Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Silver(I) Chalcogenide Halides Ag19Te6Br7, Ag19Te6Br5.4I1.6, and Ag19Te5SeBr7
My Activity
    Article

    Silver(I) Chalcogenide Halides Ag19Te6Br7, Ag19Te6Br5.4I1.6, and Ag19Te5SeBr7
    Click to copy article linkArticle link copied!

    View Author Information
    Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
    * Corresponding author. Fax: +49-251-83-36636. Phone: +49-251-83-36645 . E-mail: [email protected]
    Other Access OptionsSupporting Information (2)

    Chemistry of Materials

    Cite this: Chem. Mater. 2008, 20, 12, 4080–4091
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cm800425u
    Published May 27, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Systematic examinations for new phases on the quasi-binary section AgX−Ag2Q (with X = halide and Q = chalcogenide) led to the exploration of the three new compounds Ag19Te6Br7, Ag19Te6Br5.4I1.6, and Ag19Te5SeBr7. All of them crystallize in new structure types with rigid anion and highly disordered silver substructures. A peritectic decomposition to the binary halides and chalcogenides and Ag23Te12Br was observed for each compound between 693 and 719 K. Polymorphism, a common feature for solid state ion conductors, was found for Ag19Te6Br7. Impedance spectroscopic investigations showed high conductivities (up to σ = 1.1 × 10 −2 Ω−1 cm−1, 323 K, Ag19Te6Br5.4I1.6) and low activation energies (Ea = 0.19 eV, α-Ag19Te6Br7) at room temperature. A topological description of the rigid and complex anion substructure was used to classify the three different structures. Linearly arranged nets of anions, separated from each other by the disordered silver ions, corrugate under partial substitution of either the halide or chalcogenide ions. The topological approach is a fundamental tool to understand the structure property relations in more detail.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional crystallographic data of the three title compounds (PDF) and CIF files. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 18 publications.

    1. Anna Vogel, Tom Nilges. Ion Dynamics and Polymorphism in Cu20Te11Cl3. Inorganic Chemistry 2021, 60 (20) , 15233-15241. https://doi.org/10.1021/acs.inorgchem.1c01764
    2. Xiao-Ping Zhou, Zhengtao Xu, Matthias Zeller, Allen D. Hunter, Stephen Sin-Yin Chui, Chi-Ming Che and Jianhua Lin . Reactions of H2S with AgCl within a Porous Coordination Network. Inorganic Chemistry 2010, 49 (17) , 7629-7631. https://doi.org/10.1021/ic101051r
    3. Tom Nilges, Oliver Osters, Melanie Bawohl, Jean-Louis Bobet, Bernard Chevalier, Rodolphe Decourt and Richard Weihrich . Reversible Property Switching, Thermoelectric Performance, and d10−d10 Interactions in Ag5Te2Cl. Chemistry of Materials 2010, 22 (9) , 2946-2954. https://doi.org/10.1021/cm100269a
    4. Philipp Deng, Matthias Hoffmann, Tom Nilges. Application Potential of Pnp‐Switching Semiconductors. Zeitschrift für anorganische und allgemeine Chemie 2024, 650 (17) https://doi.org/10.1002/zaac.202400066
    5. Liang Fang, Wentao Fan, Guoqing Bian, Runguo Wang, Qing You, Wanmiao Gu, Nan Xia, Lingwen Liao, Jin Li, Haiteng Deng, Nan Yan, Zhikun Wu. Sandwich‐Kernelled AgCu Nanoclusters with Golden Ratio Geometry and Promising Photothermal Efficiency. Angewandte Chemie 2023, 135 (36) https://doi.org/10.1002/ange.202305604
    6. Liang Fang, Wentao Fan, Guoqing Bian, Runguo Wang, Qing You, Wanmiao Gu, Nan Xia, Lingwen Liao, Jin Li, Haiteng Deng, Nan Yan, Zhikun Wu. Sandwich‐Kernelled AgCu Nanoclusters with Golden Ratio Geometry and Promising Photothermal Efficiency. Angewandte Chemie International Edition 2023, 62 (36) https://doi.org/10.1002/anie.202305604
    7. Jin-Rong Xiao, Si-Han Yang, Fang Feng, Huai-Guo Xue, Sheng-Ping Guo. A review of the structural chemistry and physical properties of metal chalcogenide halides. Coordination Chemistry Reviews 2017, 347 , 23-47. https://doi.org/10.1016/j.ccr.2017.06.010
    8. Satya N. Guin, Kanishka Biswas. Temperature driven p–n–p type conduction switching materials: current trends and future directions. Physical Chemistry Chemical Physics 2015, 17 (16) , 10316-10325. https://doi.org/10.1039/C4CP06088A
    9. Oliver Osters, Melanie Bawohl, Jean-Louis Bobet, Bernard Chevalier, Rodolphe Decourt, Tom Nilges. A conceptional approach to materials for resistivity switching and thermoelectrics. Solid State Sciences 2011, 13 (5) , 944-947. https://doi.org/10.1016/j.solidstatesciences.2011.02.012
    10. Nadine Eckstein, Tom Nilges, Rodolphe Decourt, Jean-Louis Bobet, Bernard Chevalier. Effects of partial anion substitution on the thermoelectric properties of silver(I) chalcogenide halides in the system Ag5Q2X with Q=Te, Se and S and X=Br and Cl. Journal of Solid State Chemistry 2011, 184 (4) , 778-785. https://doi.org/10.1016/j.jssc.2011.01.031
    11. Tom Nilges, M. Bawohl, O. Osters, S. Lange, J. Messel. Silver(I)-(poly)chalcogenide Halides – Ion and Electron High Potentials. Zeitschrift für Physikalische Chemie 2010, 224 (10-12) , 1505-1531. https://doi.org/10.1524/zpch.2010.0032
    12. T. Nilges, M. Bawohl, S. Lange, J. Messel, O. Osters. Highly Dynamic Chalcogen Chains in Silver(I) (Poly)Chalcogenide Halides: a New Concept for Thermoelectrics?. Journal of Electronic Materials 2010, 39 (9) , 2096-2104. https://doi.org/10.1007/s11664-009-0987-9
    13. Oliver Osters, Tom Nilges. Partial Anion Exchange in Ag 23 Te 12 X : The Solid Solutions Ag 23 Te 12 Cl 1– x Br x , Ag 23 Te 12 Br 1– y I y and Ag 23 Te 12 Cl 1– z I z  . Zeitschrift für anorganische und allgemeine Chemie 2010, 636 (2) , 297-304. https://doi.org/10.1002/zaac.200900294
    14. Tatiana A. Shestimerova, Olga S. Oleneva, Alexander S. Mitiaev, Mikhail A. Bykov, Dmitry I. Davliatshin, Andrei V. Shevelkov. Synthesis, Structure, and Properties of Ag 5 Se(PO 4 ) and Ag 5 Te(PO 4 ) with Two‐Dimensional Framework Trapping PO 4 3– anions. Zeitschrift für anorganische und allgemeine Chemie 2009, 635 (4-5) , 732-736. https://doi.org/10.1002/zaac.200801409
    15. Emma Kendrick, Peter Slater. Conducting solids. Annual Reports Section "A" (Inorganic Chemistry) 2009, 105 , 436. https://doi.org/10.1039/b818291b
    16. Tom Nilges. The Solid Solutions M 19 Q 6 X 7 with M = Ag, Cu; Q = S, Se, Te and X = S, Se, Te. Zeitschrift für anorganische und allgemeine Chemie 2008, 634 (12-13) , 2185-2190. https://doi.org/10.1002/zaac.200800128
    17. Tom Nilges, Julia Messel, Melanie Bawohl, Stefan Lange. ChemInform Abstract: Silver(I) Chalcogenide Halides Ag 19 Te 6 Br 7 , Ag 19 Te 6 Br 5.4 I 1.6 , and Ag 19 Te 5 SeBr 7 .. ChemInform 2008, 39 (39) https://doi.org/10.1002/chin.200839005
    18. Julia Messel, Tom Nilges. Untersuchungen an Verbindungen der festen Lösung Ag 5 Te 2 Cl 1‐x Br x mit x = 0,2 und 1. Zeitschrift für anorganische und allgemeine Chemie 2008, 634 (11) , 2062-2062. https://doi.org/10.1002/zaac.200870107

    Chemistry of Materials

    Cite this: Chem. Mater. 2008, 20, 12, 4080–4091
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cm800425u
    Published May 27, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    335

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.