ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Making Molecular Borromean Rings. A Gram-Scale Synthetic Procedure for the Undergraduate Organic Lab

View Author Information
Department of Chemistry and Biochemistry and the California NanoSystems Institute, University of California, Los Angeles, CA 90095-1569
Cite this: J. Chem. Educ. 2007, 84, 5, 855
Publication Date (Web):May 1, 2007
https://doi.org/10.1021/ed084p855

    Article Views

    1045

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Borromean rings (BRs) have long fascinated scholars of all disciplines for their wide cultural appeal and unique topology. Undergraduate students are no exception and so we have modified our published experimental procedure for the synthesis of molecular BRs to turn it into a lab instruction experiment suitable for undergraduate students to pursue in an organic chemistry laboratory course. Herein, we describe a procedure that requires seven 4-hour blocks of time to allow an undergraduate student to prepare the molecular BRs on a gram-scale in 90% yield. Just as important as engaging students in the BRs is the fact that the making of the molecular BRs incorporates several important, yet nonetheless overlooked, areas of chemistry. They include synthetic organic, physical organic, inorganic and metallo-organic chemistry, supramolecular, and dynamic covalent chemistry, all packaged up under the same umbrella in one project.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 30 publications.

    1. Adrian Saura-Sanmartin, Jorge Lopez-Sanchez, Carmen Lopez-Leonardo, Aurelia Pastor, Jose Berna. Exploring the Chemistry of the Mechanical Bond: Synthesis of a [2]Rotaxane through Multicomponent Reactions. Journal of Chemical Education 2023, 100 (9) , 3355-3363. https://doi.org/10.1021/acs.jchemed.3c00163
    2. Luigi Fabbrizzi. Beauty in Chemistry: Making Artistic Molecules with Schiff Bases. The Journal of Organic Chemistry 2020, 85 (19) , 12212-12226. https://doi.org/10.1021/acs.joc.0c01420
    3. Wen-Xi Gao, Hui-Jun Feng, Bei-Bei Guo, Ye Lu, Guo-Xin Jin. Coordination-Directed Construction of Molecular Links. Chemical Reviews 2020, 120 (13) , 6288-6325. https://doi.org/10.1021/acs.chemrev.0c00321
    4. Nicholas G. White. A Rapid and Straightforward Supramolecular Self-Assembly Experiment To Prepare and Characterize a Triple Helicate Complex. Journal of Chemical Education 2018, 95 (4) , 648-651. https://doi.org/10.1021/acs.jchemed.7b00674
    5. Norbert J. Pienta . Volume 93 in Review. Journal of Chemical Education 2016, 93 (12) , 1967-1968. https://doi.org/10.1021/acs.jchemed.6b00889
    6. Eun Bin Go, Veerasak Srisuknimit, Stephanie L. Cheng, and David A. Vosburg . Self-Assembly, Guest Capture, and NMR Spectroscopy of a Metal–Organic Cage in Water. Journal of Chemical Education 2016, 93 (2) , 368-371. https://doi.org/10.1021/acs.jchemed.5b00714
    7. Qing Ji, Nadia S. El-Hamdi, and Ognjen Š. Miljanić . Scent Transmutation: A New Way To Teach on Chemical Equilibrium, Distillation, and Dynamic Combinatorial Chemistry. Journal of Chemical Education 2014, 91 (6) , 830-833. https://doi.org/10.1021/ed400681w
    8. Ross S. Forgan, Jean-Pierre Sauvage, and J. Fraser Stoddart . Chemical Topology: Complex Molecular Knots, Links, and Entanglements. Chemical Reviews 2011, 111 (9) , 5434-5464. https://doi.org/10.1021/cr200034u
    9. Aleksandra Sarwa, Agata Białońska, Michał Sobieraj, Juan Pablo Martínez, Bartosz Trzaskowski, Bartosz Szyszko. Iminopyrrole‐Based Self‐Assembly: A Route to Intrinsically Flexible Molecular Links and Knots. Angewandte Chemie 2024, 136 (4) https://doi.org/10.1002/ange.202316489
    10. Aleksandra Sarwa, Agata Białońska, Michał Sobieraj, Juan Pablo Martínez, Bartosz Trzaskowski, Bartosz Szyszko. Iminopyrrole‐Based Self‐Assembly: A Route to Intrinsically Flexible Molecular Links and Knots. Angewandte Chemie International Edition 2024, 63 (4) https://doi.org/10.1002/anie.202316489
    11. R.A. Bilbeisi, A. Trabolsi. Knots. 2017, 269-277. https://doi.org/10.1016/B978-0-12-409547-2.12589-2
    12. Wenfang Li, Chenyang Zhang, Shuaiwei Qi, Xiaoli Deng, Wei Wang, Bing Yang, Junqiu Liu, Zeyuan Dong. A folding-directed catalytic microenvironment in helical dynamic covalent polymers formed by spontaneous configuration control. Polymer Chemistry 2017, 8 (8) , 1294-1297. https://doi.org/10.1039/C6PY02200F
    13. Vijith Kumar, Tullio Pilati, Giancarlo Terraneo, Franck Meyer, Pierangelo Metrangolo, Giuseppe Resnati. Halogen bonded Borromean networks by design: topology invariance and metric tuning in a library of multi-component systems. Chemical Science 2017, 8 (3) , 1801-1810. https://doi.org/10.1039/C6SC04478F
    14. . Appendix B: Cover Art Gallery. 2016, 742-752. https://doi.org/10.1002/9781119044123.app2
    15. . Making Mechanical Bonds Under Thermodynamic Control. 2016, 269-345. https://doi.org/10.1002/9781119044123.ch3
    16. B. J. J. Timmer, M. Abellán Flos, L. Mønster Jørgensen, D. Proverbio, S. Altun, O. Ramström, T. Aastrup, S. P. Vincent. Spatially well-defined carbohydrate nanoplatforms: synthesis, characterization and lectin interaction study. Chemical Communications 2016, 52 (83) , 12326-12329. https://doi.org/10.1039/C6CC06737A
    17. Lei Hu, Fredrik Schaufelberger, Brian J. J. Timmer, Marta Abellán Flos, Olof Ramström. Constitutional Dynamic Chemistry. 2014, 1-25. https://doi.org/10.1002/0471238961.consrams.a01
    18. Jean‐Pierre Sauvage, David B. Amabilino. Templated Synthesis of Knots and Ravels. 2012https://doi.org/10.1002/9780470661345.smc085
    19. Ross S. Forgan, Cheng Wang, Douglas C. Friedman, Jason M. Spruell, Charlotte L. Stern, Amy A. Sarjeant, Dennis Cao, J. Fraser Stoddart. Donor–Acceptor Ring‐in‐Ring Complexes. Chemistry – A European Journal 2012, 18 (1) , 202-212. https://doi.org/10.1002/chem.201102919
    20. Jonathon E. Beves, Barry A. Blight, Christopher J. Campbell, David A. Leigh, Roy T. McBurney. Strategien und Taktiken für die metallgesteuerte Synthese von Rotaxanen, Knoten, Catenanen und Verschlingungen höherer Ordnung. Angewandte Chemie 2011, 123 (40) , 9428-9499. https://doi.org/10.1002/ange.201007963
    21. Jonathon E. Beves, Barry A. Blight, Christopher J. Campbell, David A. Leigh, Roy T. McBurney. Strategies and Tactics for the Metal‐Directed Synthesis of Rotaxanes, Knots, Catenanes, and Higher Order Links. Angewandte Chemie International Edition 2011, 50 (40) , 9260-9327. https://doi.org/10.1002/anie.201007963
    22. . Other Supramolecular Systems, Molecular Motors, Machines and Nanotechnological Applications. 2011, 518-575. https://doi.org/10.1002/9780470980200.ch10
    23. Carson J. Bruns, J. Fraser Stoddart. The Mechanical Bond: A Work of Art. 2011, 19-72. https://doi.org/10.1007/128_2011_296
    24. Jovica D. Badjić, Sandra Stojanović, Yian Ruan. Kinetically and thermodynamically controlled syntheses of covalent molecular capsules. 2011, 1-37. https://doi.org/10.1016/B978-0-12-386047-7.00001-1
    25. Cari D. Meyer, Ross S. Forgan, Kelly S. Chichak, Andrea J. Peters, Nicholas Tangchaivang, Gareth W. V. Cave, Saeed I. Khan, Stuart J. Cantrill, J. Fraser Stoddart. The Dynamic Chemistry of Molecular Borromean Rings and Solomon Knots. Chemistry – A European Journal 2010, 16 (42) , 12570-12581. https://doi.org/10.1002/chem.201001806
    26. Ken Cham-Fai Leung, Wing-Yan Wong, Fabio Aricó, Philip C. Haussmann, J. Fraser Stoddart. The stability of imine-containing dynamic [2]rotaxanes to hydrolysis. Org. Biomol. Chem. 2010, 8 (1) , 83-89. https://doi.org/10.1039/B915864B
    27. Wing-Yan Wong, Ken Cham-Fai Leung, J. Fraser Stoddart. Self-assembly, stability quantification, controlled molecular switching, and sensing properties of an anthracene-containing dynamic [2]rotaxane. Organic & Biomolecular Chemistry 2010, 8 (10) , 2332. https://doi.org/10.1039/b926568f
    28. J. Fraser Stoddart. The chemistry of the mechanical bond. Chemical Society Reviews 2009, 38 (6) , 1802. https://doi.org/10.1039/b819333a
    29. J. Fraser Stoddart, Howard M. Colquhoun. Big and little Meccano. Tetrahedron 2008, 64 (36) , 8231-8263. https://doi.org/10.1016/j.tet.2008.06.035
    30. Jishan Wu, Ken Cham-Fai Leung, J. Fraser Stoddart. Efficient production of [ n ]rotaxanes by using template-directed clipping reactions. Proceedings of the National Academy of Sciences 2007, 104 (44) , 17266-17271. https://doi.org/10.1073/pnas.0705847104

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect