ACS Publications. Most Trusted. Most Cited. Most Read
Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics
My Activity

Figure 1Loading Img
    Article

    Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Stanford University, Stanford, California 94305
    * Corresponding author e-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2009, 5, 10, 2619–2628
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ct9003004
    Published August 25, 2009
    Copyright © 2009 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    We demonstrate that a video gaming machine containing two consumer graphical cards can outpace a state-of-the-art quad-core processor workstation by a factor of more than 180× in Hartree−Fock energy + gradient calculations. Such performance makes it possible to run large scale Hartree−Fock and Density Functional Theory calculations, which typically require hundreds of traditional processor cores, on a single workstation. Benchmark Born−Oppenheimer molecular dynamics simulations are performed on two molecular systems using the 3-21G basis set - a hydronium ion solvated by 30 waters (94 atoms, 405 basis functions) and an aspartic acid molecule solvated by 147 waters (457 atoms, 2014 basis functions). Our GPU implementation can perform 27 ps/day and 0.7 ps/day of ab initio molecular dynamics simulation on a single desktop computer for these systems.

    Copyright © 2009 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Cartesian coordinates and SCF energies and gradients computed using the CPU (double precision) and GPU (mixed precision) for test molecules listed in Table 1. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 773 publications.

    1. Cheng-Han Li, Mehmet Cagri Kaymak, Maksim Kulichenko, Nicholas Lubbers, Benjamin T. Nebgen, Sergei Tretiak, Joshua Finkelstein, Daniel P. Tabor, Anders M. N. Niklasson. Shadow Molecular Dynamics with a Machine Learned Flexible Charge Potential. Journal of Chemical Theory and Computation 2025, Article ASAP.
    2. Rafael Souza Mattos, Saikat Mukherjee, Mario Barbatti. Legion: A Platform for Gaussian Wavepacket Nonadiabatic Dynamics. Journal of Chemical Theory and Computation 2025, 21 (5) , 2189-2205. https://doi.org/10.1021/acs.jctc.4c01697
    3. Bruno Di Geronimo, Špela Mandl, Santiago Alonso-Gil, Bojan Žagrović, Gilbert Reibnegger, Christoph Nusshold, Pedro A. Sánchez-Murcia. Digging out the Molecular Connections between the Catalytic Mechanism of Human Lysosomal α-Mannosidase and Its Pathophysiology. Journal of Chemical Information and Modeling 2025, 65 (5) , 2650-2659. https://doi.org/10.1021/acs.jcim.4c02229
    4. Luisa Pennacchio, Zacharias Liasi, Andreas Erbs Hillers-Bendtsen, Thomas Röckmann, Kurt V. Mikkelsen, Matthew S. Johnson. Extreme Isotopic Fractionation in CO and H2 Formed in Formaldehyde Photolysis: Theory and Experiment. The Journal of Physical Chemistry A 2025, 129 (9) , 2286-2295. https://doi.org/10.1021/acs.jpca.4c07516
    5. Solomon Y. Effah, Mark A. Hix, Alice R. Walker. Strategic Design of Fluorescent Perylene-Modified Nucleic Acid Monomers: Position-, Phosphorylation-, and Linker-Dependent Control of Electron Transfer. Journal of Chemical Information and Modeling 2025, Article ASAP.
    6. Abdelazim M. A. Abdelgawwad, Antonio Francés-Monerris. easyPARM: Automated, Versatile, and Reliable Force Field Parameters for Metal-Containing Molecules with Unique Labeling of Coordinating Atoms. Journal of Chemical Theory and Computation 2025, 21 (4) , 1817-1830. https://doi.org/10.1021/acs.jctc.4c01272
    7. Ethan R. Curtis, Chey M. Jones, Todd J. Martínez. Initial Conditions for Excited-State Dynamics in Solvated Systems: A Case Study. The Journal of Physical Chemistry B 2025, 129 (7) , 2030-2042. https://doi.org/10.1021/acs.jpcb.4c06536
    8. Vyshnavi Vennelakanti, Mugyeom Jeon, Heather J. Kulik. Computational Investigation of the Role of Metal Center Identity in Cytochrome P450 Enzyme Model Reactivity. Biochemistry 2025, 64 (3) , 678-691. https://doi.org/10.1021/acs.biochem.4c00594
    9. Angel Ivan Rodriguez-Leon, Cristian Ordóñez, Ruben Santamaria. Simulating the Helicase Enzymatic Action on ds-DNA: A First-Principles Molecular Dynamics Study. ACS Omega 2025, 10 (4) , 3627-3639. https://doi.org/10.1021/acsomega.4c08555
    10. Jan A. Meissner, Jan Meisner. Acceleration of Diffusion in Ab Initio Nanoreactor Molecular Dynamics and Application to Hydrogen Sulfide Oxidation. Journal of Chemical Theory and Computation 2025, 21 (1) , 218-229. https://doi.org/10.1021/acs.jctc.4c00826
    11. Eleftherios Mainas, Gregory M. Curtin, Shaena D. Riddles, Elisa Pieri. Biliverdin’s Propionic Chains Influence Oligomerization in Sandercyanin. The Journal of Physical Chemistry B 2024, 128 (50) , 12443-12455. https://doi.org/10.1021/acs.jpcb.4c06722
    12. Elise Palethorpe, Ryan Stocks, Giuseppe M. J. Barca. Advanced Techniques for High-Performance Fock Matrix Construction on GPU Clusters. Journal of Chemical Theory and Computation 2024, 20 (23) , 10424-10442. https://doi.org/10.1021/acs.jctc.4c00994
    13. Abhishek Bera, Pritish Joshi, Niladri Patra. Delving into Macrolide Binding Affinities and Associated Structural Modulations in Erythromycin Esterase C: Insights into the Venus Flytrap Mechanism. Journal of Chemical Information and Modeling 2024, 64 (23) , 8892-8908. https://doi.org/10.1021/acs.jcim.4c01523
    14. Anne Germann, Jan Meisner. Force-Assisted Orbital Crossing in Mechanochemical Oxirane Ring Opening. The Journal of Physical Chemistry A 2024, 128 (47) , 10224-10233. https://doi.org/10.1021/acs.jpca.4c06204
    15. Cheng Qian, Yuanhao Liu, Wenting Meng, Yaoyukun Jiang, Sijian Wang, Lu Wang. Modeling Infrared Spectroscopy of Nucleic Acids: Integrating Vibrational Non-Condon Effects with Machine Learning Schemes. Journal of Chemical Theory and Computation 2024, 20 (22) , 10080-10094. https://doi.org/10.1021/acs.jctc.4c01130
    16. Calum Snowdon, Giuseppe M. J. Barca. An Efficient RI-MP2 Algorithm for Distributed Many-GPU Architectures. Journal of Chemical Theory and Computation 2024, 20 (21) , 9394-9406. https://doi.org/10.1021/acs.jctc.4c00814
    17. Nathan D. Yoshino, Lee-Ping Wang. Two P, Ten P, White P, Red P: Mechanistic Exploration of the Oligomerization of Red Phosphorus from Diphosphorus with the Ab Initio Nanoreactor. Inorganic Chemistry 2024, 63 (41) , 19074-19086. https://doi.org/10.1021/acs.inorgchem.4c02299
    18. Sommer L. Johansen, Heejune Park, Lee-Ping Wang, Kyle N. Crabtree. Reactant Discovery with an Ab Initio Nanoreactor: Exploration of Astrophysical N-Heterocycle Precursors and Formation Pathways. ACS Earth and Space Chemistry 2024, 8 (9) , 1771-1783. https://doi.org/10.1021/acsearthspacechem.4c00120
    19. Ryan Stocks, Elise Palethorpe, Giuseppe M. J. Barca. Multi-GPU RI-HF Energies and Analytic Gradients─Toward High-Throughput Ab Initio Molecular Dynamics. Journal of Chemical Theory and Computation 2024, 20 (17) , 7503-7515. https://doi.org/10.1021/acs.jctc.4c00877
    20. Rakesh Kumar Roy, Abhishek Bera, Niladri Patra. Insights into Allosteric Inhibition of the AcrB Efflux Pump: Role of Distinct Binding Pockets, Protomer Preferences, and Crosstalk Disruption. Journal of Chemical Information and Modeling 2024, 64 (15) , 5964-5976. https://doi.org/10.1021/acs.jcim.4c00306
    21. Himanshu Sharma, Kumar Vanka. In Silico Discovery of a Neutral 2π Aromatic Silicon Aluminum Compound. Organometallics 2024, 43 (14) , 1583-1592. https://doi.org/10.1021/acs.organomet.4c00151
    22. Soumya Ranjan Dash, Kumar Vanka. Unveiling the Inverse Sandwich Complexes of XeO3: A Computational Exploration. Inorganic Chemistry 2024, 63 (29) , 13585-13593. https://doi.org/10.1021/acs.inorgchem.4c01744
    23. Avigyan Naskar, Rakesh K. Roy, Diship Srivastava, Niladri Patra. Decoding Inhibitor Egression from Wild-Type and G2019S Mutant LRRK2 Kinase: Insights into Unbinding Mechanisms for Precision Drug Design in Parkinson’s Disease. The Journal of Physical Chemistry B 2024, 128 (28) , 6657-6669. https://doi.org/10.1021/acs.jpcb.4c00335
    24. Jack T. Taylor, David J. Tozer, Basile F. E. Curchod. On the Topological Phase around Conical Intersections with Tamm–Dancoff Linear-Response Time-Dependent Density Functional Theory. The Journal of Physical Chemistry A 2024, 128 (27) , 5314-5320. https://doi.org/10.1021/acs.jpca.4c02503
    25. Dayana Bashirova, Tim J. Zuehlsdorff. First-Principles Modeling of the Absorption Spectrum of Crystal Violet in Solution: The Importance of Environmentally Driven Symmetry Breaking. The Journal of Physical Chemistry A 2024, 128 (27) , 5229-5242. https://doi.org/10.1021/acs.jpca.4c00389
    26. Elisa Pieri, Alice R. Walker, Mingning Zhu, Todd J. Martínez. Conical Intersection Accessibility Dictates Brightness in Red Fluorescent Proteins. Journal of the American Chemical Society 2024, 146 (26) , 17646-17658. https://doi.org/10.1021/jacs.4c00458
    27. Gibson Kirui, Widana Kaushalya, S. Sameera Perera, Alice R. Walker, Cláudio N. Verani. Influence of Peripheral and Ancillary Changes on the Electron Transport of HS3d5 FeIII Metallosurfactants – Substituents, Chain Length, Subphase Polarity, and Junction Electrodes. The Journal of Physical Chemistry C 2024, 128 (25) , 10668-10681. https://doi.org/10.1021/acs.jpcc.4c02249
    28. Jaewoon Jung, Kiyoshi Yagi, Cheng Tan, Hiraku Oshima, Takaharu Mori, Isseki Yu, Yasuhiro Matsunaga, Chigusa Kobayashi, Shingo Ito, Diego Ugarte La Torre, Yuji Sugita. GENESIS 2.1: High-Performance Molecular Dynamics Software for Enhanced Sampling and Free-Energy Calculations for Atomistic, Coarse-Grained, and Quantum Mechanics/Molecular Mechanics Models. The Journal of Physical Chemistry B 2024, 128 (25) , 6028-6048. https://doi.org/10.1021/acs.jpcb.4c02096
    29. Ankit Pandey, Bill Poirier, Ruibin Liang. Development of Parallel On-the-Fly Crystal Algorithm for Global Exploration of Conical Intersection Seam Space. Journal of Chemical Theory and Computation 2024, 20 (11) , 4778-4789. https://doi.org/10.1021/acs.jctc.4c00292
    30. Jakub K. Sowa, Danielle M. Cadena, Arshad Mehmood, Benjamin G. Levine, Sean T. Roberts, Peter J. Rossky. IR Spectroscopy of Carboxylate-Passivated Semiconducting Nanocrystals: Simulation and Experiment. The Journal of Physical Chemistry C 2024, 128 (21) , 8724-8731. https://doi.org/10.1021/acs.jpcc.4c01988
    31. Matteo Capone, Marco Romanelli, Davide Castaldo, Giovanni Parolin, Alessandro Bello, Gabriel Gil, Mirko Vanzan. A Vision for the Future of Multiscale Modeling. ACS Physical Chemistry Au 2024, 4 (3) , 202-225. https://doi.org/10.1021/acsphyschemau.3c00080
    32. Duccio Di Prima, Peter Reinholdt, Jacob Kongsted. Color Tuning in Bovine Rhodopsin through Polarizable Embedding. The Journal of Physical Chemistry B 2024, 128 (12) , 2864-2873. https://doi.org/10.1021/acs.jpcb.3c07891
    33. Ryan Stocks, Elise Palethorpe, Giuseppe M. J. Barca. High-Performance Multi-GPU Analytic RI-MP2 Energy Gradients. Journal of Chemical Theory and Computation 2024, 20 (6) , 2505-2519. https://doi.org/10.1021/acs.jctc.3c01424
    34. Haojun Jia, Chenru Duan, Ilia Kevlishvili, Aditya Nandy, Mingjie Liu, Heather J. Kulik. Computational Discovery of Codoped Single-Atom Catalysts for Methane-to-Methanol Conversion. ACS Catalysis 2024, 14 (5) , 2992-3005. https://doi.org/10.1021/acscatal.3c05506
    35. Colin Gallagher, Wali Siddiqui, Tyler Arnold, Carmen Cheng, Eric Su, Qing Zhao. Benchmarking a Molecular Flake Model on the Road to Programmable Graphene-Based Single-Atom Catalysts. The Journal of Physical Chemistry C 2024, 128 (7) , 2876-2883. https://doi.org/10.1021/acs.jpcc.3c07681
    36. Shavkat Mamatkulov, Jakub Polák, Jamoliddin Razzokov, Lukáš Tomaník, Petr Slavíček, Joachim Dzubiella, Matej Kanduč, Jan Heyda. Unveiling the Borohydride Ion through Force-Field Development. Journal of Chemical Theory and Computation 2024, 20 (3) , 1263-1273. https://doi.org/10.1021/acs.jctc.3c01020
    37. Diptarka Hait, Todd J. Martínez. Predicting the X-ray Absorption Spectrum of Ozone with Single Configuration State Functions. Journal of Chemical Theory and Computation 2024, 20 (2) , 873-881. https://doi.org/10.1021/acs.jctc.3c01035
    38. Nicole Spanedda, Chandler Martin, Kevin Mesta, Arindam Chakraborty. Enhancement of Spontaneous Photon Emission in Inverse Photoemission Transitions in Semiconductor Quantum Dots. The Journal of Physical Chemistry Letters 2024, 15 (2) , 364-370. https://doi.org/10.1021/acs.jpclett.3c02934
    39. Martin Melčák, Filip Šebesta, Jan Heyda, Harry B. Gray, Stanislav Záliš, Antonín Vlček. Tryptophan to Tryptophan Hole Hopping in an Azurin Construct. The Journal of Physical Chemistry B 2024, 128 (1) , 96-108. https://doi.org/10.1021/acs.jpcb.3c06568
    40. Evgeniy G. Gordeev, Djamaladdin G. Musaev, Valentine P. Ananikov. Comparative Study of Pd-Mediated Carbon–Carbon, Carbon–Heteroatom, and Heteroatom–Heteroatom Bond Formation/Breakage (C ═ Csp3, Csp2, Csp; X = B, N, O, Si, P, S, Se, Te). Organometallics 2024, 43 (1) , 1-13. https://doi.org/10.1021/acs.organomet.3c00367
    41. Lieyang Chen, Yujie Wu, Chuanjie Wu, Ana Silveira, Woody Sherman, Huafeng Xu, Emilio Gallicchio. Performance and Analysis of the Alchemical Transfer Method for Binding-Free-Energy Predictions of Diverse Ligands. Journal of Chemical Information and Modeling 2024, 64 (1) , 250-264. https://doi.org/10.1021/acs.jcim.3c01705
    42. Caitlin V. Hetherington, Nila Mohan T. M., Ryan W. Tilluck, Warren F. Beck, Benjamin G. Levine. Origin of Vibronic Coherences During Carrier Cooling in Colloidal Quantum Dots. The Journal of Physical Chemistry Letters 2023, 14 (51) , 11651-11658. https://doi.org/10.1021/acs.jpclett.3c02384
    43. Gustavo J. Costa, Abel Egbemhenghe, Ruibin Liang. Computational Characterization of the Reactivity of Compound I in Unspecific Peroxygenases. The Journal of Physical Chemistry B 2023, 127 (51) , 10987-10999. https://doi.org/10.1021/acs.jpcb.3c06311
    44. Yaoyukun Jiang, Ning Ding, Qianzhen Shao, Sebastian L. Stull, Zihao Cheng, Zhongyue J. Yang. Substrate Positioning Dynamics Involves a Non-Electrostatic Component to Mediate Catalysis. The Journal of Physical Chemistry Letters 2023, 14 (50) , 11480-11489. https://doi.org/10.1021/acs.jpclett.3c02444
    45. Kousik K. Bhanja, Madhur Sharma, Niladri Patra. Uncovering the Structural and Binding Insights of Dual Inhibitors Simultaneously Targeting Two Distinct Sites on EGFR Kinase. The Journal of Physical Chemistry B 2023, 127 (50) , 10749-10765. https://doi.org/10.1021/acs.jpcb.3c04337
    46. Ilia Kevlishvili, Chenru Duan, Heather J. Kulik. Classification of Hemilabile Ligands Using Machine Learning. The Journal of Physical Chemistry Letters 2023, 14 (49) , 11100-11109. https://doi.org/10.1021/acs.jpclett.3c02828
    47. Jiří Janoš, Petr Slavíček. What Controls the Quality of Photodynamical Simulations? Electronic Structure Versus Nonadiabatic Algorithm. Journal of Chemical Theory and Computation 2023, 19 (22) , 8273-8284. https://doi.org/10.1021/acs.jctc.3c00908
    48. Zhengyi Bian, Alison Wallum, Arshad Mehmood, Eric Gomez, Ziwen Wang, Subhendu Pandit, Shuming Nie, Stephan Link, Benjamin G. Levine, Martin Gruebele. Properties of Carbon Dots versus Small Molecules from “Bottom-up” Synthesis. ACS Nano 2023, 17 (22) , 22788-22799. https://doi.org/10.1021/acsnano.3c07486
    49. Ernst Dennis Larsson, Peter Reinholdt, Erik Donovan Hedegård, Jacob Kongsted. Accuracy of One- and Two-Photon Intensities with the Extended Polarizable Density Embedding Model. The Journal of Physical Chemistry B 2023, 127 (46) , 9905-9914. https://doi.org/10.1021/acs.jpcb.3c05029
    50. Lanhai He, Lukáš Tomaník, Sebastian Malerz, Florian Trinter, Sebastian Trippel, Michal Belina, Petr Slavíček, Bernd Winter, Jochen Küpper. Specific versus Nonspecific Solvent Interactions of a Biomolecule in Water. The Journal of Physical Chemistry Letters 2023, 14 (46) , 10499-10508. https://doi.org/10.1021/acs.jpclett.3c01763
    51. Jiří Janoš, Ivo S. Vinklárek, Jozef Rakovský, Deb Pratim Mukhopadhyay, Basile F. E. Curchod, Michal Fárník, Petr Slavíček. On the Wavelength-Dependent Photochemistry of the Atmospheric Molecule CF3COCl. ACS Earth and Space Chemistry 2023, 7 (11) , 2275-2286. https://doi.org/10.1021/acsearthspacechem.3c00196
    52. Jacob Stamm, Sung Kwon, Shawn Sandhu, Moaid Shaik, Rituparna Das, Jesse Sandhu, Bradley Curenton, Clayton Wicka, Benjamin G. Levine, Liangliang Sun, Marcos Dantus. The Surprising Dynamics of the McLafferty Rearrangement. The Journal of Physical Chemistry Letters 2023, 14 (44) , 10088-10093. https://doi.org/10.1021/acs.jpclett.3c02102
    53. Christina H. McCulley, Alice R. Walker. Dimer Interface Destabilization of Photodissociative Dronpa Driven by Asymmetric Monomer Dynamics. The Journal of Physical Chemistry B 2023, 127 (43) , 9248-9257. https://doi.org/10.1021/acs.jpcb.3c03798
    54. Federico Zahariev, Peng Xu, Bryce M. Westheimer, Simon Webb, Jorge Galvez Vallejo, Ananta Tiwari, Vaibhav Sundriyal, Masha Sosonkina, Jun Shen, George Schoendorff, Megan Schlinsog, Tosaporn Sattasathuchana, Klaus Ruedenberg, Luke B. Roskop, Alistair P. Rendell, David Poole, Piotr Piecuch, Buu Q. Pham, Vladimir Mironov, Joani Mato, Sam Leonard, Sarom S. Leang, Joe Ivanic, Jackson Hayes, Taylor Harville, Karthik Gururangan, Emilie Guidez, Igor S. Gerasimov, Christian Friedl, Katherine N. Ferreras, George Elliott, Dipayan Datta, Daniel Del Angel Cruz, Laura Carrington, Colleen Bertoni, Giuseppe M. J. Barca, Melisa Alkan, Mark S. Gordon. The General Atomic and Molecular Electronic Structure System (GAMESS): Novel Methods on Novel Architectures. Journal of Chemical Theory and Computation 2023, 19 (20) , 7031-7055. https://doi.org/10.1021/acs.jctc.3c00379
    55. Mark A. Hix, Alice R. Walker. AutoParams: An Automated Web-Based Tool To Generate Force Field Parameters for Molecular Dynamics Simulations. Journal of Chemical Information and Modeling 2023, 63 (20) , 6293-6301. https://doi.org/10.1021/acs.jcim.3c01049
    56. Sung Kwon, Shawn Sandhu, Moaid Shaik, Jacob Stamm, Jesse Sandhu, Rituparna Das, Caitlin V. Hetherington, Benjamin G. Levine, Marcos Dantus. What is the Mechanism of H3+ Formation from Cyclopropane?. The Journal of Physical Chemistry A 2023, 127 (41) , 8633-8638. https://doi.org/10.1021/acs.jpca.3c05442
    57. Gustavo J. Costa, Ruibin Liang. Understanding the Multifaceted Mechanism of Compound I Formation in Unspecific Peroxygenases through Multiscale Simulations. The Journal of Physical Chemistry B 2023, 127 (41) , 8809-8824. https://doi.org/10.1021/acs.jpcb.3c04589
    58. Abigail Cousino, Lanka D. Wickramasinghe, Widana Kaushalya, S. Sameera Perera, Habib Baydoun, Alice R. Walker, Cláudio N. Verani. Studies on Monolayer Formation and Electron Transport in Au|LB|Au Junctions Containing 3d4 MnIII Metallosurfactants. The Journal of Physical Chemistry C 2023, 127 (33) , 16654-16667. https://doi.org/10.1021/acs.jpcc.3c03616
    59. Soren Holm, Pablo A. Unzueta, Keiran Thompson, Todd J. Martínez. Single-Point Extrapolation to the Complete Basis Set Limit through Deep Learning. Journal of Chemical Theory and Computation 2023, 19 (14) , 4474-4483. https://doi.org/10.1021/acs.jctc.2c01298
    60. Pratip Chakraborty, Rafael C. Couto, Nanna H. List. Deciphering Methylation Effects on S2(ππ*) Internal Conversion in the Simplest Linear α,β-Unsaturated Carbonyl. The Journal of Physical Chemistry A 2023, 127 (25) , 5360-5373. https://doi.org/10.1021/acs.jpca.3c02582
    61. Tianyi Yu, Xubo Luo, David Prendergast, Glenn L. Butterfoss, Behzad Rad, Nitash P. Balsara, Ronald N. Zuckermann, Xi Jiang. Structural Elucidation of a Polypeptoid Chain in a Crystalline Lattice Reveals Key Morphology-Directing Role of the N-Terminus. ACS Nano 2023, 17 (5) , 4958-4970. https://doi.org/10.1021/acsnano.2c12503
    62. Justin Villard, Murat Kılıç, Ursula Rothlisberger. Surrogate Based Genetic Algorithm Method for Efficient Identification of Low-Energy Peptide Structures. Journal of Chemical Theory and Computation 2023, 19 (3) , 1080-1097. https://doi.org/10.1021/acs.jctc.2c01078
    63. Madushanka Manathunga, Hasan Metin Aktulga, Andreas W. Götz, Kenneth M. Merz, Jr.. Quantum Mechanics/Molecular Mechanics Simulations on NVIDIA and AMD Graphics Processing Units. Journal of Chemical Information and Modeling 2023, 63 (3) , 711-717. https://doi.org/10.1021/acs.jcim.2c01505
    64. Yorick Lassmann, Daniel Hollas, Basile F. E. Curchod. Extending the Applicability of the Multiple-Spawning Framework for Nonadiabatic Molecular Dynamics. The Journal of Physical Chemistry Letters 2022, 13 (51) , 12011-12018. https://doi.org/10.1021/acs.jpclett.2c03295
    65. Xim Bokhimi. Effect of Pressure on the Distribution of Electrons in a Cluster of H2S. ACS Omega 2022, 7 (46) , 42499-42504. https://doi.org/10.1021/acsomega.2c05726
    66. Siddharth Sundararaman, David M. Halat, Jeffrey A. Reimer, Nitash P. Balsara, David Prendergast. Understanding the Impact of Multi-Chain Ion Coordination in Poly(ether-Acetal) Electrolytes. Macromolecules 2022, 55 (21) , 9880-9889. https://doi.org/10.1021/acs.macromol.2c01897
    67. K. Grace Johnson, Seema Mirchandaney, Ellis Hoag, Alan Heirich, Alex Aiken, Todd J. Martínez. Multinode Multi-GPU Two-Electron Integrals: Code Generation Using the Regent Language. Journal of Chemical Theory and Computation 2022, 18 (11) , 6522-6536. https://doi.org/10.1021/acs.jctc.2c00414
    68. Richard Jacobi, David Hernández-Castillo, Novitasari Sinambela, Julian Bösking, Andrea Pannwitz, Leticia González. Computation of Förster Resonance Energy Transfer in Lipid Bilayer Membranes. The Journal of Physical Chemistry A 2022, 126 (43) , 8070-8081. https://doi.org/10.1021/acs.jpca.2c04524
    69. Christina Yeo, Minh Nguyen, Lee-Ping Wang. Benchmarking Density Functionals, Basis Sets, and Solvent Models in Predicting Thermodynamic Hydricities of Organic Hydrides. The Journal of Physical Chemistry A 2022, 126 (42) , 7566-7577. https://doi.org/10.1021/acs.jpca.2c03072
    70. Philipp Pracht, Christoph Bannwarth. Fast Screening of Minimum Energy Crossing Points with Semiempirical Tight-Binding Methods. Journal of Chemical Theory and Computation 2022, 18 (10) , 6370-6385. https://doi.org/10.1021/acs.jctc.2c00578
    71. Lisa Oh, Yang Ji, Wanqing Li, Ajit Varki, Xi Chen, Lee-Ping Wang. O-Acetyl Migration within the Sialic Acid Side Chain: A Mechanistic Study Using the Ab Initio Nanoreactor. Biochemistry 2022, 61 (18) , 2007-2013. https://doi.org/10.1021/acs.biochem.2c00343
    72. D. Vale Cofer-Shabica, Maximilian F. S. J. Menger, Qi Ou, Yihan Shao, Joseph E. Subotnik, Shirin Faraji. INAQS, a Generic Interface for Nonadiabatic QM/MM Dynamics: Design, Implementation, and Validation for GROMACS/Q-CHEM simulations. Journal of Chemical Theory and Computation 2022, 18 (8) , 4601-4614. https://doi.org/10.1021/acs.jctc.2c00204
    73. Chenru Duan, Adriana J. Ladera, Julian C.-L. Liu, Michael G. Taylor, Isuru R. Ariyarathna, Heather J. Kulik. Exploiting Ligand Additivity for Transferable Machine Learning of Multireference Character across Known Transition Metal Complex Ligands. Journal of Chemical Theory and Computation 2022, 18 (8) , 4836-4845. https://doi.org/10.1021/acs.jctc.2c00468
    74. Chey M. Jones, Nanna H. List, Todd J. Martínez. Steric and Electronic Origins of Fluorescence in GFP and GFP-like Proteins. Journal of the American Chemical Society 2022, 144 (28) , 12732-12746. https://doi.org/10.1021/jacs.2c02946
    75. Jianhong Yang, Yong Li, Qiang Qiu, Ruihan Wang, Wei Yan, Yamei Yu, Lu Niu, Heying Pei, Haoche Wei, Liang Ouyang, Haoyu Ye, Dingguo Xu, Yuquan Wei, Qiang Chen, Lijuan Chen. Small Molecules Promote Selective Denaturation and Degradation of Tubulin Heterodimers through a Low-Barrier Hydrogen Bond. Journal of Medicinal Chemistry 2022, 65 (13) , 9159-9173. https://doi.org/10.1021/acs.jmedchem.2c00379
    76. Joshua Finkelstein, Emanuel H. Rubensson, Susan M. Mniszewski, Christian F. A. Negre, Anders M. N. Niklasson. Quantum Perturbation Theory Using Tensor Cores and a Deep Neural Network. Journal of Chemical Theory and Computation 2022, 18 (7) , 4255-4268. https://doi.org/10.1021/acs.jctc.2c00274
    77. Yuanheng Wang, Stefan Seritan, Dean Lahana, Jason E. Ford, Alessio Valentini, Edward G. Hohenstein, Todd J. Martínez. InteraChem: Exploring Excited States in Virtual Reality with Ab Initio Interactive Molecular Dynamics. Journal of Chemical Theory and Computation 2022, 18 (6) , 3308-3317. https://doi.org/10.1021/acs.jctc.2c00005
    78. In Seong Lee, Seung Kyu Min. Generalized Formulation of the Density Functional Tight Binding-Based Restricted Ensemble Kohn–Sham Method with Onsite Correction to Long-Range Correction. Journal of Chemical Theory and Computation 2022, 18 (6) , 3391-3409. https://doi.org/10.1021/acs.jctc.2c00037
    79. Azadeh Nazemi, Adam H. Steeves, David W. Kastner, Heather J. Kulik. Influence of the Greater Protein Environment on the Electrostatic Potential in Metalloenzyme Active Sites: The Case of Formate Dehydrogenase. The Journal of Physical Chemistry B 2022, 126 (22) , 4069-4079. https://doi.org/10.1021/acs.jpcb.2c02260
    80. Yael Cytter, Aditya Nandy, Akash Bajaj, Heather J. Kulik. Ligand Additivity and Divergent Trends in Two Types of Delocalization Errors from Approximate Density Functional Theory. The Journal of Physical Chemistry Letters 2022, 13 (20) , 4549-4555. https://doi.org/10.1021/acs.jpclett.2c01026
    81. Aditya Nandy, Chenru Duan, Conrad Goffinet, Heather J. Kulik. New Strategies for Direct Methane-to-Methanol Conversion from Active Learning Exploration of 16 Million Catalysts. JACS Au 2022, 2 (5) , 1200-1213. https://doi.org/10.1021/jacsau.2c00176
    82. Dewi Yokelson, Nikolay V. Tkachenko, Robert Robey, Ying Wai Li, Pavel A. Dub. Performance Analysis of CP2K Code for Ab Initio Molecular Dynamics on CPUs and GPUs. Journal of Chemical Information and Modeling 2022, 62 (10) , 2378-2386. https://doi.org/10.1021/acs.jcim.1c01538
    83. Rakesh Kumar Roy, Niladri Patra. Prediction of COMT Inhibitors Using Machine Learning and Molecular Dynamics Methods. The Journal of Physical Chemistry B 2022, 126 (19) , 3477-3492. https://doi.org/10.1021/acs.jpcb.1c10278
    84. Zhongyue Yang, Natalia Hajlasz, Heather J. Kulik. Computational Modeling of Conformer Stability in Benenodin-1, a Thermally Actuated Lasso Peptide Switch. The Journal of Physical Chemistry B 2022, 126 (18) , 3398-3406. https://doi.org/10.1021/acs.jpcb.2c00762
    85. Ruibin Liang, Amirhossein Bakhtiiari. Effects of Enzyme–Ligand Interactions on the Photoisomerization of a Light-Regulated Chemotherapeutic Drug. The Journal of Physical Chemistry B 2022, 126 (12) , 2382-2393. https://doi.org/10.1021/acs.jpcb.1c10819
    86. Roberto López, Natalia Díaz, Evelio Francisco, Angel Martín-Pendás, Dimas Suárez. QM/MM Energy Decomposition Using the Interacting Quantum Atoms Approach. Journal of Chemical Information and Modeling 2022, 62 (6) , 1510-1524. https://doi.org/10.1021/acs.jcim.1c01372
    87. Ming Zhang, Zhengning Guo, Xiaoyu Mi, Zheng Li, Yunquan Liu. Ultrafast Imaging of Molecular Dynamics Using Ultrafast Low-Frequency Lasers, X-ray Free Electron Lasers, and Electron Pulses. The Journal of Physical Chemistry Letters 2022, 13 (7) , 1668-1680. https://doi.org/10.1021/acs.jpclett.1c03916
    88. Ian E. Jacobs, Gabriele D’Avino, Vincent Lemaur, Yue Lin, Yuxuan Huang, Chen Chen, Thomas F. Harrelson, William Wood, Leszek J. Spalek, Tarig Mustafa, Christopher A. O’Keefe, Xinglong Ren, Dimitrios Simatos, Dion Tjhe, Martin Statz, Joseph W. Strzalka, Jin-Kyun Lee, Iain McCulloch, Simone Fratini, David Beljonne, Henning Sirringhaus. Structural and Dynamic Disorder, Not Ionic Trapping, Controls Charge Transport in Highly Doped Conducting Polymers. Journal of the American Chemical Society 2022, 144 (7) , 3005-3019. https://doi.org/10.1021/jacs.1c10651
    89. Andrew S. Durden, Benjamin G. Levine. Floquet Time-Dependent Configuration Interaction for Modeling Ultrafast Electron Dynamics. Journal of Chemical Theory and Computation 2022, 18 (2) , 795-806. https://doi.org/10.1021/acs.jctc.1c01009
    90. Gustavo J. R. Aroeira, Matthew M. Davis, Justin M. Turney, Henry F. Schaefer, III. Fermi.jl: A Modern Design for Quantum Chemistry. Journal of Chemical Theory and Computation 2022, 18 (2) , 677-686. https://doi.org/10.1021/acs.jctc.1c00719
    91. Daniel R. Harper, Heather J. Kulik. Computational Scaling Relationships Predict Experimental Activity and Rate-Limiting Behavior in Homogeneous Water Oxidation. Inorganic Chemistry 2022, 61 (4) , 2186-2197. https://doi.org/10.1021/acs.inorgchem.1c03376
    92. Mingjie Liu, Azadeh Nazemi, Michael G. Taylor, Aditya Nandy, Chenru Duan, Adam H. Steeves, Heather J. Kulik. Large-Scale Screening Reveals That Geometric Structure Matters More Than Electronic Structure in the Bioinspired Catalyst Design of Formate Dehydrogenase Mimics. ACS Catalysis 2022, 12 (1) , 383-396. https://doi.org/10.1021/acscatal.1c04624
    93. Giuseppe M. J. Barca, Melisa Alkan, Jorge L. Galvez-Vallejo, David L. Poole, Alistair P. Rendell, Mark S. Gordon. Faster Self-Consistent Field (SCF) Calculations on GPU Clusters. Journal of Chemical Theory and Computation 2021, 17 (12) , 7486-7503. https://doi.org/10.1021/acs.jctc.1c00720
    94. David M. Sanchez, Umberto Raucci, Todd J. Martínez. In Silico Discovery of Multistep Chemistry Initiated by a Conical Intersection: The Challenging Case of Donor–Acceptor Stenhouse Adducts. Journal of the American Chemical Society 2021, 143 (48) , 20015-20021. https://doi.org/10.1021/jacs.1c06648
    95. Maryann Laboe, Jurick Lahiri, Nila Mohan T. M., Fangchun Liang, Benjamin G. Levine, Warren F. Beck, Marcos Dantus. Linear and Nonlinear Optical Processes Controlling S2 and S1 Dual Fluorescence in Cyanine Dyes. The Journal of Physical Chemistry A 2021, 125 (45) , 9770-9784. https://doi.org/10.1021/acs.jpca.1c05772
    96. Alice R. Walker, Boning Wu, Jan Meisner, Michael D. Fayer, Todd J. Martínez. Proton Transfer from a Photoacid to a Water Wire: First Principles Simulations and Fast Fluorescence Spectroscopy. The Journal of Physical Chemistry B 2021, 125 (45) , 12539-12551. https://doi.org/10.1021/acs.jpcb.1c07254
    97. Kevin J. Naidoo, Tomás Bruce-Chwatt, Tharindu Senapathi, Malcolm Hillebrand. Multidimensional Free Energy and Accelerated Quantum Library Methods Provide a Gateway to Glycoenzyme Conformational, Electronic, and Reaction Mechanisms. Accounts of Chemical Research 2021, 54 (22) , 4120-4130. https://doi.org/10.1021/acs.accounts.1c00477
    98. Edward G. Hohenstein, Jimmy K. Yu, Christoph Bannwarth, Nanna Holmgaard List, Alexander C. Paul, Sarai D. Folkestad, Henrik Koch, Todd J. Martínez. Predictions of Pre-edge Features in Time-Resolved Near-Edge X-ray Absorption Fine Structure Spectroscopy from Hole–Hole Tamm–Dancoff-Approximated Density Functional Theory. Journal of Chemical Theory and Computation 2021, 17 (11) , 7120-7133. https://doi.org/10.1021/acs.jctc.1c00478
    99. Beomchang Kang, Chaok Seok, Juyong Lee. MOLGENGO: Finding Novel Molecules with Desired Electronic Properties by Capitalizing on Their Global Optimization. ACS Omega 2021, 6 (41) , 27454-27465. https://doi.org/10.1021/acsomega.1c04347
    100. Joshua Finkelstein, Justin S. Smith, Susan M. Mniszewski, Kipton Barros, Christian F. A. Negre, Emanuel H. Rubensson, Anders M. N. Niklasson. Quantum-Based Molecular Dynamics Simulations Using Tensor Cores. Journal of Chemical Theory and Computation 2021, 17 (10) , 6180-6192. https://doi.org/10.1021/acs.jctc.1c00726
    Load more citations

    Journal of Chemical Theory and Computation

    Cite this: J. Chem. Theory Comput. 2009, 5, 10, 2619–2628
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ct9003004
    Published August 25, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    4574

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.