhurst, Michael Douek. Imaging applications of nanotechnology in cancer. Targeted Oncology 2009, 4 (3) , 169-181. https://doi.org/10.1007/s11523-009-0118-9
    93. Marites P. Melancon, Chun Li. Core–Shell Magnetic Nanomaterials in Medical Diagnosis and Therapy. 2009https://doi.org/10.1002/9783527610419.ntls0169
    94. Yurii K. Gun'ko, Dermot F. Brougham. Magnetic Nanomaterials as MRI Contrast Agents. 2009https://doi.org/10.1002/9783527610419.ntls0166
    95. Wenbin Lin, Taeghwan Hyeon, Gregory M. Lanza, Miqin Zhang, Thomas J. Meade. Magnetic Nanoparticles for Early Detection of Cancer by Magnetic Resonance Imaging. MRS Bulletin 2009, 34 (6) , 441-448. https://doi.org/10.1557/mrs2009.120
    96. Esmaiel Jabbari. Targeted Delivery with Peptidomimetic Conjugated Self-Assembled Nanoparticles. Pharmaceutical Research 2009, 26 (3) , 612-630. https://doi.org/10.1007/s11095-008-9802-1
    97. Manasi Das, Chandana Mohanty, Sanjeeb K Sahoo. Ligand-based targeted therapy for cancer tissue. Expert Opinion on Drug Delivery 2009, 6 (3) , 285-304. https://doi.org/10.1517/17425240902780166
    98. Guoxin Zhang, Yanbo Liu, Chunfu Zhang, Weiqing Hu, Wanbang Xu, Zheng Li, Sheng Liang, Jinquan Cao, Yongxian Wang. Aqueous immune magnetite nanoparticles for immunoassay. Journal of Nanoparticle Research 2009, 11 (2) , 441-448. https://doi.org/10.1007/s11051-008-9432-x
    99. Ken-Tye Yong. Mn-doped near-infrared quantum dots as multimodal targeted probes for pancreatic cancer imaging. Nanotechnology 2009, 20 (1) , 015102. https://doi.org/10.1088/0957-4484/20/1/015102
    100. Ken-Tye Yong, Indrajit Roy, Mark T. Swihart, Paras N. Prasad. Multifunctional nanoparticles as biocompatible targeted probes for human cancer diagnosis and therapy. Journal of Materials Chemistry 2009, 19 (27) , 4655. https://doi.org/10.1039/b817667c
    Load all citations

    Bioconjugate Chemistry

    Cite this: Bioconjugate Chem. 2006, 17, 4, 905–911
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bc060035+
    Published May 26, 2006
    Copyright © 2006 American Chemical Society

    Article Views

    2474

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.