ACS Publications. Most Trusted. Most Cited. Most Read
Comparison of the efficiencies of several natural and synthetic antioxidants in aqueous SDS [sodium dodecyl sulfate] micelle solutions
My Activity

Figure 1Loading Img
    Article

    Comparison of the efficiencies of several natural and synthetic antioxidants in aqueous SDS [sodium dodecyl sulfate] micelle solutions
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1988, 110, 7, 2224–2229
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja00215a036
    Published March 1, 1988

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 205 publications.

    1. George N. Khairallah, Richard A. J. O’Hair, and Uta Wille . Mass Spectrometric and Computational Studies on the Reaction of Aromatic Peroxyl Radicals with Phenylacetylene Using the Distonic Radical Ion Approach. The Journal of Physical Chemistry A 2014, 118 (18) , 3295-3306. https://doi.org/10.1021/jp411477e
    2. Shin-ichi Nagaoka, Kanae Nagai, Yuko Fujii, Aya Ouchi, and Kazuo Mukai . Development of a New Free Radical Absorption Capacity Assay Method for Antioxidants: Aroxyl Radical Absorption Capacity (ARAC). Journal of Agricultural and Food Chemistry 2013, 61 (42) , 10054-10062. https://doi.org/10.1021/jf402811m
    3. Ewelina van Wenum, Rafal Jurczakowski, and Grzegorz Litwinienko . Media Effects on the Mechanism of Antioxidant Action of Silybin and 2,3-Dehydrosilybin: Role of the Enol Group. The Journal of Organic Chemistry 2013, 78 (18) , 9102-9112. https://doi.org/10.1021/jo401296k
    4. Jian-Guo Fang and Bo Zhou. Structure−Activity Relationship and Mechanism of the Tocopherol-Regenerating Activity of Resveratrol and Its Analogues. Journal of Agricultural and Food Chemistry 2008, 56 (23) , 11458-11463. https://doi.org/10.1021/jf802665s
    5. Monica Rossetto, Paola Vanzani, Veronica De Marco, Lucio Zennaro, Marina Scarpa and Adelio Rigo. Fast and Simple Method for the Simultaneous Evaluation of the Capacity and Efficiency of Food Antioxidants in Trapping Peroxyl Radicals in an Intestinal Model System. Journal of Agricultural and Food Chemistry 2008, 56 (10) , 3486-3492. https://doi.org/10.1021/jf072926x
    6. Sangit Kumar,, Lars Engman,, Luca Valgimigli,, Riccardo Amorati,, Maria Grazia Fumo, and, Gian Franco Pedulli. Antioxidant Profile of Ethoxyquin and Some of Its S, Se, and Te Analogues. The Journal of Organic Chemistry 2007, 72 (16) , 6046-6055. https://doi.org/10.1021/jo0705465
    7. Mohamed Hazzit,, Aoumeur Baaliouamer,, M. Leonor Faleiro, and, M. Graça Miguel. Composition of the Essential Oils of Thymus and Origanum Species from Algeria and Their Antioxidant and Antimicrobial Activities. Journal of Agricultural and Food Chemistry 2006, 54 (17) , 6314-6321. https://doi.org/10.1021/jf0606104
    8. Sangit Kumar and, Lars Engman. Microwave-Assisted Copper-Catalyzed Preparation of Diaryl Chalcogenides. The Journal of Organic Chemistry 2006, 71 (14) , 5400-5403. https://doi.org/10.1021/jo060690a
    9. Andreas F.-P. Sonnen,, Huseyin Bakirci,, Thomas Netscher, and, Werner M. Nau. Effect of Temperature, Cholesterol Content, and Antioxidant Structure on the Mobility of Vitamin E Constituents in Biomembrane Models Studied by Laterally Diffusion-Controlled Fluorescence Quenching. Journal of the American Chemical Society 2005, 127 (44) , 15575-15584. https://doi.org/10.1021/ja054367l
    10. Marta Navarrete,, Cipriano Rangel,, Joaquín Espinosa-García, and, José C. Corchado. Theoretical Study of the Antioxidant Activity of Vitamin E:  Reactions of α-Tocopherol with the Hydroperoxy Radical. Journal of Chemical Theory and Computation 2005, 1 (2) , 337-344. https://doi.org/10.1021/ct0498932
    11. Dejian Huang,, Boxin Ou, and, Ronald L. Prior. The Chemistry behind Antioxidant Capacity Assays. Journal of Agricultural and Food Chemistry 2005, 53 (6) , 1841-1856. https://doi.org/10.1021/jf030723c
    12. U. Costas-Costas,, Carlos Bravo-Díaz, and, Elisa González-Romero. Micellar Effects on the Reaction between an Arenediazonium Salt and 6-O-Octanoyl-l-ascorbic Acid. Kinetics and Mechanism of the Reaction. Langmuir 2004, 20 (5) , 1631-1638. https://doi.org/10.1021/la036142z
    13. Etsuo Niki and, Noriko Noguchi. Dynamics of Antioxidant Action of Vitamin E. Accounts of Chemical Research 2004, 37 (1) , 45-51. https://doi.org/10.1021/ar030069m
    14. Riccardo Amorati,, Marco Lucarini,, Veronica Mugnaini, and, Gian Franco Pedulli. Antioxidant Activity of o-Bisphenols:  the Role of Intramolecular Hydrogen Bonding. The Journal of Organic Chemistry 2003, 68 (13) , 5198-5204. https://doi.org/10.1021/jo0342931
    15. U. Costas-Costas,, Carlos Bravo-Diaz, and, Elisa Gonzalez-Romero. Sodium Dodecyl Sulfate Micellar Effects on the Reaction between Arenediazonium Ions and Ascorbic Acid Derivatives. Langmuir 2003, 19 (13) , 5197-5203. https://doi.org/10.1021/la026922s
    16. Grzegorz Litwinienko,, Elzbieta Megiel, and, Marcin Wojnicz. Hydrogen Bonding between Phenols and Fatty Acid Esters:  1H NMR Study and ab Initio Calculations. Organic Letters 2002, 4 (14) , 2425-2428. https://doi.org/10.1021/ol0261837
    17. Sean M. Culbertson,, Fernando Antunes,, Christine M. Havrilla,, Ginger L. Milne, and, Ned A. Porter. Determination of the α-Tocopherol Inhibition Rate Constant for Peroxidation in Low-Density Lipoprotein. Chemical Research in Toxicology 2002, 15 (6) , 870-876. https://doi.org/10.1021/tx020012t
    18. Marco Lucarini,, Gian Franco Pedulli,, Luca Valgimigli, and, Riccardo Amorati, , Francesco Minisci. Thermochemical and Kinetic Studies of a Bisphenol Antioxidant. The Journal of Organic Chemistry 2001, 66 (16) , 5456-5462. https://doi.org/10.1021/jo015653s
    19. Myriam Richelle,, Isabelle Tavazzi, and, Elizabeth Offord. Comparison of the Antioxidant Activity of Commonly Consumed Polyphenolic Beverages (Coffee, Cocoa, and Tea) Prepared per Cup Serving. Journal of Agricultural and Food Chemistry 2001, 49 (7) , 3438-3442. https://doi.org/10.1021/jf0101410
    20. Michael J. Thomas,, Quiri Chen,, Manal Zabalawi,, Rachel Anderson,, Martha Wilson,, Richard Weinberg,, Mary G. Sorci-Thomas, and, Lawrence L. Rudel. Is the Oxidation of High-Density Lipoprotein Lipids Different Than the Oxidation of Low-Density Lipoprotein Lipids?,. Biochemistry 2001, 40 (6) , 1719-1724. https://doi.org/10.1021/bi0022442
    21. L. R. C. Barclay,, C. E. Edwards, and, M. R. Vinqvist. Media Effects on Antioxidant Activities of Phenols and Catechols. Journal of the American Chemical Society 1999, 121 (26) , 6226-6231. https://doi.org/10.1021/ja990878u
    22. Marco Lucarini,, Gian Franco Pedulli, and, Luca Valgimigli. Do Peroxyl Radicals Obey the Principle That Kinetic Solvent Effects on H-Atom Abstraction Are Independent of the Nature of the Abstracting Radical?. The Journal of Organic Chemistry 1998, 63 (13) , 4497-4499. https://doi.org/10.1021/jo971944i
    23. Michael R. Valentine,, Henry Rodriguez, and, John Termini. Mutagenesis by Peroxy Radical Is Dominated by Transversions at Deoxyguanosine:  Evidence for the Lack of Involvement of 8-oxo-dG1 and/or Abasic Site Formation. Biochemistry 1998, 37 (19) , 7030-7038. https://doi.org/10.1021/bi973132m
    24. K. Brady Clark,, J. A. Howard, and, Alan R. Oyler. Retinoic Acid Oxidation at High Oxygen Pressures:  Evidence for Spin-Forbidden Direct Addition of Triplet Molecular Oxygen1. Journal of the American Chemical Society 1997, 119 (40) , 9560-9561. https://doi.org/10.1021/ja970774o
    25. L. Ross C. Barclay,, Melinda R. Vinqvist,, Fernando Antunes, and, Ruy E. Pinto. Antioxidant Activity of Vitamin E Determined in a Phospholipid Membrane by Product Studies:  Avoiding Chain Transfer Reactions by Vitamin E Radicals. Journal of the American Chemical Society 1997, 119 (24) , 5764-5765. https://doi.org/10.1021/ja9705856
    26. Michela Martini and, John Termini. Peroxy Radical Oxidation of Thymidine. Chemical Research in Toxicology 1997, 10 (2) , 234-241. https://doi.org/10.1021/tx960154l
    27. Luca Valgimigli,, K. U. Ingold, and, J. Lusztyk. Antioxidant Activities of Vitamin E Analogues in Water and a Kamlet−Taft β-Value for Water1. Journal of the American Chemical Society 1996, 118 (15) , 3545-3549. https://doi.org/10.1021/ja954030r
    28. Noriko Noguchi, Yoshiro Saito, Etsuo Niki. Lipid Peroxidation, Ferroptosis and Antioxidants. Free Radical Biology and Medicine 2025, 47 https://doi.org/10.1016/j.freeradbiomed.2025.05.393
    29. Megan Culbreth, Johanna Nyffeler, Clinton Willis, Joshua A. Harrill. Optimization of Human Neural Progenitor Cells for an Imaging-Based High-Throughput Phenotypic Profiling Assay for Developmental Neurotoxicity Screening. Frontiers in Toxicology 2022, 3 https://doi.org/10.3389/ftox.2021.803987
    30. Keiko Inami, Hiromasa Minami, Tsunahito Hayashi, Yuta Okayama, Masataka Mochizuki. Synthesis and Radical Scavenging Activity of Substituted Dihydrobenzofuran-5-ols. HETEROCYCLES 2022, 104 (2) , 326. https://doi.org/10.3987/COM-21-14577
    31. Etsuo Niki. Factors affecting in vitro and in vivo antioxidant effects: Experimental conditions and nature of oxidants determine antioxidant efficacy. Journal of Berry Research 2021, 11 (4) , 601-609. https://doi.org/10.3233/JBR-200695
    32. Etsuo Niki. Lipid oxidation that is, and is not, inhibited by vitamin E: Consideration about physiological functions of vitamin E. Free Radical Biology and Medicine 2021, 176 , 1-15. https://doi.org/10.1016/j.freeradbiomed.2021.09.001
    33. Daoli Zhao, Lin Wang, Rasangi M. Wimalasinghe, Jingzhi Tian, Abu Rustum. Investigation to Identify the Root Cause of Out-of-Specification Results for Color of a Topical Pour-on Drug Product: A Case Study. Chromatographia 2021, 84 (10) , 905-915. https://doi.org/10.1007/s10337-021-04077-0
    34. Chrysanthos Maraveas, Ilker S. Bayer, Thomas Bartzanas. Recent Advances in Antioxidant Polymers: From Sustainable and Natural Monomers to Synthesis and Applications. Polymers 2021, 13 (15) , 2465. https://doi.org/10.3390/polym13152465
    35. Justin S Rhodes, Catarina Rendeiro, Jonathan G Mun, Kristy Du, Pragya Thaman, Amanda Snyder, Heinrich Pinardo, Jenny Drnevich, Sriram Chandrasekaran, Chron-Si Lai, Karen J Schimpf, Matthew J Kuchan. Brain α-Tocopherol Concentration and Stereoisomer Profile Alter Hippocampal Gene Expression in Weanling Mice. The Journal of Nutrition 2020, 150 (12) , 3075-3085. https://doi.org/10.1093/jn/nxaa249
    36. Asier Carral-Menoyo, Nuria Sotomayor, Esther Lete. Palladium-catalysed Heck-type alkenylation reactions in the synthesis of quinolines. Mechanistic insights and recent applications. Catalysis Science & Technology 2020, 10 (16) , 5345-5361. https://doi.org/10.1039/D0CY00789G
    37. Jagdeep Kumar, Naresh Kumar, Nitin Sati, Prasanta Kumar Hota. Antioxidant properties of ethenyl indole: DPPH assay and TDDFT studies. New Journal of Chemistry 2020, 44 (21) , 8960-8970. https://doi.org/10.1039/D0NJ01317J
    38. Etsuo Niki. Oxidant-specific biomarkers of oxidative stress. Association with atherosclerosis and implication for antioxidant effects. Free Radical Biology and Medicine 2018, 120 , 425-440. https://doi.org/10.1016/j.freeradbiomed.2018.04.001
    39. Siti Syairah Mohd Mutalip. Vitamin E: Nature’s Gift to Fight Cancer. 2018, 367-393. https://doi.org/10.1007/978-981-10-8548-2_16
    40. Michela Sicari, Roberto Stevanato, Italo Ongaro, Roberto Zuliani, Giampietro Ravagnan, Vittorio Lucchini. Searching for an absolute kinetic scale of antioxidant activity against lipid peroxidation. Food Chemistry 2018, 239 , 964-974. https://doi.org/10.1016/j.foodchem.2017.06.139
    41. Sonia Losada-Barreiro, Carlos Bravo-Díaz. Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. European Journal of Medicinal Chemistry 2017, 133 , 379-402. https://doi.org/10.1016/j.ejmech.2017.03.061
    42. Riccardo Amorati, Andrea Baschieri, Gloria Morroni, Rossana Gambino, Luca Valgimigli. Peroxyl Radical Reactions in Water Solution: A Gym for Proton‐Coupled Electron‐Transfer Theories. Chemistry – A European Journal 2016, 22 (23) , 7924-7934. https://doi.org/10.1002/chem.201504492
    43. S. Fujisawa, Y. Murakami. Eugenol and Its Role in Chronic Diseases. 2016, 45-66. https://doi.org/10.1007/978-3-319-41342-6_3
    44. Alexey V. Lokhmatikov, Natalia Voskoboynikova, Dmitry A. Cherepanov, Maxim V. Skulachev, Heinz-Jürgen Steinhoff, Vladimir P. Skulachev, Armen Y. Mulkidjanian, . Impact of Antioxidants on Cardiolipin Oxidation in Liposomes: Why Mitochondrial Cardiolipin Serves as an Apoptotic Signal?. Oxidative Medicine and Cellular Longevity 2016, 2016 (1) https://doi.org/10.1155/2016/8679469
    45. Joash Ban Lee Tan, Yau Yan Lim. Critical analysis of current methods for assessing the in vitro antioxidant and antibacterial activity of plant extracts. Food Chemistry 2015, 172 , 814-822. https://doi.org/10.1016/j.foodchem.2014.09.141
    46. Kun Shen, Xiuling Han, Guoqin Xia, Xiyan Lu. Cationic Pd( ii )-catalyzed cyclization of N-tosyl-aniline tethered alkynyl ketones initiated by hydropalladation of alkynes: a facile way to 1,2-dihydro or 1,2,3,4-tetrahydroquinoline derivatives. Organic Chemistry Frontiers 2015, 2 (2) , 145-149. https://doi.org/10.1039/C4QO00286E
    47. Etsuo Niki. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radical Biology and Medicine 2014, 66 , 3-12. https://doi.org/10.1016/j.freeradbiomed.2013.03.022
    48. Unai Martínez‐Estíbalez, Oihane García‐Calvo, Verónica Ortiz‐de‐Elguea, Nuria Sotomayor, Esther Lete. Intramolecular Mizoroki–Heck Reaction in the Regioselective Synthesis of 4‐Alkylidene‐tetrahydroquinolines. European Journal of Organic Chemistry 2013, 2013 (15) , 3013-3022. https://doi.org/10.1002/ejoc.201300048
    49. Yoshinori Kadoma, Seiichiro Fujisawa. Radical-Scavenging Activity of Thiols, Thiobarbituric Acid Derivatives and Phenolic Antioxidants Determined Using the Induction Period Method for Radical Polymerization of Methyl Methacrylate. Polymers 2012, 4 (2) , 1025-1036. https://doi.org/10.3390/polym4021025
    50. A. Villares, E. Guillamón, M. D’Arrigo, J. A. Martínez, A. García-Lafuente, A. Ramos. Kinetic Study of the Inhibition of Linoleic Acid Oxidation in Aqueous Media by Phenolic Compounds. Food Biophysics 2012, 7 (1) , 50-56. https://doi.org/10.1007/s11483-011-9242-z
    51. Luca Valgimigli, Derek A. Pratt. Antioxidants in Chemistry and Biology. 2012https://doi.org/10.1002/9781119953678.rad055
    52. Edwin N. Frankel. Antioxidant action in multiphase systems. 2012, 43-75. https://doi.org/10.1533/9780857097903.43
    53. Edwin N. Frankel. Antioxidants. 2012, 209-258. https://doi.org/10.1533/9780857097927.209
    54. Edwin N. Frankel. Oxidation in multiphase systems. 2012, 259-297. https://doi.org/10.1533/9780857097927.259
    55. Jiang-Jiang Tang, Gui-Juan Fan, Fang Dai, De-Jun Ding, Qi Wang, Dong-Liang Lu, Ran-Ran Li, Xiu-Zhuang Li, Li-Mei Hu, Xiao-Ling Jin, Bo Zhou. Finding more active antioxidants and cancer chemoprevention agents by elongating the conjugated links of resveratrol. Free Radical Biology and Medicine 2011, 50 (10) , 1447-1457. https://doi.org/10.1016/j.freeradbiomed.2011.02.028
    56. Ya-Jing Shang, Xiao-Ling Jin, Xian-Ling Shang, Jiang-Jiang Tang, Guo-Yun Liu, Fang Dai, Yi-Ping Qian, Gui-Juan Fan, Qiang Liu, Bo Zhou. Antioxidant capacity of curcumin-directed analogues: Structure–activity relationship and influence of microenvironment. Food Chemistry 2010, 119 (4) , 1435-1442. https://doi.org/10.1016/j.foodchem.2009.09.024
    57. L. Ross, C. Barclay, Melinda R. Vinqvist. Phenols as Antioxidants. 2009https://doi.org/10.1002/9780470682531.pat0288
    58. Fang Dai, Wei‐Feng Chen, Bo Zhou, Li Yang, Zhong‐Li Liu. Antioxidative effects of curcumin and its analogues against the free‐radical‐induced peroxidation of linoleic acid in micelles. Phytotherapy Research 2009, 23 (9) , 1220-1228. https://doi.org/10.1002/ptr.2517
    59. WEN-LEI XIE, JUN-MIN JI. ANTIOXIDANT ACTIVITIES OF VITAMINS E AND C IN A NOVEL LIPOSOME SYSTEM. Journal of Food Biochemistry 2008, 32 (6) , 766-781. https://doi.org/10.1111/j.1745-4514.2008.00197.x
    60. Fang Dai, Wei-Feng Chen, Bo Zhou. Antioxidant synergism of green tea polyphenols with α-tocopherol and l-ascorbic acid in SDS micelles. Biochimie 2008, 90 (10) , 1499-1505. https://doi.org/10.1016/j.biochi.2008.05.007
    61. Jeffrey Atkinson, Raquel F. Epand, Richard M. Epand. Tocopherols and tocotrienols in membranes: A critical review. Free Radical Biology and Medicine 2008, 44 (5) , 739-764. https://doi.org/10.1016/j.freeradbiomed.2007.11.010
    62. T. D. Nekipelova. Photolysis of 1,2-dihydroquinolines in micellar solutions of anionic and cationic surfactants. Kinetics and Catalysis 2008, 49 (2) , 218-225. https://doi.org/10.1134/S0023158408020080
    63. Sonia Losada Barreiro, Verónica Sánchez‐Paz, Maria José Pastoriza Gallego, Carlos Bravo‐Díaz. Micellar Effects on the Reaction between an Arenediazonium Ion and the Antioxidants Gallic Acid and Octyl Gallate. Helvetica Chimica Acta 2008, 91 (1) , 21-34. https://doi.org/10.1002/hlca.200890009
    64. Elisabetta Damiani, Paola Astolfi, Patricia Carloni, Pierluigi Stipa, Lucedio Greci. Antioxidants: How They Work. 2008, 251-266. https://doi.org/10.1007/978-1-4020-8399-0_12
    65. Joo-Shin Kim. Antioxidant Activity of γ-Oryzanol and Synthetic Phenolic Compounds in an Oil/Water (O/W) Emulsion System. Preventive Nutrition and Food Science 2007, 12 (3) , 173-176. https://doi.org/10.3746/jfn.2007.12.3.173
    66. Patricia D. MacLean, Emily C. Drake, L. Ross, C. Barclay. Bilirubin as an antioxidant in micelles and lipid bilayers: Its contribution to the total antioxidant capacity of human blood plasma. Free Radical Biology and Medicine 2007, 43 (4) , 600-609. https://doi.org/10.1016/j.freeradbiomed.2007.05.020
    67. Maret G. Traber, Jeffrey Atkinson. Vitamin E, antioxidant and nothing more. Free Radical Biology and Medicine 2007, 43 (1) , 4-15. https://doi.org/10.1016/j.freeradbiomed.2007.03.024
    68. Lucio Zennaro, Monica Rossetto, Paola Vanzani, Veronica De Marco, Marina Scarpa, Leontino Battistin, Adelio Rigo. A method to evaluate capacity and efficiency of water soluble antioxidants as peroxyl radical scavengers. Archives of Biochemistry and Biophysics 2007, 462 (1) , 38-46. https://doi.org/10.1016/j.abb.2007.03.017
    69. Camilo López-Alarcón, Alexis Aspée, Eduardo Lissi. Competitive kinetics in free radical reactions of cinnamic acid derivatives. Influence of phenoxyl radicals reactions. Free Radical Research 2007, 41 (10) , 1189-1194. https://doi.org/10.1080/10715760701583969
    70. Alina Błaszczyk, Janusz Skolimowski. Comparative analysis of cytotoxic, genotoxic and antioxidant effects of 2,2,4,7-tetramethyl-1,2,3,4-tetrahydroquinoline and ethoxyquin on human lymphocytes. Chemico-Biological Interactions 2006, 162 (1) , 70-80. https://doi.org/10.1016/j.cbi.2006.05.008
    71. Makoto Ichikawa, Jiro Yoshida, Nagatoshi Ide, Takashi Sasaoka, Hiroyuki Yamaguchi, Kazuhisa Ono. Tetrahydro-β-Carboline Derivatives in Aged Garlic Extract Show Antioxidant Properties. The Journal of Nutrition 2006, 136 (3) , 726S-731S. https://doi.org/10.1093/jn/136.3.726S
    72. Seiichiro Fujisawa, Yoshinori Kadoma. Comparative study of the alkyl and peroxy radical scavenging activities of polyphenols. Chemosphere 2006, 62 (1) , 71-79. https://doi.org/10.1016/j.chemosphere.2005.04.006
    73. T Nekipelova. Photo-induced bonding of water and alcohols to 1,2-dihydroquinolines. 2005, 241-258. https://doi.org/10.1201/b12072-16
    74. O Kasaikina. Kinetic model of _-carotene. 2005, 322-336. https://doi.org/10.1201/b12072-20
    75. Kazuo Mukai, Sachiyo Noborio, Shin‐Ichi Nagaoka. Why is the order reversed? peroxyl‐scavenging activity and fats‐and‐oils protecting activity of vitamin E. International Journal of Chemical Kinetics 2005, 37 (10) , 605-610. https://doi.org/10.1002/kin.20114
    76. Anup G. Shah, John A. Pierson, Spyros G. Pavlostathis. Fate and effect of the antioxidant ethoxyquin on a mixed methanogenic culture. Water Research 2005, 39 (17) , 4251-4263. https://doi.org/10.1016/j.watres.2005.08.014
    77. Seiichiro Fujisawa, Yoshinori Kadoma. Differential Scanning Calorimetry Investigation of the Radical‐Scavenging Activity of α‐Tocopherol and Hydroquinone. Instrumentation Science & Technology 2005, 33 (3) , 261-269. https://doi.org/10.1081/CI-200056075
    78. Bo Zhou, Qing Miao, Li Yang, Zhong‐Li Liu. Antioxidative Effects of Flavonols and Their Glycosides against the Free‐Radical‐Induced Peroxidation of Linoleic Acid in Solution and in Micelles. Chemistry – A European Journal 2005, 11 (2) , 680-691. https://doi.org/10.1002/chem.200400391
    79. Bo Zhou, Long-Min Wu, Li Yang, Zhong-Li Liu. Evidence for α-tocopherol regeneration reaction of green tea polyphenols in SDS micelles. Free Radical Biology and Medicine 2005, 38 (1) , 78-84. https://doi.org/10.1016/j.freeradbiomed.2004.09.023
    80. Eleonora Miquel Becker, Lise R. Nissen, Leif H. Skibsted. Antioxidant evaluation protocols: Food quality or health effects. European Food Research and Technology 2004, 219 (6) , 561-571. https://doi.org/10.1007/s00217-004-1012-4
    81. Levon A. Tavadyan, Gegham Z. Sedrakyan, Seyran H. Minasyan, Frederick T. Greenaway, John R.J. Sorenson. Anti-oxidant and pro-oxidant reactivities of copper(II), manganese(II) and iron(III) 3,5-di-i-propylsalicylate chelates during peroxidation of alkylbenzenes. Transition Metal Chemistry 2004, 29 (6) , 684-696. https://doi.org/10.1007/s11243-004-8775-0
    82. Bo Zhou, Li Yang, Zhong-Li Liu. Strictinin as an efficient antioxidant in lipid peroxidation. Chemistry and Physics of Lipids 2004, 131 (1) , 15-25. https://doi.org/10.1016/j.chemphyslip.2004.03.007
    83. Seiichiro Fujisawa, Yoshinori Kadoma, Ichiro Yokoe. Radical-scavenging activity of butylated hydroxytoluene (BHT) and its metabolites. Chemistry and Physics of Lipids 2004, 130 (2) , 189-195. https://doi.org/10.1016/j.chemphyslip.2004.03.005
    84. Jean-Yves Goujon, Françoise Zammattio, Jean-Mathieu Chrétien, Isabelle Beaudet. A new approach to 2,2-disubstituted chromenes and tetrahydroquinolines through intramolecular cyclization of chiral 3,4-epoxy alcohols. Tetrahedron 2004, 60 (18) , 4037-4049. https://doi.org/10.1016/j.tet.2004.03.010
    85. Maritza F. Díaz Gómez, José A. Gavín Sazatornil, Frank Hernández Rosales, Wilfredo Díaz Rubí. Effect of α-Tocopherol During In Vitro Ozonation of Methyl Linoleate: Its Implication in Ozone Therapy. Ozone: Science & Engineering 2004, 26 (2) , 189-194. https://doi.org/10.1080/01919510490439546
    86. Vitaly Roginsky, Tatyana Barsukova, Denis Loshadkin, Evgeny Pliss. Substituted p-hydroquinones as inhibitors of lipid peroxidation. Chemistry and Physics of Lipids 2003, 125 (1) , 49-58. https://doi.org/10.1016/S0009-3084(03)00068-9
    87. David G Rabkin, Alan D Weinberg, Henry M Spotnitz. Optimizing probucol administration to preserve left ventricular compliance after reperfusion injury in the heterotopic rat heart isograft. The Journal of Heart and Lung Transplantation 2003, 22 (9) , 959-966. https://doi.org/10.1016/S1053-2498(02)01155-5
    88. Vitaly Roginsky. Chain-breaking antioxidant activity of natural polyphenols as determined during the chain oxidation of methyl linoleate in Triton X-100 micelles. Archives of Biochemistry and Biophysics 2003, 414 (2) , 261-270. https://doi.org/10.1016/S0003-9861(03)00143-7
    89. Emanuela Franchi, Giovanni Ingrosso, Fabio Marchetti, Calogero Pinzino. Guaiazulene-based phenolic radical scavengers: synthesis, properties, and EPR studies of their reaction with oxygen-centred radicals. Tetrahedron 2003, 59 (27) , 5003-5018. https://doi.org/10.1016/S0040-4020(03)00737-3
    90. Yasukazu Yoshida, Etsuo Niki, Noriko Noguchi. Comparative study on the action of tocopherols and tocotrienols as antioxidant: chemical and physical effects. Chemistry and Physics of Lipids 2003, 123 (1) , 63-75. https://doi.org/10.1016/S0009-3084(02)00164-0
    91. Tomihiro Nishiyama, Yasuhiro Hashiguchi, Toshifumi Sakata, Tomoki Sakaguchi. Antioxidant activity of the fused heterocyclic compounds, 1,2,3,4-tetrahydroquinolines, and related compounds—effect of ortho-substituents. Polymer Degradation and Stability 2003, 79 (2) , 225-230. https://doi.org/10.1016/S0141-3910(02)00285-9
    92. Vassiliki Panteleon, Panagiotis Marakos, Nicole Pouli, Emmanuel Mikros, Ioanna Andreadou. Synthesis, Conformational Analysis and Free Radical Scavenging Activity of Some New Spiropyranoquinolinones. Chemical and Pharmaceutical Bulletin 2003, 51 (5) , 522-529. https://doi.org/10.1248/cpb.51.522
    93. Tomihiro Nishiyama, Shingo Shiotsu, Hiroshi Tsujita. Antioxidative activity and active site of 1,3-indandiones with the β-diketone moiety. Polymer Degradation and Stability 2002, 76 (3) , 435-439. https://doi.org/10.1016/S0141-3910(02)00046-0
    94. Makoto Ichikawa, Kenjiro Ryu, Jiro Yoshida, Nagatoshi Ide, Susumu Yoshida, Takashi Sasaoka, Shin‐Ichiro Sumi. Antioxidant effects of tetrahydro‐β‐carboline derivatives identified in aged garlic extract. BioFactors 2002, 16 (3-4) , 57-72. https://doi.org/10.1002/biof.5520160302
    95. Vitaly Roginsky, Tatyana Barsukova. Chain-Breaking Antioxidant Capability of Some Beverages as Determined by the Clark Electrode Technique. Journal of Medicinal Food 2001, 4 (4) , 219-229. https://doi.org/10.1089/10966200152744490
    96. D. R. Brannegan, M. Ashraf-Khorassani, L. T. Taylor. Supercritical fluid extraction of ethoxyquin from a beef matrix. Chromatographia 2001, 54 (5-6) , 399-401. https://doi.org/10.1007/BF02492691
    97. Tomonobu Ezure, Toshiji Kanayama, Chikao Nishino. Action of the novel antioxidants 4GBE43 and 2BBE43 against lipid peroxidation11Abbreviations: DPPH, diphenylpicrylhydrazyl; TEP, 1,1,3,3-tetraethoxypropane; AAPH, 2,2′-azobis (2-amidinopropane) dihydrochloride; AMVN, 2,2′-azobis (2,4-dimethylvaleronitrile); MLV, multilamellar vesicle; ULV, unilamellar vesicle; TBARs, thiobarbituric acid reactive substances; and PC-OOH, phosphatidylcholine hydroperoxides.. Biochemical Pharmacology 2001, 62 (3) , 335-340. https://doi.org/10.1016/S0006-2952(01)00670-0
    98. Vitaly Roginsky, Tatyana Barsukova. Superoxide dismutase inhibits lipid peroxidation in micelles. Chemistry and Physics of Lipids 2001, 111 (1) , 87-91. https://doi.org/10.1016/S0009-3084(01)00148-7
    99. Y. Okada, H. Okajima. Antioxidant effect of capsaicin on lipid peroxidation in homogeneous solution, micelle dispersions and liposomal membranes. Redox Report 2001, 6 (2) , 117-122. https://doi.org/10.1179/135100001101536120
    100. L. Campanella, G. Favero, L. Persi, M. Tomassetti. Evaluation of radical scavenging properties of several plants, fresh or from a herbalist's, using a superoxide dismutase biosensor. Journal of Pharmaceutical and Biomedical Analysis 2001, 24 (5-6) , 1055-1064. https://doi.org/10.1016/S0731-7085(00)00540-9
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1988, 110, 7, 2224–2229
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja00215a036
    Published March 1, 1988

    Article Views

    832

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.