ACS Publications. Most Trusted. Most Cited. Most Read
Single-Particle Characterization of Summertime Arctic Aerosols Collected at Ny-Ålesund, Svalbard
My Activity

Figure 1Loading Img
    Article

    Single-Particle Characterization of Summertime Arctic Aerosols Collected at Ny-Ålesund, Svalbard
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Inha University, YonghyunDong, NamGu, 402-751, Incheon, Korea, Research Center of Environmental Science and Engineering, Shanxi University, Taiyuan, 030006, China, and Department of Mechanical Engineering, Hanyang University, Sangnok-gu, 425-791, Ansan, Korea
    * Corresponding author phone: +82 32 860 7676; fax: +82 32 867 5604; e-mail: [email protected]
    †Inha University.
    ‡Shanxi University.
    §Hanyang University.
    Other Access OptionsSupporting Information (1)

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2010, 44, 7, 2348–2353
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es903268j
    Published March 3, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Single-particle characterization of summertime Arctic aerosols is useful to understand the impact of air pollutants on the polar atmosphere. In the present study, a quantitative single particle analytical technique, low-Z particle electron probe X-ray microanalysis, was used to characterize 8100 individual particles overall in 16 sets of aerosol samples collected at Ny-Ålesund, Svalbard, Norway on 25−31 July, 2007. Based on their X-ray spectral and secondary electron image data of individual particles, 13 particle types were identified, in which particles of marine origin were the most abundant, followed by carbonaceous and mineral dust particles. A number of aged (reacted) sea salt (and mixture) particles produced by the atmospheric reaction of genuine sea-salts, especially with NOx or HNO3, were significantly encountered in almost all the aerosol samples. They greatly outnumbered genuine sea salt particles, implying that the summertime Arctic atmosphere, generally regarded as a clean background environment, is disturbed by anthropogenic air pollutants. The main sources of airborne NOx (or HNO3) are probably ship emissions around the Arctic Ocean, industry emission from northern Europe and northwestern Siberia, and renoxification of NO3 within or on the melting snow/ice surface.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional details are provided in five tables and five figures. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 57 publications.

    1. Jie Ding, Yong Guan, Yalin Cong, Liang Chen, Yu-Feng Li, Lijuan Zhang, Lili Zhang, Jian Wang, Ru Bai, Yuliang Zhao, Chunying Chen, Liming Wang. Single-Particle Analysis for Structure and Iron Chemistry of Atmospheric Particulate Matter. Analytical Chemistry 2020, 92 (1) , 975-982. https://doi.org/10.1021/acs.analchem.9b03913
    2. Sophie Sobanska, HeeJin Hwang, Marie Choël, Hae-Jin Jung, Hyo-Jin Eom, HyeKyeong Kim, Jacques Barbillat, and Chul-Un Ro . Investigation of the Chemical Mixing State of Individual Asian Dust Particles by the Combined Use of Electron Probe X-ray Microanalysis and Raman Microspectrometry. Analytical Chemistry 2012, 84 (7) , 3145-3154. https://doi.org/10.1021/ac2029584
    3. Kouichi Tsuji and Kazuhiko Nakano , Yoshio Takahashi , Kouichi Hayashi , Chul-Un Ro . X-ray Spectrometry. Analytical Chemistry 2012, 84 (2) , 636-668. https://doi.org/10.1021/ac202871b
    4. Shila Maskey, Hong Geng, Young-Chul Song, HeeJin Hwang, Young-Jun Yoon, Kang-Ho Ahn, and Chul-Un Ro . Single-Particle Characterization of Summertime Antarctic Aerosols Collected at King George Island Using Quantitative Energy-Dispersive Electron Probe X-ray Microanalysis and Attenuated Total Reflection Fourier Transform-Infrared Imaging Techniques. Environmental Science & Technology 2011, 45 (15) , 6275-6282. https://doi.org/10.1021/es200936m
    5. Suman Ghorai and Alexei V. Tivanski. Hygroscopic Behavior of Individual Submicrometer Particles Studied by X-ray Spectromicroscopy. Analytical Chemistry 2010, 82 (22) , 9289-9298. https://doi.org/10.1021/ac101797k
    6. Young-Chul Song, JiYeon Ryu, Md Abdul Malek, Hae-Jin Jung, and Chul-Un Ro. Chemical Speciation of Individual Airborne Particles by the Combined Use of Quantitative Energy-Dispersive Electron Probe X-ray Microanalysis and Attenuated Total Reflection Fourier Transform-Infrared Imaging Techniques. Analytical Chemistry 2010, 82 (19) , 7987-7998. https://doi.org/10.1021/ac1014113
    7. Kang-Ho Ahn, Sun-Man Kim, Hae-Jin Jung, Mi-Jung Lee, Hyo-Jin Eom, Shila Maskey, and Chul-Un Ro . Combined Use of Optical and Electron Microscopic Techniques for the Measurement of Hygroscopic Property, Chemical Composition, and Morphology of Individual Aerosol Particles. Analytical Chemistry 2010, 82 (19) , 7999-8009. https://doi.org/10.1021/ac101432y
    8. Weijun Li, Lei Liu, Liang Xu. Importance of Microanalysis in Air Quality Studies. 2025, 55-74. https://doi.org/10.1002/9781119554318.ch2
    9. J. Wu, J. Liu, M. J. Gunsch, J. A. Mirrielees, C. E. Moffett, Q. Zhang, R. J. Sheesley, K. A. Pratt. Quantifying the Diversity of an Atmospheric Aerosol Population in an Arctic Oil Field on a Single‐Particle Level. Journal of Geophysical Research: Atmospheres 2024, 129 (14) https://doi.org/10.1029/2024JD041001
    10. Gabriel Pereira Freitas, Ben Kopec, Kouji Adachi, Radovan Krejci, Dominic Heslin-Rees, Karl Espen Yttri, Alun Hubbard, Jeffrey M. Welker, Paul Zieger. Contribution of fluorescent primary biological aerosol particles to low-level Arctic cloud residuals. Atmospheric Chemistry and Physics 2024, 24 (9) , 5479-5494. https://doi.org/10.5194/acp-24-5479-2024
    11. Kouji Adachi, Yutaka Tobo, Naga Oshima, Atsushi Yoshida, Sho Ohata, Radovan Krejci, Andreas Massling, Henrik Skov, Makoto Koike. Composition and mixing state of individual aerosol particles from northeast Greenland and Svalbard in the Arctic during spring 2018. Atmospheric Environment 2023, 314 , 120083. https://doi.org/10.1016/j.atmosenv.2023.120083
    12. Sunil M. Sonbawne, M.P. Raju, P.D. Safai, P.C.S. Devara, Suvarna Fadnavis, A.S. Panicker, G. Pandithurai. Size-separated aerosol chemical characterization over Ny-Ålesund during the Arctic summer of 2010. Sustainable Chemistry for Climate Action 2023, 2 , 100016. https://doi.org/10.1016/j.scca.2023.100016
    13. Bojiang Su, Tao Wang, Guohua Zhang, Yue Liang, Chen Lv, Yaohao Hu, Lei Li, Zhen Zhou, Xinming Wang, Xinhui Bi. A review of atmospheric aging of sea spray aerosols: Potential factors affecting chloride depletion. Atmospheric Environment 2022, 290 , 119365. https://doi.org/10.1016/j.atmosenv.2022.119365
    14. Kouji Adachi, Yutaka Tobo, Makoto Koike, Gabriel Freitas, Paul Zieger, Radovan Krejci. Composition and mixing state of Arctic aerosol and cloud residual particles from long-term single-particle observations at Zeppelin Observatory, Svalbard. Atmospheric Chemistry and Physics 2022, 22 (21) , 14421-14439. https://doi.org/10.5194/acp-22-14421-2022
    15. Sunil Manohar Sonbawne, Panuganti C. S. Devara, Rohini Bhawar, Rahul P. R. C., Devendraa Siingh, Suvarna Fadnavis, Abhilash. S. Panicker, Govindan Pandithurai. Aerosol physico–optical–radiative characterization and classification during summer over Ny-Ålesund, Arctic. International Journal of Remote Sensing 2021, 42 (22) , 8760-8781. https://doi.org/10.1080/01431161.2021.1987576
    16. Matteo Feltracco, Elena Barbaro, Clara J.M. Hoppe, Klara K.E. Wolf, Andrea Spolaor, Rose Layton, Christoph Keuschnig, Carlo Barbante, Andrea Gambaro, Catherine Larose. Airborne bacteria and particulate chemistry capture Phytoplankton bloom dynamics in an Arctic fjord. Atmospheric Environment 2021, 256 , 118458. https://doi.org/10.1016/j.atmosenv.2021.118458
    17. Elissavet Bossioli, Georgia Sotiropoulou, Georgia Methymaki, Maria Tombrou. Modeling Extreme Warm‐Air Advection in the Arctic During Summer: The Effect of Mid‐Latitude Pollution Inflow on Cloud Properties. Journal of Geophysical Research: Atmospheres 2021, 126 (7) https://doi.org/10.1029/2020JD033291
    18. Matteo Feltracco, Elena Barbaro, Andrea Spolaor, Marco Vecchiato, Alice Callegaro, François Burgay, Massimiliano Vardè, Niccolò Maffezzoli, Federico Dallo, Federico Scoto, Roberta Zangrando, Carlo Barbante, Andrea Gambaro. Year-round measurements of size-segregated low molecular weight organic acids in Arctic aerosol. Science of The Total Environment 2021, 763 , 142954. https://doi.org/10.1016/j.scitotenv.2020.142954
    19. Congbo Song, Manuel Dall'Osto, Angelo Lupi, Mauro Mazzola, Rita Traversi, Silvia Becagli, Stefania Gilardoni, Stergios Vratolis, Karl Espen Yttri, David C. S. Beddows, Julia Schmale, James Brean, Agung Ghani Kramawijaya, Roy M. Harrison, Zongbo Shi. Differentiation of coarse-mode anthropogenic, marine and dust particles in the High Arctic islands of Svalbard. Atmospheric Chemistry and Physics 2021, 21 (14) , 11317-11335. https://doi.org/10.5194/acp-21-11317-2021
    20. Liang Xu, Xiaohuan Liu, Huiwang Gao, Xiaohong Yao, Daizhou Zhang, Lei Bi, Lei Liu, Jian Zhang, Yinxiao Zhang, Yuanyuan Wang, Qi Yuan, Weijun Li. Long-range transport of anthropogenic air pollutants into the marine air: insight into fine particle transport and chloride depletion on sea salts. Atmospheric Chemistry and Physics 2021, 21 (23) , 17715-17726. https://doi.org/10.5194/acp-21-17715-2021
    21. Kouji Adachi, Naga Oshima, Sho Ohata, Atsushi Yoshida, Nobuhiro Moteki, Makoto Koike. Compositions and mixing states of aerosol particles by aircraft observations in the Arctic springtime, 2018. Atmospheric Chemistry and Physics 2021, 21 (5) , 3607-3626. https://doi.org/10.5194/acp-21-3607-2021
    22. G. Santachiara, F. Belosi. Repeatability of INP activation from the vapor. Atmospheric Research 2020, 243 , 105030. https://doi.org/10.1016/j.atmosres.2020.105030
    23. Łukasz Stachnik, Jacob C. Yde, Adam Nawrot, Łukasz Uzarowicz, Elżbieta Łepkowska, Katarzyna Kozak. Aluminium in glacial meltwater demonstrates an association with nutrient export (Werenskiöldbreen, Svalbard). Hydrological Processes 2019, 33 (12) , 1638-1657. https://doi.org/10.1002/hyp.13426
    24. Yutaka Tobo, Kouji Adachi, Paul J. DeMott, Thomas C. J. Hill, Douglas S. Hamilton, Natalie M. Mahowald, Naoko Nagatsuka, Sho Ohata, Jun Uetake, Yutaka Kondo, Makoto Koike. Glacially sourced dust as a potentially significant source of ice nucleating particles. Nature Geoscience 2019, 12 (4) , 253-258. https://doi.org/10.1038/s41561-019-0314-x
    25. Valle Raidla, Enn Kaup, Sigrid Hade, Jüri Ivask, Alvar Soesoo. Geochemical Processes Controlling Ionic Composition of Water in the Catchments of Lakes Saana and Saanalampi in the Kilpisjärvi Area of North Scandinavia. Geosciences 2019, 9 (4) , 174. https://doi.org/10.3390/geosciences9040174
    26. O. Popovicheva, E. Diapouli, A. Makshtas, N. Shonija, M. Manousakas, D. Saraga, T. Uttal, K. Eleftheriadis. East Siberian Arctic background and black carbon polluted aerosols at HMO Tiksi. Science of The Total Environment 2019, 655 , 924-938. https://doi.org/10.1016/j.scitotenv.2018.11.165
    27. Hans-Werner Jacobi, Friedrich Obleitner, Sophie Da Costa, Patrick Ginot, Konstantinos Eleftheriadis, Wenche Aas, Marco Zanatta. Deposition of ionic species and black carbon to the Arctic snowpack: combining snow pit observations with modeling. Atmospheric Chemistry and Physics 2019, 19 (15) , 10361-10377. https://doi.org/10.5194/acp-19-10361-2019
    28. Hua Yu, Weijun Li, Yangmei Zhang, Peter Tunved, Manuel Dall'Osto, Xiaojing Shen, Junying Sun, Xiaoye Zhang, Jianchao Zhang, Zongbo Shi. Organic coating on sulfate and soot particles during late summer in the Svalbard Archipelago. Atmospheric Chemistry and Physics 2019, 19 (15) , 10433-10446. https://doi.org/10.5194/acp-19-10433-2019
    29. Tanuj Shukla, Shipika Sundriyal, Lukasz Stachnik, Manish Mehta. Carbonate and silicate weathering in glacial environments and its relation to atmospheric CO 2 cycling in the Himalaya. Annals of Glaciology 2018, 59 (77) , 159-170. https://doi.org/10.1017/aog.2019.5
    30. Megan D. Willis, W. Richard Leaitch, Jonathan P.D. Abbatt. Processes Controlling the Composition and Abundance of Arctic Aerosol. Reviews of Geophysics 2018, 56 (4) , 621-671. https://doi.org/10.1029/2018RG000602
    31. J. Schmale, S. R. Arnold, K. S. Law, T. Thorp, S. Anenberg, W. R. Simpson, J. Mao, K. A. Pratt. Local Arctic Air Pollution: A Neglected but Serious Problem. Earth's Future 2018, 6 (10) , 1385-1412. https://doi.org/10.1029/2018EF000952
    32. Rachel M. Kirpes, Amy L. Bondy, Daniel Bonanno, Ryan C. Moffet, Bingbing Wang, Alexander Laskin, Andrew P. Ault, Kerri A. Pratt. Secondary sulfate is internally mixed with sea spray aerosol and organic aerosol in the winter Arctic. Atmospheric Chemistry and Physics 2018, 18 (6) , 3937-3949. https://doi.org/10.5194/acp-18-3937-2018
    33. Jianqiong Zhan, Wei Li, Liqi Chen, Qi Lin, Yuan Gao. Anthropogenic influences on aerosols at Ny-Ålesund in the summer Arctic. Atmospheric Pollution Research 2017, 8 (2) , 383-393. https://doi.org/10.1016/j.apr.2016.10.010
    34. Rui Li, Hongbo Fu, Qingqing Hu, Chunlin Li, Liwu Zhang, Jianmin Chen, Abdel Wahid Mellouki. Physiochemical characteristics of aerosol particles in the typical microenvironment of hospital in Shanghai, China. Science of The Total Environment 2017, 580 , 651-659. https://doi.org/10.1016/j.scitotenv.2016.12.011
    35. Matthew J. Gunsch, Rachel M. Kirpes, Katheryn R. Kolesar, Tate E. Barrett, Swarup China, Rebecca J. Sheesley, Alexander Laskin, Alfred Wiedensohler, Thomas Tuch, Kerri A. Pratt. Contributions of transported Prudhoe Bay oil field emissions to the aerosol population in Utqiaġvik, Alaska. Atmospheric Chemistry and Physics 2017, 17 (17) , 10879-10892. https://doi.org/10.5194/acp-17-10879-2017
    36. Andrea Bazzano, David Cappelletti, Roberto Udisti, Marco Grotti. Long-range transport of atmospheric lead reaching Ny-Ålesund: Inter-annual and seasonal variations of potential source areas. Atmospheric Environment 2016, 139 , 11-19. https://doi.org/10.1016/j.atmosenv.2016.05.026
    37. Łukasz Stachnik, Elżbieta Majchrowska, Jacob C. Yde, Adam P. Nawrot, Katarzyna Cichała-Kamrowska, Dariusz Ignatiuk, Agnieszka Piechota. Chemical denudation and the role of sulfide oxidation at Werenskioldbreen, Svalbard. Journal of Hydrology 2016, 538 , 177-193. https://doi.org/10.1016/j.jhydrol.2016.03.059
    38. Maria Giamarelou, Konstantinos Eleftheriadis, Stephan Nyeki, Peter Tunved, Kjetil Torseth, George Biskos. Indirect evidence of the composition of nucleation mode atmospheric particles in the high Arctic. Journal of Geophysical Research: Atmospheres 2016, 121 (2) , 965-975. https://doi.org/10.1002/2015JD023646
    39. G. Young, H. M. Jones, E. Darbyshire, K. J. Baustian, J. B. McQuaid, K. N. Bower, P. J. Connolly, M. W. Gallagher, T. W. Choularton. Size-segregated compositional analysis of aerosol particles collected in the European Arctic during the ACCACIA campaign. Atmospheric Chemistry and Physics 2016, 16 (6) , 4063-4079. https://doi.org/10.5194/acp-16-4063-2016
    40. Evelyne Hamacher-Barth, Caroline Leck, Kjell Jansson. Size-resolved morphological properties of the high Arctic summer aerosol during ASCOS-2008. Atmospheric Chemistry and Physics 2016, 16 (10) , 6577-6593. https://doi.org/10.5194/acp-16-6577-2016
    41. G. Young, H. M. Jones, E. Darbyshire, K. J. Baustian, J. B. McQuaid, K. N. Bower, P. J. Connolly, M. W. Gallagher, T. W. Choularton. Exploring the variability of aerosol particle composition in the Arctic: a study from the springtime ACCACIA campaign. 2015https://doi.org/10.5194/acpd-15-29403-2015
    42. J. W. Chi, W. J. Li, D. Z. Zhang, J. C. Zhang, Y. T. Lin, X. J. Shen, J. Y. Sun, J. M. Chen, X. Y. Zhang, Y. M. Zhang, W. X. Wang. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the arctic troposphere. 2015https://doi.org/10.5194/acpd-15-16715-2015
    43. Hong Geng, Dhrubajyoti Gupta, Chul-Un Ro. Microscopic Single-Particle Analytical Methods for Aerosol Characterisation. 2015, 331-366. https://doi.org/10.1016/bs.coac.2015.09.008
    44. J. W. Chi, W. J. Li, D. Z. Zhang, J. C. Zhang, Y. T. Lin, X. J. Shen, J. Y. Sun, J. M. Chen, X. Y. Zhang, Y. M. Zhang, W. X. Wang. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the Arctic troposphere. Atmospheric Chemistry and Physics 2015, 15 (19) , 11341-11353. https://doi.org/10.5194/acp-15-11341-2015
    45. I. A. Wendl, A. Eichler, E. Isaksson, T. Martma, M. Schwikowski. 800-year ice-core record of nitrogen deposition in Svalbard linked to ocean productivity and biogenic emissions. Atmospheric Chemistry and Physics 2015, 15 (13) , 7287-7300. https://doi.org/10.5194/acp-15-7287-2015
    46. I. A. Wendl, A. Eichler, E. Isaksson, T. Martma, M. Schwikowski. 800 year ice-core record of nitrogen deposition in Svalbard linked to ocean productivity and biogenic emissions. 2014https://doi.org/10.5194/acpd-14-24667-2014
    47. Jianqiong Zhan, Yuan Gao, Wei Li, Liqi Chen, Hongmei Lin, Qi Lin. Effects of ship emissions on summertime aerosols at Ny–Alesund in the Arctic. Atmospheric Pollution Research 2014, 5 (3) , 500-510. https://doi.org/10.5094/APR.2014.059
    48. S. Sobanska, G. Falgayrac, J. Rimetz-Planchon, E. Perdrix, C. Brémard, J. Barbillat. Resolving the internal structure of individual atmospheric aerosol particle by the combination of Atomic Force Microscopy, ESEM–EDX, Raman and ToF–SIMS imaging. Microchemical Journal 2014, 114 , 89-98. https://doi.org/10.1016/j.microc.2013.12.007
    49. C G DESHPANDE, A K KAMRA. Physical properties of the arctic summer aerosol particles in relation to sources at Ny-Alesund, Svalbard. Journal of Earth System Science 2014, 123 (1) , 201-212. https://doi.org/10.1007/s12040-013-0373-0
    50. Hae-Jin Jung, Hyo-Jin Eom, Hyun-Woo Kang, Myriam Moreau, Sophie Sobanska, Chul-Un Ro. Combined use of quantitative ED-EPMA, Raman microspectrometry, and ATR-FTIR imaging techniques for the analysis of individual particles. The Analyst 2014, 139 (16) , 3949-3960. https://doi.org/10.1039/C4AN00380B
    51. H. Geng, H. J. Hwang, X. Liu, S. Dong, C.-U. Ro. Investigation of aged aerosols in size-resolved Asian dust storm particles transported from Beijing, China to Incheon, Korea using low- Z particle EPMA. 2013https://doi.org/10.5194/acpd-13-27971-2013
    52. E. Scalabrin, R. Zangrando, E. Barbaro, N. M. Kehrwald, J. Gabrieli, C. Barbante, A. Gambaro. Amino acids in Arctic aerosols. 2012https://doi.org/10.5194/acpd-12-17367-2012
    53. Hae-Jin Jung, Young-Chul Song, Xiande Liu, Yuwu Li, Chul-Un Ro. Single-particle Characterization of Aerosol Particles Collected Nearby a Lead Smelter in China. Asian Journal of Atmospheric Environment 2012, 6 (2) , 83-95. https://doi.org/10.5572/ajae.2012.6.2.083
    54. Stephan Weinbruch, David Wiesemann, Martin Ebert, Katharina Schütze, Roland Kallenborn, Johan Ström. Chemical composition and sources of aerosol particles at Zeppelin Mountain (Ny Ålesund, Svalbard): An electron microscopy study. Atmospheric Environment 2012, 49 , 142-150. https://doi.org/10.1016/j.atmosenv.2011.12.008
    55. E. Scalabrin, R. Zangrando, E. Barbaro, N. M. Kehrwald, J. Gabrieli, C. Barbante, A. Gambaro. Amino acids in Arctic aerosols. Atmospheric Chemistry and Physics 2012, 12 (21) , 10453-10463. https://doi.org/10.5194/acp-12-10453-2012
    56. H. Fu, M. Zhang, W. Li, J. Chen, L. Wang, X. Quan, W. Wang. Morphology, composition and mixing state of individual carbonaceous aerosol in urban Shanghai. Atmospheric Chemistry and Physics 2012, 12 (2) , 693-707. https://doi.org/10.5194/acp-12-693-2012
    57. Weijun Li, Longyi Shao, Rongrong Shen, Shusheng Yang, Zhishi Wang, Uwa Tang. Internally Mixed Sea Salt, Soot, and Sulfates at Macao, a Coastal City in South China. Journal of the Air & Waste Management Association 2011, 61 (11) , 1166-1173. https://doi.org/10.1080/10473289.2011.603996
    58. Dhrubajyoti Gupta, Rita Ghosh, Ajoy K. Mitra, Subinit Roy, Manoranjan Sarkar, Subhajit Chowdhury, Asit Bhowmik, Ujjal Mukhopadhyay, Shila Maskey, Chul-Un Ro. Nondestructive Characterization of Municipal-Solid-Waste-Contaminated Surface Soil by Energy-Dispersive X-ray Fluorescence and Low- Z (Atomic Number) Particle Electron Probe X-ray Microanalysis. Journal of the Air & Waste Management Association 2011, 61 (11) , 1102-1114. https://doi.org/10.1080/10473289.2011.604286
    59. Hong Geng, Fangqin Cheng, Chul-Un Ro. Single-Particle Characterization of Atmospheric Aerosols Collected at Gosan, Korea, during the Asian Pacific Regional Aerosol Characterization Experiment Field Campaign Using Low- Z (Atomic Number) Particle Electron Probe X-ray Microanalysis. Journal of the Air & Waste Management Association 2011, 61 (11) , 1183-1191. https://doi.org/10.1080/10473289.2011.604292
    60. H. Fu, M. Zhang, W. Li, J. Chen, L. Wang, X. Quan, W. Wang. Morphology, composition and mixing state of individual carbonaceous aerosol in urban Shanghai. 2011https://doi.org/10.5194/acpd-11-20973-2011
    61. H. Geng, J. Y. Ryu, S. Maskey, H.-J. Jung, C.-U. Ro. Characterisation of individual aerosol particles collected during a haze episode in Incheon, Korea using the quantitative ED-EPMA technique. Atmospheric Chemistry and Physics 2011, 11 (3) , 1327-1337. https://doi.org/10.5194/acp-11-1327-2011
    62. HyeKyeong Kim, Chul-Un Ro. Characterization of Individual Atmospheric Aerosols Using Quantitative Energy Dispersive-Electron Probe X-ray Microanalysis: A Review. Asian Journal of Atmospheric Environment 2010, 4 (3) , 115-140. https://doi.org/10.1007/BF03654872
    63. H. Geng, J. Ryu, S. Maskey, H.-J. Jung, C.-U. Ro. Characterization of individual aerosol particles collected during a haze episode in Incheon, Korea using the quantitative ED-EPMA technique. 2010https://doi.org/10.5194/acpd-10-26641-2010
    64. BoWha Kim, Hae-Jin Jung, Young-Chul Song, Mi-Jung Lee, HyeKyeong Kim, Jo-Chun Kim, Jongryeul Sohn, Chul-Un Ro. Characterization of Summertime Aerosol Particles Collected at Subway Stations in Seoul, Korea Using Low-Z Particle Electron Probe X-ray Microanalysis. Asian Journal of Atmospheric Environment 2010, 4 (2) , 97-105. https://doi.org/10.1007/BF03654870

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2010, 44, 7, 2348–2353
    Click to copy citationCitation copied!
    https://doi.org/10.1021/es903268j
    Published March 3, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    1079

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.