ACS Publications. Most Trusted. Most Cited. Most Read
My Activity

Figure 1Loading Img

Chirality Codes and Molecular Structure

View Author Information
REQUIMTE, CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal, Computer-Chemie-Centrum, Institute of Organic Chemistry, University of Erlangen-Nürnberg, Nägelsbachstrasse 25, D-91052 Erlangen, Germany, and Faculty of Science, University of Kragujevac, P.O. Box 60, 34000 Kragujevac, Serbia and Montenegro
Cite this: J. Chem. Inf. Comput. Sci. 2004, 44, 3, 831–836
Publication Date (Web):February 21, 2004
Copyright © 2004 American Chemical Society

    Article Views





    Other access options


    Some time ago a structure-descriptor, named “chirality code”, was put forward [J. Chem. Inf. Comput. Sci.2001, 41, 369−375], aimed at distinguishing between enantiomers. The chirality code is a sequence of (typically 100) numbers, being equal to the value of a certain “chirality function” at equidistant points within a chosen interval. For molecules of moderate size the chirality function has thousands of peaks (maxima and minima), one for each quartet of atoms. Therefore it looks as if the chirality code cannot provide a faithful representation of the chirality function and thus a faithful representation of the molecular structure. We now show that functional groups present in the molecule result in clusters of near-lying and partially overlapping peaks, whose position in the chirality code is characteristic for the particular functional group. This enables a sound structural interpretation of the chirality code.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.


    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Universidade Nova de Lisboa.

     University of Erlangen-Nürnberg.


     Corresponding author phone:  ++381-34-331-876; fax:  ++381-34-335-040; e-mail:  [email protected].


     University of Kragujevac.

    Cited By

    This article is cited by 30 publications.

    1. Wei-Na Cheng, Xin-Gen Hu, Zhao-Peng Jia, Zheng Guo, Hong-Yu Liang, and Guoyong Fang . Enthalpies of Dilution of Penicillamines in N,N-Dimethylformamide + Water Mixtures at 298.15 K. Journal of Chemical & Engineering Data 2013, 58 (1) , 55-63.
    2. Michał H. Jamróz, Joanna E. Rode, Sławomir Ostrowski, Piotr F. J. Lipiński, and Jan Cz. Dobrowolski . Chirality Measures of α-Amino Acids. Journal of Chemical Information and Modeling 2012, 52 (6) , 1462-1479.
    3. Ramanathan Natarajan,, Subhash C. Basak, and, Terrence S. Neumann. Novel Approach for the Numerical Characterization of Molecular Chirality. Journal of Chemical Information and Modeling 2007, 47 (3) , 771-775.
    4. Qing-You Zhang and, João Aires-de-Sousa. Physicochemical Stereodescriptors of Atomic Chiral Centers. Journal of Chemical Information and Modeling 2006, 46 (6) , 2278-2287.
    5. Ramanathan Natarajan, Claudiu N. Lungu, Subhash C. Basak. Chirality descriptors for structure–activity relationship modeling of bioactive molecules. Journal of Mathematical Chemistry 2023, 7
    6. Karanpreet Singh Bhatia, Ankit Kumar Gupta, Anil Kumar Saxena. Physicochemical Significance of Topological Indices: Importance in Drug Discovery Research. Current Topics in Medicinal Chemistry 2023, 23 (29) , 2735-2742.
    7. Zi Li, Xing Nie, Tianlv Xu, Shuman Li, Yong Yang, Herbert Früchtl, Tanja van Mourik, Steven R. Kirk, Martin J. Paterson, Yasuteru Shigeta, Samantha Jenkins. Control of chirality, bond flexing and anharmonicity in an electric field. International Journal of Quantum Chemistry 2021, 121 (22)
    8. Yoan Martínez-López, Yovani Marrero-Ponce, Stephen J. Barigye, Enrique Teran, Oscar Martínez-Santiago, Cesar H. Zambrano, F. Javier Torres. When global and local molecular descriptors are more than the sum of its parts: Simple, But Not Simpler?. Molecular Diversity 2020, 24 (4) , 913-932.
    9. Andrew F. Zahrt, Scott E. Denmark. Evaluating continuous chirality measure as a 3D descriptor in chemoinformatics applied to asymmetric catalysis. Tetrahedron 2019, 75 (13) , 1841-1851.
    10. Lothar Terfloth, Johann Gasteiger. Calculation of Structure Descriptors. 2018, 349-396.
    11. Jarosław Tomczak, Giorgi Lekishvili. The Data. 2018, 155-183.
    12. Néstor Cubillán, Yovani Marrero-Ponce, Harold Ariza-Rico, Stephen J. Barigye, César R. García-Jacas, José R. Valdes-Martini, Ysaías J. Alvarado. Novel global and local 3D atom-based linear descriptors of the Minkowski distance matrix: theory, diversity–variability analysis and QSPR applications. Journal of Mathematical Chemistry 2015, 53 (9) , 2028-2064.
    13. Jessica H. Hartman, Steven D. Cothren, Sun-Ha Park, Chul-Ho Yun, Jerry A. Darsey, Grover P. Miller. Predicting CYP2C19 catalytic parameters for enantioselective oxidations using artificial neural networks and a chirality code. Bioorganic & Medicinal Chemistry 2013, 21 (13) , 3749-3759.
    14. Qing‐You Zhang, Li‐Zhuang Xu, Jing‐Ya Li, Dan‐Dan Zhang, Hai‐Lin Long, Ji‐Yan Leng, Lu Xu. Methods of studies on quantitative structure–activity relationships for chiral compounds. Journal of Chemometrics 2012, 26 (10) , 497-508.
    15. Gregory Sliwoski, Edward W. Lowe, Mariusz Butkiewicz, Jens Meiler. BCL::EMAS — Enantioselective Molecular Asymmetry Descriptor for 3D-QSAR. Molecules 2012, 17 (8) , 9971-9989.
    16. Ting Zhou, Karine Lafleur, Amedeo Caflisch. Complementing ultrafast shape recognition with an optical isomerism descriptor. Journal of Molecular Graphics and Modelling 2010, 29 (3) , 443-449.
    17. Juan A. Castillo‐Garit, Yovani Marrero‐Ponce, Francisco Torrens, Ramon García‐Domenech, J. Enrique Rodríguez‐Borges. Applications of Bond‐Based 3D‐Chiral Quadratic Indices in QSAR Studies Related to Central Chirality Codification. QSAR & Combinatorial Science 2009, 28 (11-12) , 1465-1477.
    18. Maciej Szaleniec, Agnieszka Dudzik, Marzena Pawul, Bartłomiej Kozik. Quantitative structure enantioselective retention relationship for high-performance liquid chromatography chiral separation of 1-phenylethanol derivatives. Journal of Chromatography A 2009, 1216 (34) , 6224-6235.
    19. Alberto Del Rio. Exploring enantioselective molecular recognition mechanisms with chemoinformatic techniques. Journal of Separation Science 2009, 32 (10) , 1566-1584.
    20. Subhash Basak, Denise Mills, Ramanathan Natarajan, Brian Gute. Predicting Chemical Reactivity and Bioactivity of Molecules from Structure. 2009
    21. Alberto Del Rio, Johann Gasteiger. Encoding Absolute Configurations with Chiral Enantiophore Descriptors. Application to the Order of Elution of Enantiomers in Liquid Chromatography. QSAR & Combinatorial Science 2008, 27 (11-12) , 1326-1336.
    22. Juan A. Castillo‐Garit, Yovani Marrero‐Ponce, Francisco Torrens, Ramón García‐Domenech, Vicente Romero‐Zaldivar. Bond‐based 3D‐chiral linear indices: Theory and QSAR applications to central chirality codification. Journal of Computational Chemistry 2008, 29 (15) , 2500-2512.
    23. Yovani Marrero-Ponce, Juan Alberto Castillo-Garit, Eduardo A. Castro, Francisco Torrens, Richard Rotondo. 3D-chiral (2.5) atom-based TOMOCOMD-CARDD descriptors: theory and QSAR applications to central chirality codification. Journal of Mathematical Chemistry 2008, 44 (3) , 755-786.
    24. Sylwester Mazurek, Thomas R. Ward, Marjana Novič. Counter propagation artificial neural networks modeling of an enantioselectivity of artificial metalloenzymes. Molecular Diversity 2007, 11 (3-4) , 141-152.
    25. Juan A. Castillo-Garit, Yovani Marrero-Ponce, Francisco Torrens, Richard Rotondo. Atom-based stochastic and non-stochastic 3D-chiral bilinear indices and their applications to central chirality codification. Journal of Molecular Graphics and Modelling 2007, 26 (1) , 32-47.
    26. Ana G. Maldonado, J. P. Doucet, Michel Petitjean, Bo-Tao Fan. Molecular similarity and diversity in chemoinformatics: From theory to applications. Molecular Diversity 2006, 10 (1) , 39-79.
    27. Chunsheng Yang, Chongli Zhong. Chirality Factors and Their Application to QSAR Studies of Chiral Molecules. QSAR & Combinatorial Science 2005, 24 (9) , 1047-1055.
    28. S. Caetano, J. Aires-de-Sousa, M. Daszykowski, Y. Vander Heyden. Prediction of enantioselectivity using chirality codes and Classification and Regression Trees. Analytica Chimica Acta 2005, 544 (1-2) , 315-326.
    29. Alberto Del Rio, Patrick Piras, Christian Roussel. Data mining and enantiophore studies on chiral stationary phases used in HPLC separation. Chirality 2005, 17 (S1) , S74-S83.
    30. Joao Aires‐de‐Sousa, Johann Gasteiger, Ivan Gutman, Dusica Vidovic. Chirality Codes and Molecular Structure.. ChemInform 2004, 35 (30)

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Your Mendeley pairing has expired. Please reconnect