ACS Publications. Most Trusted. Most Cited. Most Read
The Chemistry of Phenothiazine.
My Activity
    Article

    The Chemistry of Phenothiazine.
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Chemical Reviews

    Cite this: Chem. Rev. 1954, 54, 5, 797–833
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cr60171a003
    Published October 1, 1954

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 130 publications.

    1. Ziqiang Zhao, Junyu Ren, Yuan Yuan, Zeying Sun, Weiben Chen, Xi Su, Guang Zhang, Long Chen. Phenothiazine-Based 2D Covalent Organic Framework for Efficient Visible-Light-Induced Free Radical Polymerization. ACS Applied Polymer Materials 2023, 5 (2) , 1577-1584. https://doi.org/10.1021/acsapm.2c02051
    2. Daniel A. Corbin, Garret M. Miyake. Photoinduced Organocatalyzed Atom Transfer Radical Polymerization (O-ATRP): Precision Polymer Synthesis Using Organic Photoredox Catalysis. Chemical Reviews 2022, 122 (2) , 1830-1874. https://doi.org/10.1021/acs.chemrev.1c00603
    3. Muhammad Boota, Matthieu Bécuwe, Yury Gogotsi. Phenothiazine–MXene Aqueous Asymmetric Pseudocapacitors. ACS Applied Energy Materials 2020, 3 (4) , 3144-3149. https://doi.org/10.1021/acsaem.9b02404
    4. Luke A. Farmer, Evan A. Haidasz, Markus Griesser, and Derek A. Pratt . Phenoxazine: A Privileged Scaffold for Radical-Trapping Antioxidants. The Journal of Organic Chemistry 2017, 82 (19) , 10523-10536. https://doi.org/10.1021/acs.joc.7b02025
    5. Venumanikanta Karicherla, Kumar Phani, Mohan Reddy Bodireddy, Kumar Babu Prashanth, Madhusudana Rao Gajula, and Kumar Pramod . A Simple and Commercially Viable Process for Improved Yields of Metopimazine, a Dopamine D2-Receptor Antagonist. Organic Process Research & Development 2017, 21 (5) , 720-731. https://doi.org/10.1021/acs.oprd.7b00052
    6. Zhixiang Chang,, Ranjit Koodali,, R. M. Krishna, and, Larry Kevan. Photoinduced Charge Separation of Methylphenothiazine in Vanadium- and Titanium-Containing AlPO-5 and AlPO-11. The Journal of Physical Chemistry B 2000, 104 (23) , 5579-5585. https://doi.org/10.1021/jp000505b
    7. J. B. Ragland and V. J. Kinross-Wright. Spectrofluorometric Measurement of Phenothiazines.. Analytical Chemistry 1964, 36 (7) , 1356-1359. https://doi.org/10.1021/ac60213a050
    8. W. H. Allaway and E. E. Cary. Determination of Submicrogram Amounts of Selenium in Biological Materials.. Analytical Chemistry 1964, 36 (7) , 1359-1362. https://doi.org/10.1021/ac60213a051
    9. Dnyaneshwar D. Ugale, Sidhanath V. Bhosale. Phenothiazine based donor-π-conjugated-donor electrode materials for high performance symmetric supercapacitor applications. Journal of Electroanalytical Chemistry 2025, 36 , 118944. https://doi.org/10.1016/j.jelechem.2025.118944
    10. Sumit D. Ambore, Sidhanath V. Bhosale, Sheshanath V. Bhosale. Y‐Shaped Acceptor‐π‐Donor‐π‐Acceptor Configured Anthraquinone‐Tethered Phenothiazine Molecular Scaffold for High‐Performance Organic Pseudocapacitors. Chemistry – An Asian Journal 2024, 19 (24) https://doi.org/10.1002/asia.202400691
    11. Dipakkumar Bariya, Satyendra Mishra. Fluorescent-based bile acid triazole-phenothiazine derivatives: Multiphase detection of biogenic amines and application in spoiled foods. Microchemical Journal 2024, 207 , 111707. https://doi.org/10.1016/j.microc.2024.111707
    12. Chhandita Chakraborty, Aritra Rajak, Anindita Das. Shape-tunable two-dimensional assemblies from chromophore-conjugated crystallizable poly( l -lactides) with chain-length-dependent photophysical properties. Nanoscale 2024, 16 (27) , 13019-13028. https://doi.org/10.1039/D4NR01683A
    13. Dipakkumar Bariya, Satyendra Mishra. Functionalized Schiff-base containing phenothiazine and cholic acid as a paper-based fluorescence turn-off sensor for Sn( ii ) ion detection and its application. New Journal of Chemistry 2024, 48 (18) , 8425-8435. https://doi.org/10.1039/D4NJ00853G
    14. Frédéric Dumur. Recent advances on phenothiazine-based oxime esters as visible light photoinitiators of polymerization. European Polymer Journal 2024, 202 , 112597. https://doi.org/10.1016/j.eurpolymj.2023.112597
    15. Ananthan Alagumalai, Soumya Shaswati Sahu, Upakarasamy Lourderaj, Sai Muthukumar Vijayasayee, Ananthanarayanan Krishnamoorthy, Senthil A. Gurusamy Thangavelu. Butterfly wing type new push–pull A–π–D–π–A organic fluorophore: synthesis, photophysical, DFT and nonlinear optical property studies. New Journal of Chemistry 2023, 47 (38) , 17951-17962. https://doi.org/10.1039/D3NJ03252C
    16. Arun Kumar, Chiara Vigato, Donatella Boschi, Marco Lucio Lolli, Deepak Kumar. Phenothiazines as anti-cancer agents: SAR overview and synthetic strategies. European Journal of Medicinal Chemistry 2023, 254 , 115337. https://doi.org/10.1016/j.ejmech.2023.115337
    17. Iain A. Wright, Marc K. Etherington, Andrei S. Batsanov, Andrew P. Monkman, Martin R. Bryce. Oxidation State Tuning of Room Temperature Phosphorescence and Delayed Fluorescence in Phenothiazine and Phenothiazine‐5,5‐dioxide Dimers. Chemistry – A European Journal 2023, 29 (30) https://doi.org/10.1002/chem.202300428
    18. Jige Liu, Huiying Liu, Xing Guo, Ziqiang Wang, Xinxin Wu, Jie Li, Chen Zhu. Self-catalytic photochemical sulfonylation of phenothiazines. Green Chemistry 2023, 25 (10) , 3847-3851. https://doi.org/10.1039/D3GC00889D
    19. K. Venkatesan, V. S. V. Satyanarayana, A. Sivakumar. Synthesis and Biological Evaluation of Novel Phenothiazine Derivatives as Potential Antitumor Agents. Polycyclic Aromatic Compounds 2023, 43 (1) , 850-859. https://doi.org/10.1080/10406638.2021.2021254
    20. P.L. Padnya, A.I. Khadieva, I.I. Stoikov. Current achievements and perspectives in synthesis and applications of 3,7-disubstituted phenothiazines as Methylene Blue analogues. Dyes and Pigments 2023, 208 , 110806. https://doi.org/10.1016/j.dyepig.2022.110806
    21. Weishan Tang, Junqian Bai, Pengcheng Zhou, Qihang He, Feng Xiao, Maojie Zhao, Peilin Yang, Lei Liao, Yuan Wang, Ping He, Bin Jia, Liang Bian. Polymethylene blue nanospheres supported honeycomb-like NiCo-LDH for high-performance supercapacitors. Electrochimica Acta 2023, 439 , 141683. https://doi.org/10.1016/j.electacta.2022.141683
    22. Mingyang Li, Binghui Bao, Jian You, Yao Du, Dongxiao Li, Haitao Zhan, Luhang Zhang, Tao Wang. Phenothiazine derivatives based on double benzylidene ketone structure: Application to red light photopolymerization. Progress in Organic Coatings 2022, 173 , 107217. https://doi.org/10.1016/j.porgcoat.2022.107217
    23. Jingwei Xu, Zhiqi He, Jiwei Zhang, Jiean Chen, Yong Huang. A Thioether‐Catalyzed Cross‐Coupling Reaction of Allyl Halides and Arylboronic Acids. Angewandte Chemie International Edition 2022, 61 (43) https://doi.org/10.1002/anie.202211408
    24. Jingwei Xu, Zhiqi He, Jiwei Zhang, Jiean Chen, Yong Huang. A Thioether‐Catalyzed Cross‐Coupling Reaction of Allyl Halides and Arylboronic Acids. Angewandte Chemie 2022, 134 (43) https://doi.org/10.1002/ange.202211408
    25. Jiangyu Zhu, Wenhao Li, Ning Zhang, Dongyue An, Yan Zhao, Xuefeng Lu, Yunqi Liu. Size-dependent properties and unusual reactivity of novel nonplanar heterocycloarenes. Chemical Science 2022, 13 (37) , 11174-11182. https://doi.org/10.1039/D2SC03167A
    26. Jagrut A. Shah, Ming‐Yu Ngai. (Hetero)Aryl CH Amination via Organic Electrochemistry. 2022, 1-46. https://doi.org/10.1002/9783527834242.chf0066
    27. Noufal Merukan Chola, Rajaram K. Nagarale. Thermally encapsulated phenothiazine@MWCNT cathode for aqueous zinc ion battery. Materials Advances 2022, 3 (10) , 4310-4321. https://doi.org/10.1039/D2MA00063F
    28. Frédéric Dumur. Recent advances on visible light Thiophene-based photoinitiators of polymerization. European Polymer Journal 2022, 169 , 111120. https://doi.org/10.1016/j.eurpolymj.2022.111120
    29. Frédéric Dumur. Recent advances on visible light Phenothiazine-based photoinitiators of polymerization. European Polymer Journal 2022, 165 , 110999. https://doi.org/10.1016/j.eurpolymj.2022.110999
    30. Weishan Tang, Junqian Bai, Pengcheng Zhou, Qihang He, Feng Xiao, Maojie Zhao, Peilin Yang, Lei Liao, Yuan Wang, Ping He, Bin Jia, Liang Bian. Polymethylene Blue Nanospheres Supported Honeycomb-Like Nico-Ldh for High-Performance Supercapacitors. SSRN Electronic Journal 2022, 40 https://doi.org/10.2139/ssrn.4156206
    31. Christopher Cremer, Jean Michél Merkes, Christina L. Bub, Dirk Rommel, Frederic W. Patureau, Srinivas Banala. Leucomethylene blue probe detects a broad spectrum of reactive oxygen and nitrogen species. RSC Advances 2021, 11 (51) , 32295-32299. https://doi.org/10.1039/D1RA06498C
    32. Palivela Siva Gangadhar, Govind Reddy, Seelam Prasanthkumar, Lingamallu Giribabu. Phenothiazine functional materials for organic optoelectronic applications. Physical Chemistry Chemical Physics 2021, 23 (28) , 14969-14996. https://doi.org/10.1039/D1CP01185E
    33. Andrew J. Peloquin, Colin D. McMillen, Scott T. Iacono, William T. Pennington. Crystal Engineering Using Polyiodide Halogen and Chalcogen Bonding to Isolate the Phenothiazinium Radical Cation and Its Rare Dimer, 10‐(3‐Phenothiazinylidene)phenothiazinium. Chemistry – A European Journal 2021, 27 (32) , 8398-8405. https://doi.org/10.1002/chem.202100730
    34. Ana Clara B. Rodrigues, J. Sérgio Seixas de Melo. Aggregation-Induced Emission: From Small Molecules to Polymers—Historical Background, Mechanisms and Photophysics. Topics in Current Chemistry 2021, 379 (3) https://doi.org/10.1007/s41061-021-00327-9
    35. Qianyu Zhang, Gang Zhang. Synthesis, Structures and Properties of Angular cis ‐Benzothiazinophenothiazine Derivatives. ChemistrySelect 2021, 6 (17) , 4312-4318. https://doi.org/10.1002/slct.202101366
    36. Sripati Jana, Claire Empel, Chao Pei, Thanh Vinh Nguyen, Rene M. Koenigs. Gold‐catalyzed C−H Functionalization of Phenothiazines with Aryldiazoacetates. Advanced Synthesis & Catalysis 2020, 362 (24) , 5721-5727. https://doi.org/10.1002/adsc.202000962
    37. Javeena Hussain, Deekshi Angira, Tanya Hans, Pankaj Dubey, Sivapriya Kirubakaran, Vijay Thiruvenkatam. Synthesis and characterization of a new class of phenothiazine molecules with 10H-substituted morpholine & piperidine derivatives: A structural insight. Journal of Molecular Structure 2020, 1219 , 128546. https://doi.org/10.1016/j.molstruc.2020.128546
    38. Ana Clara B. Rodrigues, João Pina, J. Sérgio Seixas de Melo. Structure-relation properties of N-substituted phenothiazines in solution and solid state: Photophysical, photostability and aggregation-induced emission studies. Journal of Molecular Liquids 2020, 317 , 113966. https://doi.org/10.1016/j.molliq.2020.113966
    39. Fabian Otteny, Gauthier Desmaizieres, Birgit Esser. Phenothiazine-based Redox Polymers for Energy Storage. 2020, 166-197. https://doi.org/10.1039/9781788019743-00166
    40. Chunfei Wang, Jingyun Tan, Xuanjun Zhang. Structure–reactivity relationship of probes based on the H 2 S-mediated reductive cleavage of the CC bond. New Journal of Chemistry 2020, 44 (27) , 11667-11677. https://doi.org/10.1039/D0NJ02307H
    41. Maximilian Schmidt, Mathias Hermann, Fabian Otteny, Birgit Esser. Calix[n]phenothiazines: Optoelectronic and Structural Properties and Host–Guest Chemistry. Organic Materials 2020, 02 (03) , 235-239. https://doi.org/10.1055/s-0040-1714295
    42. Meng‐Chi Chen, Yao‐Lin Lee, Zhi‐Xuan Huang, Deng‐Gao Chen, Pi‐Tai Chou. Tuning Electron‐Withdrawing Strength on Phenothiazine Derivatives: Achieving 100 % Photoluminescence Quantum Yield by NO 2 Substitution. Chemistry – A European Journal 2020, 26 (31) , 7124-7130. https://doi.org/10.1002/chem.202000754
    43. Jennifer Nau, Arno P. W. Schneeweis, Thomas J. J. Müller. Dithienothiazine dimers, trimers and polymers – novel electron-rich donors with red-shifted luminescence. Materials Chemistry Frontiers 2020, 4 (2) , 621-630. https://doi.org/10.1039/C9QM00591A
    44. Venkata Durga Nageswar Yadavalli, Rama Sastry Kambhampati. Green Aspects of Scale-Up Synthesis of Some APIs, Drug Candidates Under Development or Their Critical Intermediates. 2020, 145-190. https://doi.org/10.1007/978-3-030-44176-0_7
    45. Brian Murphy, Baljit Singh, Aoife Delaney, Susan Warren, Eithne Dempsey. Phenothiazine Redox Active Conducting Polymer Films at Nanocomposite Surfaces. Journal of The Electrochemical Society 2020, 167 (2) , 027525. https://doi.org/10.1149/1945-7111/ab6a83
    46. Bastian Moll, Thomas Tichelkamp, Susann Wegner, Biju Francis, Thomas J. J. Müller, Christoph Janiak. Near-infrared (NIR) surface-enhanced Raman spectroscopy (SERS) study of novel functional phenothiazines for potential use in dye sensitized solar cells (DSSC). RSC Advances 2019, 9 (64) , 37365-37375. https://doi.org/10.1039/C9RA08675G
    47. Idris Juma Al-Busaidi, Ashanul Haque, Nawal K. Al Rasbi, Muhammad S. Khan. Phenothiazine-based derivatives for optoelectronic applications: A review. Synthetic Metals 2019, 257 , 116189. https://doi.org/10.1016/j.synthmet.2019.116189
    48. Chunlan Song, Kun Liu, Zhongjie Wang, Bo Ding, Shengchun Wang, Yue Weng, Chien-Wei Chiang, Aiwen Lei. Electrochemical oxidation induced selective tyrosine bioconjugation for the modification of biomolecules. Chemical Science 2019, 10 (34) , 7982-7987. https://doi.org/10.1039/C9SC02218J
    49. Yuewei Wu, Chaoxian Yan, Dongxu Li, Chengshan Yuan, Jibin Sun, Shuyun Zhou, Hao‐Li Zhang, Xiangfeng Shao. Migratory Shift in Oxidative Cyclodehydrogenation Reaction of Tetraphenylethylenes Containing Electron‐Rich THDTAP Moiety. Chemistry – An Asian Journal 2019, 14 (10) , 1860-1869. https://doi.org/10.1002/asia.201801603
    50. Xue Yang, Qing Yu, Nan Yang, Lei Xue, Jiawei Shao, Buhong Li, Jinjun Shao, Xiaochen Dong. Thieno[3,2- b ]thiophene-DPP based near-infrared nanotheranostic agent for dual imaging-guided photothermal/photodynamic synergistic therapy. Journal of Materials Chemistry B 2019, 7 (15) , 2454-2462. https://doi.org/10.1039/C8TB03185A
    51. Xiang‐Yang Liu, Yuan‐Lan Zhang, Xiyu Fei, Liang‐Sheng Liao, Jian Fan. 9,9′‐Bicarbazole: New Molecular Skeleton for Organic Light‐Emitting Diodes. Chemistry – A European Journal 2019, 25 (17) , 4501-4508. https://doi.org/10.1002/chem.201806314
    52. Vishnu Ji Ram, Arun Sethi, Mahendra Nath, Ramendra Pratap. Six-Membered Heterocycles. 2019, 3-391. https://doi.org/10.1016/B978-0-12-819210-8.00002-3
    53. Efeturi A. Onoabedje, Samuel A. Egu, Mercy A. Ezeokonkwo, Uchechukwu C. Okoro. Highlights of molecular structures and applications of phenothiazine & phenoxazine polycycles. Journal of Molecular Structure 2019, 1175 , 956-962. https://doi.org/10.1016/j.molstruc.2018.08.064
    54. Javier Urieta-Mora, Inés García-Benito, Agustín Molina-Ontoria, Nazario Martín. Hole transporting materials for perovskite solar cells: a chemical approach. Chemical Society Reviews 2018, 47 (23) , 8541-8571. https://doi.org/10.1039/C8CS00262B
    55. Kevin A. Scott, Jon T. Njardarson. Analysis of US FDA-Approved Drugs Containing Sulfur Atoms. Topics in Current Chemistry 2018, 376 (1) https://doi.org/10.1007/s41061-018-0184-5
    56. Shalki Choudhary, Om Silakari. Thiazine. 2018, 247-284. https://doi.org/10.1016/B978-0-08-102083-8.00007-8
    57. Madhurima Poddar, Rajneesh Misra. NIR‐Absorbing Donor–Acceptor Based 1,1,4,4‐Tetracyanobuta‐1,3‐Diene (TCBD)‐ and Cyclohexa‐2,5‐Diene‐1,4‐Ylidene‐Expanded TCBD‐Substituted Ferrocenyl Phenothiazines. Chemistry – An Asian Journal 2017, 12 (22) , 2908-2915. https://doi.org/10.1002/asia.201700879
    58. Subhadeep Banerjee, Anjan Chattopadhyay, Joseph R.D. Fernandes, Arnab Banerjee, Apeksha Ashok Phadte, Akanksha Vinod Savardekar, Keisham Sarjit Singh. Synthesis and electronic properties of ester substituted 1,4-dicyanodibenzodioxins and evaluation of anti-proliferative activity of all isomeric 1,2-, 2,3- and 1,4-dicyanodibenzodioxins against HeLa cell line. Bioorganic & Medicinal Chemistry Letters 2017, 27 (18) , 4280-4284. https://doi.org/10.1016/j.bmcl.2017.08.042
    59. Wenqiang Chen, Linlin Zhu, Yuanqiang Hao, Xiuxiu Yue, Jinyan Gai, Qi Xiao, Shan Huang, Jiarong Sheng, Xiangzhi Song. Detection of thiophenol in buffer, in serum, on filter paper strip, and in living cells using a red-emitting amino phenothiazine boranil based fluorescent probe with a large Stokes shift. Tetrahedron 2017, 73 (31) , 4529-4537. https://doi.org/10.1016/j.tet.2017.06.011
    60. Jordan C. Theriot, Blaine G. McCarthy, Chern‐Hooi Lim, Garret M. Miyake. Organocatalyzed Atom Transfer Radical Polymerization: Perspectives on Catalyst Design and Performance. Macromolecular Rapid Communications 2017, 38 (13) https://doi.org/10.1002/marc.201700040
    61. Wenqiang Chen, Xiuxiu Yue, Wenxiu Li, Yuanqiang Hao, Liangliang Zhang, Linlin Zhu, Jiarong Sheng, Xiangzhi Song. A phenothiazine coumarin-based red emitting fluorescent probe for nanomolar detection of thiophenol with a large Stokes shift. Sensors and Actuators B: Chemical 2017, 245 , 702-710. https://doi.org/10.1016/j.snb.2017.01.167
    62. Manna Huang, Dongting Huang, Xinhai Zhu, Yiqian Wan. Copper‐Catalyzed Domino Reactions for the Synthesis of Phenothiazines. European Journal of Organic Chemistry 2015, 2015 (22) , 4835-4839. https://doi.org/10.1002/ejoc.201500667
    63. Ranendu Sekhar Das, Bula Singh, Arabinda Mandal, Rupendranath Banerjee, Subrata Mukhopadhyay. Kinetics of palladium nano-particles catalyzed reduction of Methylene Green by hydrazine: Role of induction period in determining mechanistic pathway. Inorganica Chimica Acta 2015, 428 , 185-192. https://doi.org/10.1016/j.ica.2015.02.001
    64. Fabrizio Giordanetto, Anja Schäfer, Christian Ottmann. Stabilization of protein–protein interactions by small molecules. Drug Discovery Today 2014, 19 (11) , 1812-1821. https://doi.org/10.1016/j.drudis.2014.08.005
    65. Hadeel T. Al‐Sinjilawi, Mustafa M. El‐Abadelah, Mohammad S. Mubarak, Amal Al‐Aboudi, Mohammed M. Abadleh, Adel M. Mahasneh, Asaad K. M. A. Ahmad. Synthesis and Antibacterial Activity of Some Novel 4‐Oxopyrido[2,3‐ a ]phenothiazines. Archiv der Pharmazie 2014, 347 (11) , 861-872. https://doi.org/10.1002/ardp.201400196
    66. Cristiana A. Zaharia. Phenothiazine‐Based Dopamine D 2 Antagonists for the Treatment of Schizophrenia. 2012, 65-79. https://doi.org/10.1002/9783527664450.ch5
    67. William E. Truce, Eunice M. Kreider, William W. Brand. The Smiles and Related Rearrangements of Aromatic Systems. 2011, 99-215. https://doi.org/10.1002/0471264180.or018.02
    68. Amit R. Trivedi, Arif B. Siddiqui, Dipti K. Dodiya, Manish J. Soalnki, Viresh H. Shah. A new synthetic approach and biological evaluation of novel phenothiazines bearing tert -butyl group. Journal of Sulfur Chemistry 2009, 30 (6) , 590-595. https://doi.org/10.1080/17415990903173511
    69. Krystian Pluta, Beata Morak‐Młodawska, Małgorzata Jeleń. Synthesis and properties of diaza‐, triaza‐, and tetraazaphenothiazines. Journal of Heterocyclic Chemistry 2009, 46 (3) , 355-391. https://doi.org/10.1002/jhet.42
    70. S. Mitchell, G. Steventon, R. Waring. Metabolic Fate of Phenothiazine in the Marmoset (Callithrix jacchus). Drug Metabolism and Drug Interactions 2009, 24 (2-4) https://doi.org/10.1515/DMDI.2009.24.2-4.137
    71. Mónica Garca‐Lóapez, Susana Yenes, Helmut Buschmann, Antoni Torrens. Chemistry. 2007, 951-1087. https://doi.org/10.1002/9783527619337.ch15
    72. Ioan A. Silberg, Gabriela Cormos, Daniela Carmen Oniciu. Retrosynthetic Approach to the Synthesis of Phenothiazines. 2006, 205-237. https://doi.org/10.1016/S0065-2725(05)90003-2
    73. Elena Bâcu, Dalila Samson-Belei, Guy Nowogrocki, Axel Couture, Pierre Grandclaudon. Benzoindolizine derivatives of N-acylphenothiazine. Synthesis and characterization. Org. Biomol. Chem. 2003, 1 (13) , 2377-2382. https://doi.org/10.1039/B302662K
    74. Monica Toşa, Csaba Paizs, Cornelia Majdik, Paula Moldovan, Lajos Novák, Pál Kolonits, Éva Szabó, László Poppe, Florin-Dan Irimie. Baker’s yeast mediated preparation of (10-alkyl-10H-phenothiazin-3-yl)methanols. Journal of Molecular Catalysis B: Enzymatic 2002, 17 (6) , 241-248. https://doi.org/10.1016/S1381-1177(02)00015-2
    75. S. C. Mitchell, P. Kestell, G. B. Steventon, R. H. Waring. Fate of the anthelmintic, phenothiazine, in man. Xenobiotica 2002, 32 (9) , 771-782. https://doi.org/10.1080/00498250210143038
    76. Gérard Taurand. Phenothiazine and Derivatives. 2000https://doi.org/10.1002/14356007.a19_387
    77. Ayman W. Erian, Sherif M. Sherif. The chemistry of thiocyanic esters. Tetrahedron 1999, 55 (26) , 7957-8024. https://doi.org/10.1016/S0040-4020(99)00386-5
    78. Elena Bâcu, Magda Petrovanu, Axel Couture, Pierre Grandclaudon. SYNTHESE D'HYBRIDES 1,3,4-OXADIAZOLE-PHENOTHIAZINE. Phosphorus, Sulfur, and Silicon and the Related Elements 1999, 149 (1) , 207-220. https://doi.org/10.1080/10426509908037032
    79. Magda Petrovanu, Elena B[acaron]cu, Pierre Grandclaudon, Axel Couture. SYNTHESE D'UNITES DE TYPE TRIAZOLE ET THIADIAZOLE ENCHAINEES A LA PHENOTHIAZINE. Phosphorus, Sulfur, and Silicon and the Related Elements 1996, 108 (1-4) , 231-237. https://doi.org/10.1080/10426509608029654
    80. Ashraf A. Mohamed, Masaaki Iwatsuki, Mohamed F. El-Shahat, Tsutomu Fukasawa. Catalytic determination of iodide using the promethazine–hydrogen peroxide redox reaction. The Analyst 1995, 120 (4) , 1201-1204. https://doi.org/10.1039/AN9952001201
    81. Bhim Bali Prasad, Meenakshi Singh, Sandhya Singh. N-Chloranil and N-Xylene Containing Polycations. Preparation and Solvation Characteristics. Polymer Journal 1995, 27 (1) , 49-58. https://doi.org/10.1295/polymj.27.49
    82. G. Boyer, J. P. Galy, R. Faure, J. Barbe. 1 H and 13 C nuclear magnetic resonance studies of pyrazolo [ c ]‐ and pyrazolo [ b ]phenothiazines. Magnetic Resonance in Chemistry 1994, 32 (9) , 537-539. https://doi.org/10.1002/mrc.1260320907
    83. P. Catsoulacos, D. Catsoulacos. On the synthesis of pyrido[3,2,1‐ kl ]phenothiazine, quino[8,1‐ bc ][1,4]benzothiazepine and their derivatives. Journal of Heterocyclic Chemistry 1992, 29 (4) , 675-682. https://doi.org/10.1002/jhet.5570290401
    84. Charles O. Okafor, Mabel U. Akpuaka, Ihesinachi A. Eluwa. Synthesis of new benzothiazinophenoxazine ring systems. Dyes and Pigments 1992, 19 (2) , 81-97. https://doi.org/10.1016/0143-7208(92)87014-R
    85. Charles O. Okafor, Uche C. Okoro. New non-linear polycyclic azaphenothiazine dyestuffs. Dyes and Pigments 1991, 16 (2) , 149-163. https://doi.org/10.1016/0143-7208(91)85006-T
    86. Keith Bowden, Philip R. Williams. Intramolecular catalysis. Part 7. The Smiles rearrangement of substituted 2-hydroxy-2′-nitro- and -2′,4′-dinitro-diphenyl sulphones, as well as 2-amino-2′,4′-dinitrodiphenyl sulphide, 2-[(2-aminophenyl)thio]-3-nitropyridine and 2-hydroxy-2′,4′-dinitrodiphenyl ether. J. Chem. Soc., Perkin Trans. 2 1991, 49 (2) , 215-224. https://doi.org/10.1039/P29910000215
    87. J. Elks, C. R. Ganellin. P. 1990, 928-1053. https://doi.org/10.1007/978-1-4757-2085-3_16
    88. Wen-Bing Kang, Seiko Nan'ya, Takashi Sekiya, Yoshio Ueno. The synthesis of benzophenothiazine derivatives. Monatshefte f�r Chemie Chemical Monthly 1989, 120 (4) , 311-314. https://doi.org/10.1007/BF00811743
    89. Lameck F.S. Chagonda, Jeffrey S. Millership. The determination of chlorpromazine, related impurities and degradation products in pharmaceutical dosage forms. Journal of Pharmaceutical and Biomedical Analysis 1989, 7 (3) , 271-278. https://doi.org/10.1016/0731-7085(89)80093-7
    90. Charles O. Okafor, Uche C. Okoro. A new synthesis of ‘three-branched’ diazaphenothiazine dyes. Dyes and Pigments 1988, 9 (6) , 427-442. https://doi.org/10.1016/0143-7208(88)82002-3
    91. Charles O. Okafor. The first branched benzoxazinophenothiazine ring system and its aza-analogues. Tetrahedron 1988, 44 (4) , 1187-1194. https://doi.org/10.1016/S0040-4020(01)85898-1
    92. W. B. Kang, Seiko Nan'ya, Eturǒ Maekawa, Yoshio Ueno. Angular heterocycles. A convenient synthesis of azabenzophenothiazines. Journal of Heterocyclic Chemistry 1988, 25 (1) , 113-117. https://doi.org/10.1002/jhet.5570250116
    93. M. G. Voronkov, N. S. Vyazankin, E. N. Deryagina, A. S. Nakhmanovich, V. A. Usov. Nitrogen-Containing Compounds. 1987, 251-306. https://doi.org/10.1007/978-1-4684-0679-5_7
    94. Charles O. Okafor, Isaac O. Okerulu, Stephen I. Okeke. Vat dyes from three new heterocyclic ring systems. Dyes and Pigments 1987, 8 (1) , 11-24. https://doi.org/10.1016/0143-7208(87)85002-7
    95. W. B. Kang, Seiko Nan'Ya, Yasushi Yamaguchi, EturǑ Maekawa, Yoshio Ueno. The condensation products of 2,3,6‐trisubstituted‐1,4‐naphthoquinones with 2‐aminothiophenol. Journal of Heterocyclic Chemistry 1987, 24 (1) , 91-94. https://doi.org/10.1002/jhet.5570240119
    96. C.O. Okafor. The chemistry and applications of angular phenothiazine derivatives. Dyes and Pigments 1986, 7 (4) , 249-287. https://doi.org/10.1016/0143-7208(86)85013-6
    97. Charles O. Okafor. A new type of angular phenothiazine ring system. Tetrahedron 1986, 42 (10) , 2771-2775. https://doi.org/10.1016/S0040-4020(01)90564-2
    98. Charles O. Okafor. New phenothiazine dyes and pigments. Dyes and Pigments 1985, 6 (6) , 405-415. https://doi.org/10.1016/0143-7208(85)80022-X
    99. Kimio Shindo, Sumio Ishikawa, Tetsuo Nozoe. Cyclohepta[ b ][1,4]benzothiazines and Their Diazine Analogues. 1. Formation and Reactions of Cyclohepta[ b ][1,4]benzothiazines. Bulletin of the Chemical Society of Japan 1985, 58 (1) , 165-171. https://doi.org/10.1246/bcsj.58.165
    100. Fred S. Fry, Millard Maienthal, Walter R. Benson. Synthesis of Isopromethazine Hydrochloride. Journal of Pharmaceutical Sciences 1983, 72 (5) , 568-569. https://doi.org/10.1002/jps.2600720525
    Load all citations

    Chemical Reviews

    Cite this: Chem. Rev. 1954, 54, 5, 797–833
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cr60171a003
    Published October 1, 1954

    Article Views

    2810

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.