ACS Publications. Most Trusted. Most Cited. Most Read
Reactivity of Pt0 Complexes toward Gallium(III) Halides: Synthesis of a Platinum Gallane Complex and Oxidative Addition of Gallium Halides to Pt0
My Activity
    Communication

    Reactivity of Pt0 Complexes toward Gallium(III) Halides: Synthesis of a Platinum Gallane Complex and Oxidative Addition of Gallium Halides to Pt0
    Click to copy article linkArticle link copied!

    View Author Information
    Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
    * To whom correspondence should be addressed. E-mail: [email protected]
    Other Access OptionsSupporting Information (2)

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2008, 47, 19, 8595–8597
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic801293e
    Published September 12, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The reaction of [Pt(PCy3)2] and GaCl3 resulted in quantitative formation of the adduct [(Cy3P)2Pt−GaCl3], the first known platinum gallane complex. Although similar reactivity with GaBr3 and GaI3 was expected, NMR spectroscopic data revealed a different reaction course. Crystal structure determination proved that, in the latter case, the product of the oxidative addition was formed. The resulting platinum gallyl complexes represent the first example of an oxidative addition of gallium(III) halides to low-valent transition metals.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Details of the syntheses, spectroscopic characterization, and experimental details on the X-ray diffraction of compounds 46 and crystallographic data in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 89 publications.

    1. Takeshi Usuki, Maxim Khomenko, Anton Sokolov, Maria Bokova, Koji Ohara, Mohammad Kassem, Andrey Tverjanovich, Eugene Bychkov. Supercritical Gallium Trichloride in Oxidative Metal Recycling: Ga2Cl6 Dimers vs GaCl3 Monomers and Rheological Behavior. Inorganic Chemistry 2024, 63 (17) , 7640-7651. https://doi.org/10.1021/acs.inorgchem.3c04347
    2. Zdeněk Chval, Olga Dvořáčková, Daniela Chvalová, Jaroslav V. Burda. Square-Planar Pt(II) and Ir(I) Complexes as the Lewis Bases: Donor–Acceptor Adducts with Group 13 Trihalides and Trihydrides. Inorganic Chemistry 2019, 58 (6) , 3616-3626. https://doi.org/10.1021/acs.inorgchem.8b02765
    3. Di You, Haifeng Yang, Srobona Sen, François P. Gabbaï. Modulating the σ-Accepting Properties of an Antimony Z-type Ligand via Anion Abstraction: Remote-Controlled Reactivity of the Coordinated Platinum Atom. Journal of the American Chemical Society 2018, 140 (30) , 9644-9651. https://doi.org/10.1021/jacs.8b05520
    4. Sanjukta Pahar, Suvendu Karak, Moumita Pait, K. Vipin Raj, Kumar Vanka, Sakya S. Sen. Access to Silicon(II)– and Germanium(II)–Indium Compounds. Organometallics 2018, 37 (7) , 1206-1213. https://doi.org/10.1021/acs.organomet.8b00093
    5. Rüdiger Bertermann, Julian Böhnke, Holger Braunschweig, Rian D. Dewhurst, Thomas Kupfer, Jonas H. Muessig, Leanne Pentecost, Krzysztof Radacki, Sakya S. Sen, and Alfredo Vargas . Dynamic, Reversible Oxidative Addition of Highly Polar Bonds to a Transition Metal. Journal of the American Chemical Society 2016, 138 (49) , 16140-16147. https://doi.org/10.1021/jacs.6b10609
    6. Jian Sun, Chong Ou, Chao Wang, Masanobu Uchiyama, and Liang Deng . Silane-Functionalized N-Heterocyclic Carbene–Cobalt Complexes Containing a Five-Coordinate Silicon with a Covalent Co–Si Bond. Organometallics 2015, 34 (8) , 1546-1551. https://doi.org/10.1021/acs.organomet.5b00114
    7. Holger Braunschweig, Qing Ye, Alfredo Vargas, Rian D. Dewhurst, and Florian Hupp . Complete and Partial 1,2-Additions across Transition Metal–Boron Double Bonds. Journal of the American Chemical Society 2014, 136 (27) , 9560-9563. https://doi.org/10.1021/ja504761f
    8. Jürgen Bauer, Rüdiger Bertermann, Holger Braunschweig, Katrin Gruss, Florian Hupp, and Thomas Kramer . New Metal-Only Lewis Pairs: Elucidating the Electronic Influence of N-Heterocyclic Carbenes and Phosphines on the Dative Pt-Al Bond. Inorganic Chemistry 2012, 51 (10) , 5617-5626. https://doi.org/10.1021/ic300531b
    9. Nicole Arnold, Holger Braunschweig, Peter Brenner, J. Oscar C. Jimenez-Halla, Thomas Kupfer, and Krzysztof Radacki . Reactivity of Boryl Complexes: Synthesis and Structure of New Neutral and Cationic Platinum Boryls and Borylenes. Organometallics 2012, 31 (5) , 1897-1907. https://doi.org/10.1021/om2012248
    10. Krishna K. Pandey . Structure and Bonding Analysis of Dimethylgallyl Complexes of Iron, Ruthenium, and Osmium [(η5-C5H5)(CO)2M(GaMe2)] and [(η5-C5H5)(Me3P)2M(GaMe2)]. The Journal of Physical Chemistry A 2011, 115 (30) , 8578-8585. https://doi.org/10.1021/jp204870a
    11. Timo Bollermann, Thomas Cadenbach, Christian Gemel, Kerstin Freitag, Mariusz Molon, Vanessa Gwildies, and Roland A. Fischer . Homoleptic Hexa and Penta Gallylene Coordinated Complexes of Molybdenum and Rhodium. Inorganic Chemistry 2011, 50 (12) , 5808-5814. https://doi.org/10.1021/ic200699f
    12. Guixiang Zeng and Shigeyoshi Sakaki . Noble Reaction Features of Bromoborane in Oxidative Addition of B–Br σ-Bond to [M(PMe3)2] (M = Pt or Pd): Theoretical Study. Inorganic Chemistry 2011, 50 (11) , 5290-5297. https://doi.org/10.1021/ic200749w
    13. Krishna K. Pandey, Pankaj Patidar, and Simon Aldridge. Nature of M−Ga Bonds in Dihalogallyl Complexes (η5-C5H5)(Me3P)2M(GaX2) (M = Fe, Ru, Os) and (η5-C5H5)(OC)2Fe(GaX2) (X = Cl, Br, I): A DFT Study. The Journal of Physical Chemistry A 2010, 114 (45) , 12099-12105. https://doi.org/10.1021/jp1073297
    14. Krishna K. Pandey, Pankaj Patidar and Holger Braunschweig . Structure and Bonding Energy Analysis of M−Ga Bonds in Dihalogallyl Complexes trans-[X(PMe3)2M(GaX2)] (M = Ni, Pd, Pt; X = Cl, Br, I). Inorganic Chemistry 2010, 49 (15) , 6994-7000. https://doi.org/10.1021/ic1005506
    15. M. Sircoglou, S. Bontemps, M. Mercy, K. Miqueu, S. Ladeira, N. Saffon, L. Maron, G. Bouhadir and D. Bourissou . Copper(I) Complexes derived from Mono- and Diphosphino-Boranes: Cu→B Interactions Supported by Arene Coordination. Inorganic Chemistry 2010, 49 (9) , 3983-3990. https://doi.org/10.1021/ic901896z
    16. Marie Sircoglou, Sébastien Bontemps, Ghenwa Bouhadir, Nathalie Saffon, Karinne Miqueu, Weixing Gu, Maxime Mercy, Chun-Hsing Chen, Bruce M. Foxman, Laurent Maron, Oleg V. Ozerov and Didier Bourissou. Group 10 and 11 Metal Boratranes (Ni, Pd, Pt, CuCl, AgCl, AuCl, and Au+) Derived from a Triphosphine−Borane. Journal of the American Chemical Society 2008, 130 (49) , 16729-16738. https://doi.org/10.1021/ja8070072
    17. Barsha Chakraborty, Raj Rishi Hazarika, Holger Braunschweig, Ashwini K. Phukan. Binding of base-stabilized borylenes with transition metals and formation of metal only Lewis pairs. Dalton Transactions 2025, 1 https://doi.org/10.1039/D4DT02914C
    18. Richard Chlebík, Csilla Fekete, Roman Jambor, Aleš Růžička, Zoltán Benkő, Libor Dostál. Antimony centre in three different roles: does donor strength or acceptor ability determine the bonding pattern?. Dalton Transactions 2024, 53 (43) , 17721-17726. https://doi.org/10.1039/D4DT02787F
    19. Johannes Schwarzmann, Toni Eskelinen, Sascha Reith, Jacqueline Ramler, Antti J. Karttunen, Jordi Poater, Crispin Lichtenberg. Bismuth as a Z‐Type Ligand: an Unsupported Pt−Bi Donor‐Acceptor Interaction and its Umpolung by Reaction with H 2. Angewandte Chemie International Edition 2024, 63 (41) https://doi.org/10.1002/anie.202410291
    20. Johannes Schwarzmann, Toni Eskelinen, Sascha Reith, Jacqueline Ramler, Antti J. Karttunen, Jordi Poater, Crispin Lichtenberg. Bismuth as a Z‐Type Ligand: an Unsupported Pt−Bi Donor‐Acceptor Interaction and its Umpolung by Reaction with H 2. Angewandte Chemie 2024, 136 (41) https://doi.org/10.1002/ange.202410291
    21. R. Govindarajan, Pavan K. Vardhanapu, Robert R. Fayzullin, Eugene Khaskin, Julia R. Khusnutdinova. Facile methyl group transfer from Pt II to gallium and indium. Chemical Communications 2024, 60 (56) , 7216-7219. https://doi.org/10.1039/D4CC02112F
    22. Maxim Khomenko, Anton Sokolov, Andrey Tverjanovich, Maria Bokova, Mohammad Kassem, Takeshi Usuki, Eugene Bychkov. Gallium Trichloride Fluid: Dimer Dissociation Mechanism, Local Structure, and Atomic Dynamics. Molecules 2024, 29 (6) , 1358. https://doi.org/10.3390/molecules29061358
    23. Miquel Navarro, Juan José Moreno, Marina Pérez-Jiménez, Jesús Campos. Small molecule activation with bimetallic systems: a landscape of cooperative reactivity. Chemical Communications 2022, 58 (80) , 11220-11235. https://doi.org/10.1039/D2CC04296G
    24. Elishua D. Litle, François P. Gabbaï. Metal→Carbon Dative Bonding. Angewandte Chemie International Edition 2022, 61 (24) https://doi.org/10.1002/anie.202201841
    25. Elishua D. Litle, François P. Gabbaï. Metal→Carbon Dative Bonding. Angewandte Chemie 2022, 134 (24) https://doi.org/10.1002/ange.202201841
    26. Francisxavier Paularokiadoss, Thayalaraj Christopher Jeyakumar, Renjith Thomas, Alagan Sekar, D. Bhakiaraj. Group 13 monohalides [AX (A = B, Al, Ga and In; X = Halogens)] as alternative ligands for carbonyl in organometallics: Electronic structure and bonding analysis. Computational and Theoretical Chemistry 2022, 1209 , 113587. https://doi.org/10.1016/j.comptc.2021.113587
    27. Miquel Navarro, Juan José Moreno, Jesús Campos. Frustrated Lewis Pair Systems. 2022, 523-616. https://doi.org/10.1016/B978-0-12-820206-7.00129-3
    28. Thayalaraj Christopher Jeyakumar, Francisxavier Paularokiadoss. Application of Density Functional Theory in Coordination Chemistry: A Case Study of Group 13 Monohalide as a Ligand. 2021https://doi.org/10.5772/intechopen.99790
    29. Francisxavier Paularokiadoss, Thiruthuvadevaraj Antony Sandosh, Alagan Sekar, Thayalaraj Christopher Jeyakumar. Theoretical studies of group 10 metal gallylene complexes [TM(CO)3(GaX)]. Computational and Theoretical Chemistry 2021, 1197 , 113139. https://doi.org/10.1016/j.comptc.2020.113139
    30. Shin Takemoto, Kaname Yoshii, Takahiro Yamano, Akihiro Tsurusaki, Hiroyuki Matsuzaka. Metal–metal multiple bond formation induced by σ-acceptor Lewis acid ligands. Chemical Communications 2021, 57 (7) , 923-926. https://doi.org/10.1039/D0CC07278H
    31. Miquel Navarro, Jesús Campos. Bimetallic frustrated Lewis pairs. 2021, 95-148. https://doi.org/10.1016/bs.adomc.2021.01.001
    32. Katarina M. Paskaruk, Bradley E. Cowie, David J.H. Emslie. Coordination Chemistry of Lewis Acidic Ligands. 2021, 717-805. https://doi.org/10.1016/B978-0-08-102688-5.00080-5
    33. Mohan M. Gamage, Burjor Captain. Coordination Chemistry of Heavier Group 13 and 14 Ligands in Transition Metal Complexes. 2021, 688-716. https://doi.org/10.1016/B978-0-08-102688-5.00093-3
    34. Benjamin J. Frogley, Anthony F. Hill, Manab Sharma, Arup Sinha, Jas S. Ward. Semi-bridging σ-silyls as Z-type ligands. Chemical Communications 2020, 56 (24) , 3532-3535. https://doi.org/10.1039/C9CC07763D
    35. Amlan Jyoti Kalita, Shahnaz S. Rohman, Chayanika Kashyap, Sabnam S. Ullah, Ankur K. Guha. Stabilization of neutral tricoordinate pyramidal boron: Enhanced Lewis acidity and profound reactivity. Polyhedron 2020, 175 , 114193. https://doi.org/10.1016/j.poly.2019.114193
    36. Jonas H. Muessig, Tom E. Stennett, Uwe Schmidt, Rian D. Dewhurst, Lisa Mailänder, Holger Braunschweig. Oxidative addition of arsenic halides to platinum(0). Dalton Transactions 2019, 48 (11) , 3547-3550. https://doi.org/10.1039/C8DT04995E
    37. Julia K. Schuster, Jonas H. Muessig, Rian D. Dewhurst, Holger Braunschweig. Reactions of Digallanes with p‐ and d‐Block Lewis Bases: Adducts, Bis(gallyl) Complexes, and Naked Ga + as Ligand. Chemistry – A European Journal 2018, 24 (38) , 9692-9697. https://doi.org/10.1002/chem.201801471
    38. Holger Braunschweig, Carina Brunecker, Rian D. Dewhurst, Christoph Schneider. Does Lewis basicity correlate with catalytic performance in zerovalent group 8 complexes?. Zeitschrift für Naturforschung B 2018, 73 (3-4) , 149-153. https://doi.org/10.1515/znb-2017-0193
    39. Bitupon Borthakur, Sandeep Das, Ashwini K. Phukan. Strategies toward realization of unsupported transition metal–boron donor–acceptor complexes: an insight from theory. Chemical Communications 2018, 54 (39) , 4975-4978. https://doi.org/10.1039/C8CC02027B
    40. Tzu-Pin Lin, François P. Gabbaï. Bis- and tris-phosphinostannane gold complexes featuring Au → Sn dative interactions: Synthesis, structures, and DFT calculations. Polyhedron 2017, 125 , 18-25. https://doi.org/10.1016/j.poly.2016.07.010
    41. Anindya K. Swarnakar, Michael J. Ferguson, Robert McDonald, Eric Rivard. Transition metal-mediated donor–acceptor coordination of low-oxidation state Group 14 element halides. Dalton Transactions 2016, 45 (14) , 6071-6078. https://doi.org/10.1039/C5DT03018H
    42. Erik Wächtler, Robert Gericke, Erica Brendler, Birgit Gerke, Thorsten Langer, Rainer Pöttgen, Lyuben Zhechkov, Thomas Heine, Jörg Wagler. Group 10–group 14 metal complexes [E–TM] IV : the role of the group 14 site as an L, X and Z-type ligand. Dalton Transactions 2016, 45 (36) , 14252-14264. https://doi.org/10.1039/C6DT01621A
    43. Ghenwa Bouhadir, Didier Bourissou. Coordination of Lewis Acids to Transition Metals: Z-Type Ligands. 2016, 141-201. https://doi.org/10.1007/430_2015_201
    44. Holger Braunschweig, Carina Brunecker, Rian D. Dewhurst, Christoph Schneider, Benedikt Wennemann. Lewis Acid Binding and Transfer as a Versatile Experimental Gauge of the Lewis Basicity of Fe 0 , Ru 0 , and Pt 0 Complexes. Chemistry – A European Journal 2015, 21 (52) , 19195-19201. https://doi.org/10.1002/chem.201503536
    45. Nicole Arnold, Holger Braunschweig, Peter B. Brenner, Mehmet Ali Celik, Rian D. Dewhurst, Martin Haehnel, Thomas Kramer, Ivo Krummenacher, Todd B. Marder. Correlations and Contrasts in Homo‐ and Heteroleptic Cyclic (Alkyl)(amino)carbene‐Containing Pt 0 Complexes. Chemistry – A European Journal 2015, 21 (35) , 12357-12362. https://doi.org/10.1002/chem.201502048
    46. E.I. Davydova, T.N. Sevastianova, A.Y. Timoshkin. Molecular complexes of group 13 element trihalides, pentafluorophenyl derivatives and Lewis superacids. Coordination Chemistry Reviews 2015, 297-298 , 91-126. https://doi.org/10.1016/j.ccr.2015.02.019
    47. D. Michael P. Mingos. A theoretical analysis of ambivalent and ambiphilic Lewis acid/bases with symmetry signatures. Coordination Chemistry Reviews 2015, 293-294 , 2-18. https://doi.org/10.1016/j.ccr.2014.11.009
    48. Cameron Jones, Philip Mountford, Andreas Stasch, Matthew P. Blake. s‐Block Metal–Metal Bonds. 2015, 23-45. https://doi.org/10.1002/9783527673353.ch2
    49. Joseph A.B. Abdalla, Simon Aldridge. Group 13 Metal–Metal Bonds. 2015, 455-484. https://doi.org/10.1002/9783527673353.ch13
    50. Kilian M. Krebs, Sarah Freitag, Hartmut Schubert, Birgit Gerke, Rainer Pöttgen, Lars Wesemann. Chemistry of Stannylene‐Based Lewis Pairs: Dynamic Tin Coordination Switching Between Donor and Acceptor Character. Chemistry – A European Journal 2015, 21 (12) , 4628-4638. https://doi.org/10.1002/chem.201406486
    51. Holger Braunschweig, Rian D. Dewhurst, Florian Hupp, Justin Wolf. Unprecedented Oxidative Addition and Metal‐Only Lewis Pair Chemistry of Antimony Trihalides. Chemistry – A European Journal 2015, 21 (5) , 1860-1862. https://doi.org/10.1002/chem.201405867
    52. Holger Braunschweig, Mehmet Ali Celik, Rian D. Dewhurst, Magdalena Heid, Florian Hupp, Sakya S. Sen. Stepwise isolation of low-valent, low-coordinate Sn and Pb mono- and dications in the coordination sphere of platinum. Chemical Science 2015, 6 (1) , 425-435. https://doi.org/10.1039/C4SC02948H
    53. Florian Hupp, Mengtao Ma, Franziska Kroll, J. Oscar C. Jimenez‐Halla, Rian D. Dewhurst, Krzysztof Radacki, Andreas Stasch, Cameron Jones, Holger Braunschweig. Platinum Complexes Containing Pyramidalized Germanium and Tin Dihalide Ligands Bound through σ,σ ME Multiple Bonds. Chemistry – A European Journal 2014, 20 (51) , 16888-16898. https://doi.org/10.1002/chem.201404342
    54. D.Michael P. Mingos. A review of complexes of ambivalent and ambiphilic Lewis acid/bases with symmetry signatures and an alternative notation for these non-innocent ligands. Journal of Organometallic Chemistry 2014, 751 , 153-173. https://doi.org/10.1016/j.jorganchem.2013.08.033
    55. Erik Wächtler, Robert Gericke, Lyuben Zhechkov, Thomas Heine, Thorsten Langer, Birgit Gerke, Rainer Pöttgen, Jörg Wagler. Pyridine-2-thiolate bridged tin–palladium complexes with Sn(PdN 2 Cl 2 ), Sn(PdN 2 S 2 ), Sn(PdN 2 C 2 ) and Sn(Pd 2 N 4 ) skeletons. Chem. Commun. 2014, 50 (40) , 5382-5384. https://doi.org/10.1039/C3CC47912A
    56. Holger Braunschweig, Rian D. Dewhurst, Florian Hupp, Christina Kaufmann, Ashwini K. Phukan, Christoph Schneider, Qing Ye. Gauging metal Lewis basicity of zerovalent iron complexes via metal-only Lewis pairs. Chemical Science 2014, 5 (10) , 4099. https://doi.org/10.1039/C4SC01539H
    57. Sudesh T. Manjare, Sangeeta Yadav, Harkesh B. Singh, Ray J. Butcher. Redox Reaction between Main‐Group Elements (Te, Sn, Bi) and N‐Heterocyclic‐Carbene‐Derived Selenium Halides: A Facile Method for the Preparation of Monomeric Halides. European Journal of Inorganic Chemistry 2013, 2013 (30) , 5344-5357. https://doi.org/10.1002/ejic.201300850
    58. K.H. Whitmire. d-Block Complexes of Aluminum, Gallium, Indium, and Thallium. 2013https://doi.org/10.1016/B978-0-12-409547-2.03863-4
    59. Mengtao Ma, Anastas Sidiropoulos, Lalrempuia Ralte, Andreas Stasch, Cameron Jones. Metal-only Lewis pairs featuring unsupported Pt→M (M = Zn or Cd) dative bonds. Chem. Commun. 2013, 49 (1) , 48-50. https://doi.org/10.1039/C2CC37442K
    60. Holger Braunschweig, Alexander Damme, Thomas Kupfer. Evidence for a Strong trans Influence of the Diboran(4)yl Ligand. Chemistry – A European Journal 2012, 18 (50) , 15927-15931. https://doi.org/10.1002/chem.201203220
    61. Krishna K. Pandey. Structure and bonding analysis of dimethylgallyl complexes of cobalt, rhodium and iridium [Me(PMe3)2(Me3GaCl)M(GaMe2)] (M = Co, Rh, Ir) and [Me(PMe3)2ClIr(GaMe2)]: A theoretical study. Journal of Organometallic Chemistry 2012, 710 , 6-11. https://doi.org/10.1016/j.jorganchem.2012.02.019
    62. Carolin Tschersich, Christian Limberg, Stefan Roggan, Christian Herwig, Nikolaus Ernsting, Sergey Kovalenko, Stefan Mebs. Gold– and Platinum–Bismuth Donor–Acceptor Interactions Supported by an Ambiphilic PBiP Pincer Ligand. Angewandte Chemie International Edition 2012, 51 (20) , 4989-4992. https://doi.org/10.1002/anie.201200848
    63. Carolin Tschersich, Christian Limberg, Stefan Roggan, Christian Herwig, Nikolaus Ernsting, Sergey Kovalenko, Stefan Mebs. Gold‐ und Platin‐Bismut‐Donor‐Akzeptor‐Wechselwirkungen vermittelt durch einen ambiphilen PBiP‐Pinzettenliganden. Angewandte Chemie 2012, 124 (20) , 5073-5077. https://doi.org/10.1002/ange.201200848
    64. Krishna K. Pandey. The nature of M–Ga in metal(I) gallyl complexes of copper, silver and gold: A theoretical study. Journal of Organometallic Chemistry 2012, 701 , 75-79. https://doi.org/10.1016/j.jorganchem.2011.12.022
    65. Holger Braunschweig, Alexander Damme, Rian D. Dewhurst, Florian Hupp, J. Oscar C. Jimenez-Halla, Krzysztof Radacki. σ-Donor–σ-acceptor plumbylene ligands: synergic σ-donation between ambiphilic Pt0 and Pbii fragments. Chemical Communications 2012, 48 (84) , 10410. https://doi.org/10.1039/c2cc35777a
    66. Krishna K. Pandey, Pankaj Patidar. Structure and bonding in haloarylgallyl complexes of iron, ruthenium and osmium [(η5-C5H5)(CO)2M{Ga(X)(Ph)}]: A theoretical study. Journal of Organometallic Chemistry 2011, 696 (22) , 3536-3542. https://doi.org/10.1016/j.jorganchem.2011.07.043
    67. Jürgen Bauer, Holger Braunschweig, Katharina Kraft, Krzysztof Radacki. Oxidative Addition of Boron Trifluoride to a Transition Metal. Angewandte Chemie International Edition 2011, 50 (44) , 10457-10460. https://doi.org/10.1002/anie.201103226
    68. Jürgen Bauer, Holger Braunschweig, Katharina Kraft, Krzysztof Radacki. Oxidative Addition von BF 3 an ein Übergangsmetall. Angewandte Chemie 2011, 123 (44) , 10641-10644. https://doi.org/10.1002/ange.201103226
    69. Krishna K. Pandey. Structure and bonding analysis of dihalogallyl and dimethylgallyl complexes of molybdenum and tungsten [(η5-C5H5)(CO)3M(GaX2)] (M=Mo, W; X=Cl, Br, I, Me): A theoretical study. Computational and Theoretical Chemistry 2011, 973 (1-3) , 13-19. https://doi.org/10.1016/j.comptc.2011.06.017
    70. Jana Martincová, Libor Dostál, Sonja Herres‐Pawlis, Aleš Růžička, Roman Jambor. Intramolecularly Coordinated [{2,6‐(Me 2 NCH 2 ) 2 C 6 H 3 }Sn II ] + : A Strong σ Donor for Pt II. Chemistry – A European Journal 2011, 17 (27) , 7423-7427. https://doi.org/10.1002/chem.201100417
    71. Erica Brendler, Erik Wächtler, Thomas Heine, Lyuben Zhechkov, Thorsten Langer, Rainer Pöttgen, Anthony F. Hill, Jörg Wagler. Stannylene or Metallastanna(IV)ocane: A Matter of Formalism. Angewandte Chemie International Edition 2011, 50 (20) , 4696-4700. https://doi.org/10.1002/anie.201007967
    72. Erica Brendler, Erik Wächtler, Thomas Heine, Lyuben Zhechkov, Thorsten Langer, Rainer Pöttgen, Anthony F. Hill, Jörg Wagler. Stannylen oder Metallastanna(IV)‐ocan – eine Sache des Formalismus. Angewandte Chemie 2011, 123 (20) , 4793-4797. https://doi.org/10.1002/ange.201007967
    73. Marie-Hélène Thibault, Guillaume Bélanger-Chabot, Nadège Boccon, Frédéric-Georges Fontaine. Reactivity of a functionalized trisamido ligand with Zr(NMe2)4 and GaMe3. Journal of Organometallic Chemistry 2011, 696 (10) , 2211-2216. https://doi.org/10.1016/j.jorganchem.2010.11.038
    74. Abderrahmane Amgoune, Didier Bourissou. σ-Acceptor, Z-type ligands for transition metals. Chem. Commun. 2011, 47 (3) , 859-871. https://doi.org/10.1039/C0CC04109B
    75. Holger Braunschweig, Rian D. Dewhurst. Transition metals as Lewis bases: “Z-type” boron ligands and metal-to-boron dative bonding. Dalton Trans. 2011, 40 (3) , 549-558. https://doi.org/10.1039/C0DT01181A
    76. Dan A. Smith, Oleg V. Ozerov. Early–late heterobimetallic Rh–Ti and Rh–Zr complexes via addition of early metal chlorides to mono- and divalent rhodium. Chemical Communications 2011, 47 (38) , 10779. https://doi.org/10.1039/c1cc14373e
    77. Jürgen Bauer, Holger Braunschweig, Peter Brenner, Katharina Kraft, Krzysztof Radacki, Katrin Schwab. Late‐Transition‐Metal Complexes as Tunable Lewis Bases. Chemistry – A European Journal 2010, 16 (39) , 11985-11992. https://doi.org/10.1002/chem.201001228
    78. Jörg Wagler, Erica Brendler. Metallasilatranes: Palladium(II) and Platinum(II) as Lone‐Pair Donors to Silicon(IV). Angewandte Chemie International Edition 2010, 49 (3) , 624-627. https://doi.org/10.1002/anie.200905241
    79. Jörg Wagler, Erica Brendler. Metallasilatrane: Palladium(II) und Platin(II) als Elektronenpaardonoren für Silicium(IV). Angewandte Chemie 2010, 122 (3) , 634-637. https://doi.org/10.1002/ange.200905241
    80. Holger Braunschweig, Krzysztof Radacki, Katrin Schwab. An early–late heterobimetallic complex with an unsupported dative bond: synthesis and structure of [(Cy3P)2Pt–ZrCl4]. Chem. Commun. 2010, 46 (6) , 913-915. https://doi.org/10.1039/B921608A
    81. Holger Braunschweig, Peter Brenner, Paul Cogswell, Katharina Kraft, Katrin Schwab. Oxidative addition of the bismuth-chloride bond: synthesis and structure of trans-[PtCl(PCy3)2{BiCl2}]. Chemical Communications 2010, 46 (42) , 7894. https://doi.org/10.1039/c0cc00639d
    82. Clara J. Durango-García, J. Oscar C. Jiménez-Halla, Marcela López-Cardoso, Virginia Montiel-Palma, Miguel A. Muñoz-Hernández, Gabriel Merino. On the nature of the transition metal–main group metal bond: synthesis and theoretical calculations on iridium gallyl complexes. Dalton Transactions 2010, 39 (44) , 10588. https://doi.org/10.1039/c0dt01071e
    83. Catharina Goedecke, Pierre Hillebrecht, Till Uhlemann, Robin Haunschild, Gernot Frenking. The Dewar–Chatt–Duncanson model reversed — Bonding analysis of group-10 complexes [(PMe 3 ) 2 M–EX 3 ] (M = Ni, Pd, Pt; E = B, Al, Ga, In, Tl; X = H, F, Cl, Br, I). Canadian Journal of Chemistry 2009, 87 (10) , 1470-1479. https://doi.org/10.1139/V09-099
    84. Holger Braunschweig, Katrin Gruss, Krzysztof Radacki. Complexes with Dative Bonds between d‐ and s‐Block Metals: Synthesis and Structure of [(Cy 3 P) 2 PtBe(Cl)X] (X=Cl, Me). Angewandte Chemie International Edition 2009, 48 (23) , 4239-4241. https://doi.org/10.1002/anie.200900521
    85. Holger Braunschweig, Katrin Gruss, Krzysztof Radacki. Komplexe mit dativen Bindungen zwischen d‐ und s‐Block‐Metallen: Synthese und Struktur von [(Cy 3 P) 2 Pt‐Be(Cl)X] (X=Cl, Me). Angewandte Chemie 2009, 121 (23) , 4303-4305. https://doi.org/10.1002/ange.200900521
    86. Marie Sircoglou, Maxime Mercy, Nathalie Saffon, Yannick Coppel, Ghenwa Bouhadir, Laurent Maron, Didier Bourissou. Gold(I) Complexes of Phosphanyl Gallanes: From Interconverting to Separable Coordination Isomers. Angewandte Chemie International Edition 2009, 48 (19) , 3454-3457. https://doi.org/10.1002/anie.200900737
    87. Brian J. Fox, Matthew D. Millard, Antonio G. DiPasquale, Arnold L. Rheingold, Joshua S. Figueroa. Thallium(I) as a Coordination Site Protection Agent: Preparation of an Isolable Zero‐Valent Nickel Tris‐Isocyanide. Angewandte Chemie International Edition 2009, 48 (19) , 3473-3477. https://doi.org/10.1002/anie.200806007
    88. Brian J. Fox, Matthew D. Millard, Antonio G. DiPasquale, Arnold L. Rheingold, Joshua S. Figueroa. Thallium(I) as a Coordination Site Protection Agent: Preparation of an Isolable Zero‐Valent Nickel Tris‐Isocyanide. Angewandte Chemie 2009, 121 (19) , 3525-3529. https://doi.org/10.1002/ange.200806007
    89. Marie Sircoglou, Maxime Mercy, Nathalie Saffon, Yannick Coppel, Ghenwa Bouhadir, Laurent Maron, Didier Bourissou. Gold(I) Complexes of Phosphanyl Gallanes: From Interconverting to Separable Coordination Isomers. Angewandte Chemie 2009, 121 (19) , 3506-3509. https://doi.org/10.1002/ange.200900737

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2008, 47, 19, 8595–8597
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ic801293e
    Published September 12, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    1011

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.