ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Pantothenic Acid. VIII. The Total Synthesis of Pure Pantothenic Acid

Cite this: J. Am. Chem. Soc. 1940, 62, 7, 1785–1790
Publication Date (Print):July 6, 1940
https://doi.org/10.1021/ja01864a039
    ACS Legacy Archive

    Article Views

    738

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 109 publications.

    1. Jeffrey I. Seeman. Revolutions in Chemistry: Assessment of Six 20th Century Candidates (The Instrumental Revolution; Hückel Molecular Orbital Theory; Hückel’s 4n + 2 Rule; the Woodward–Hoffmann Rules; Quantum Chemistry; and Retrosynthetic Analysis). JACS Au 2023, 3 (9) , 2378-2401. https://doi.org/10.1021/jacsau.3c00278
    2. Marcel Heidlindemann, Matthias Hammel, Ulf Scheffler, Rainer Mahrwald, Werner Hummel, Albrecht Berkessel, and Harald Gröger . Chemoenzymatic Synthesis of Vitamin B5-Intermediate (R)-Pantolactone via Combined Asymmetric Organo- and Biocatalysis. The Journal of Organic Chemistry 2015, 80 (7) , 3387-3396. https://doi.org/10.1021/jo502667x
    3. Ludwik Synoradzki, Halina Hajmowicz, Jerzy Wisialski, Arkadiusz Mizerski and Tomasz Rowicki. Calcium Pantothenate. Part 3. Process for the Biologically Active Enantiomer of the Same via Selective Crystallization and Racemization. Organic Process Research & Development 2008, 12 (6) , 1238-1244. https://doi.org/10.1021/op800189g
    4. Tomasz Rowicki,, Ludwik Synoradzki, and, Marek Włostowski. Calcium Pantothenate. Part 1. (R,S)-Pantolactone Technology Improvement at the Tonnage Scale. Industrial & Engineering Chemistry Research 2006, 45 (4) , 1259-1265. https://doi.org/10.1021/ie050774u
    5. Ludwik Synoradzki,, Tomasz Rowicki, and, Marek Włostowski. Calcium Pantothenate. Part 2.1 Optimisation of Oxynitrilase-Catalysed Asymmetric Hydrocyanation of 3-Hydroxy-2,2-dimethylaldehyde:  Synthesis of (R)-Pantolactone. Organic Process Research & Development 2006, 10 (1) , 103-108. https://doi.org/10.1021/op050186s
    6. Michael Rychlik. Quantification of Free and Bound Pantothenic Acid in Foods and Blood Plasma by a Stable Isotope Dilution Assay. Journal of Agricultural and Food Chemistry 2000, 48 (4) , 1175-1181. https://doi.org/10.1021/jf9913054
    7. Sunil V. Pansare and, Rajendra P. Jain. Enantioselective Synthesis of (S)-(+)-Pantolactone. Organic Letters 2000, 2 (2) , 175-177. https://doi.org/10.1021/ol990372g
    8. Motohiro Akazome,, Toshiaki Takahashi, and, Katsuyuki Ogura. Enantiomeric Inclusion of α-Hydroxy Esters by (R)-(1-Naphthyl)glycyl-(R)-phenylglycine and the Crystal Structures of the Inclusion Cavities. The Journal of Organic Chemistry 1999, 64 (7) , 2293-2300. https://doi.org/10.1021/jo9818778
    9. Alain Roucoux,, Laurent Thieffry,, Jean-François Carpentier,, Marc Devocelle,, Catherine Méliet,, Francine Agbossou, and, André Mortreux, , Alan J. Welch. Amidophosphine−Phosphinites:  Synthesis and Use in Rhodium-Based Asymmetric Hydrogenation of Activated Keto Compounds. Crystal Structure of Bis[(μ-chloro)((S)-2-((diphenylphosphino)oxy)-2-phenyl- N-(diphenylphosphino)-N-methylacetamide)rhodium(I)]. Organometallics 1996, 15 (10) , 2440-2449. https://doi.org/10.1021/om960012m
    10. Zhi‐Hong Du, Xiao‐Xiong Lv, Ning Liu, Fei Chen, Meng Yuan, Chao‐Shan Da. Asymmetric Synthesis of Pantolactone: Recent Advances. European Journal of Organic Chemistry 2023, 26 (46) https://doi.org/10.1002/ejoc.202300918
    11. Agnieszka Siewniak, Edyta Monasterska, Ewa Pankalla, Anna Chrobok. Polymer-Supported Poly(Ethylene Glycol) as a Phase-Transfer Catalyst for Cross-Aldol Condensation of Isobutyroaldehyde and Formaldehyde. Molecules 2022, 27 (19) , 6459. https://doi.org/10.3390/molecules27196459
    12. Reilly E. Sonstrom, Justin L. Neill, Alexander V. Mikhonin, Reinhard Doetzer, Brooks H. Pate. Chiral analysis of pantolactone with molecular rotational resonance spectroscopy. Chirality 2022, 34 (1) , 114-125. https://doi.org/10.1002/chir.23379
    13. Subbi Rami Reddy Tadi, Ganesh Nehru, Senthilkumar Sivaprakasam. Microbial Production of Pantothenic Acid. 2022, 1-18. https://doi.org/10.1007/978-3-030-81403-8_6-1
    14. Zhi‐Hong Du, Meng Yuan, Bao‐Xiu Tao, Wen‐Juan Qin, Xiang‐Ming Liang, Yu‐Yan Li, Hang Lin, Lian‐Chun Zhang, Chao‐Shan Da. Organocatalyzed Highly Enantioselective Aldol Reaction of Aldehydes for Synthesis of ( R )‐Pantolactone. Asian Journal of Organic Chemistry 2021, 10 (5) , 1167-1172. https://doi.org/10.1002/ajoc.202100106
    15. G. Chantereau, M. Sharma, A. Abednejad, C. Vilela, E.M. Costa, M. Veiga, F. Antunes, M.M. Pintado, G. Sèbe, V. Coma, M.G. Freire, C.S.R. Freire, A.J.D. Silvestre. Bacterial nanocellulose membranes loaded with vitamin B-based ionic liquids for dermal care applications. Journal of Molecular Liquids 2020, 302 , 112547. https://doi.org/10.1016/j.molliq.2020.112547
    16. Marc‐André Müller, Jonathan Medlock, Zoltán Prágai, Ines Warnke, Gilberto Litta, Andreas Kleefeldt, Klaus Kaiser, Bernd De Potzolli. Vitamins, 9. Vitamin B5. 2019, 1-16. https://doi.org/10.1002/14356007.o27_o11.pub2
    17. S.C. Gominak. Vitamin D deficiency changes the intestinal microbiome reducing B vitamin production in the gut. The resulting lack of pantothenic acid adversely affects the immune system, producing a “pro-inflammatory” state associated with atherosclerosis and autoimmunity. Medical Hypotheses 2016, 94 , 103-107. https://doi.org/10.1016/j.mehy.2016.07.007
    18. Manfred Eggersdorfer, Dietmar Laudert, Ulla Létinois, Tom McClymont, Jonathan Medlock, Thomas Netscher, Werner Bonrath. Einhundert Jahre Vitamine – eine naturwissenschaftliche Erfolgsgeschichte. Angewandte Chemie 2012, 124 (52) , 13134-13165. https://doi.org/10.1002/ange.201205886
    19. Manfred Eggersdorfer, Dietmar Laudert, Ulla Létinois, Tom McClymont, Jonathan Medlock, Thomas Netscher, Werner Bonrath. One Hundred Years of Vitamins—A Success Story of the Natural Sciences. Angewandte Chemie International Edition 2012, 51 (52) , 12960-12990. https://doi.org/10.1002/anie.201205886
    20. Klaus Kaiser, Bernd de Potzolli. Vitamins, 8. Pantothenic Acid. 2011https://doi.org/10.1002/14356007.o27_o11
    21. Arnold T. Nielsen, William J. Houlihan. The Aldol Condensation. 2011, 1-438. https://doi.org/10.1002/0471264180.or016.01
    22. Michael E. Webb, Alison G. Smith. Pantothenate Biosynthesis in Higher Plants. 2011, 203-255. https://doi.org/10.1016/B978-0-12-386479-6.00001-9
    23. Sakayu Shimizu, Michihiko Kataoka. Pantothenic Acid and Related Compounds. 2010, 1-8. https://doi.org/10.1002/9780470054581.eib469
    24. Beate Pscheidt, Zhibin Liu, Richard Gaisberger, Manuela Avi, Wolfgang Skranc, Karl Gruber, Herfried Griengl, Anton Glieder. Efficient Biocatalytic Synthesis of ( R )‐Pantolactone. Advanced Synthesis & Catalysis 2008, 350 (13) , 1943-1948. https://doi.org/10.1002/adsc.200800354
    25. Nobuhito Kurono, Tadahiro Kondo, Masanori Wakabayashi, Hirohito Ooka, Tsutomu Inoue, Hiroto Tachikawa, Takeshi Ohkuma. Enantiomer‐Selective Carbamoylation of Racemic α‐Hydroxy γ‐Lactones with Chiral Cu II Catalysts: An Example of a Highly Active Lewis Acid Catalyzed Reaction. Chemistry – An Asian Journal 2008, 3 (8-9) , 1289-1297. https://doi.org/10.1002/asia.200700420
    26. Mario Thevis, Maxie Kohler, Andreas Thomas, Nils Schlörer, Wilhelm Schänzer. Doping control analysis of tricyclic tetrahydroquinoline‐derived selective androgen receptor modulators using liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry 2008, 22 (16) , 2471-2478. https://doi.org/10.1002/rcm.3637
    27. Beate Pscheidt, Manuela Avi, Richard Gaisberger, Franz S. Hartner, Wolfgang Skranc, Anton Glieder. Screening hydroxynitrile lyases for (R)-pantolactone synthesis. Journal of Molecular Catalysis B: Enzymatic 2008, 52-53 , 183-188. https://doi.org/10.1016/j.molcatb.2007.11.012
    28. Christina Spry, Kiaran Kirk, Kevin J. Saliba. Coenzyme A biosynthesis: an antimicrobial drug target. FEMS Microbiology Reviews 2008, 32 (1) , 56-106. https://doi.org/10.1111/j.1574-6976.2007.00093.x
    29. . Pantothenic acid. 2007, 561-581. https://doi.org/10.1201/9781420009750.ch13
    30. Kathryn Bauerly, Robert Rucker. Pantothenic Acid. 2007https://doi.org/10.1201/9781420005806.ch9
    31. Sébastien Acerbis, Emmanuel Beaudoin, Denis Bertin, Didier Gigmes, Sylvain Marque, Paul Tordo. Leveled Steric Effect in Alkoxyamines of SG1‐Type. Macromolecular Chemistry and Physics 2004, 205 (7) , 973-978. https://doi.org/10.1002/macp.200300240
    32. Bidhan A. Shinkre, Abdul Rakeeb A.S. Deshmukh. The synthesis of (S)-(+)-pantolactone and its analogues from an ephedrine-derived morpholinone. Tetrahedron: Asymmetry 2004, 15 (7) , 1081-1084. https://doi.org/10.1016/j.tetasy.2004.02.022
    33. I. Ojima, T. Kogure, Y. Yoda. Asymmetric Hydrogenation of Ketopantoyl Lactone: D ‐(−)‐Pantoyl Lactone. 2003, 18-18. https://doi.org/10.1002/0471264180.os063.03
    34. John E. Halver. The Vitamins. 2003, 61-141. https://doi.org/10.1016/B978-012319652-1/50003-3
    35. Robert E. Olson. Karl August Folkers (1906–1997). The Journal of Nutrition 2001, 131 (9) , 2227-2230. https://doi.org/10.1093/jn/131.9.2227
    36. Thimma R. Rawalpally. Pantothenic Acid. 2000https://doi.org/10.1002/0471238961.1601142018012301.a01
    37. M. G. Vinogradov, D. V. Kurilov, V. A. Ferapontov, G. L. Heise. Efficient resolution of (±)-pantolactone by inclusion crystallization with the use of chiral 1,1,2-triphenylethane-1,2-diol. Russian Chemical Bulletin 2000, 49 (8) , 1483-1484. https://doi.org/10.1007/BF02495105
    38. Jan Velisek, Jiri Davidek. Pantothenic Acid. 2000https://doi.org/10.1201/9780203909621.ch13
    39. T.T. Upadhya, S. Gurunath, A. Sudalai. A new and short enantioselective synthesis of (R)-pantolactone. Tetrahedron: Asymmetry 1999, 10 (15) , 2899-2904. https://doi.org/10.1016/S0957-4166(99)00302-X
    40. Sakayu Shimizu, Michihiko Kataoka. Pantothenic Acid and Related Compounds. 1999https://doi.org/10.1002/0471250589.ebt159
    41. Sophie Poulain, Nicolas Noiret, Laëtitia Fauconnot, Caroline Nugier-Chauvin, Henri Patin. Studies related to in vivo CH activation: Synthesis and influence of 8,8- and 11,11-dimethyl oleic and 11,11-dimethyl linoleic acids on Δ12-desaturation of C. sorokiniana. Tetrahedron 1999, 55 (12) , 3595-3604. https://doi.org/10.1016/S0040-4020(98)01166-1
    42. Eric E. Dueno, Feixia Chu, Seok-In Kim, Kyung Woon Jung. Cesium promoted O-alkylation of alcohols for the efficient ether synthesis. Tetrahedron Letters 1999, 40 (10) , 1843-1846. https://doi.org/10.1016/S0040-4039(99)00083-0
    43. . Vitamin B-12, Biotin, And Pantothenic Acid. 1998https://doi.org/10.1201/9781420050165.ch12
    44. Dietmar Appelhans, Christian Reichardt. Syntheses with Aliphatic Dialdehydes, XLVI. Synthesis and Reactions of 2,2‐Dialkyl‐Substituted Malonaldehydes and Their Semi(Ethylene Acetals). Liebigs Annalen 1997, 1997 (11) , 2385-2392. https://doi.org/10.1002/jlac.199719971130
    45. Satoshi Obika, Toshihiko Nishiyama, Satoshi Tatematsu, Kazuyuki Miyashita, Chuzo Iwata, Takeshi Imanishi. Studies on novel and chiral 1,4-dihydropyridines. III. Asymmetric reduction of some ketones with novel NADH model compounds, (S)-3-(p-Tolylsulfinyl)-1,4-dihydropyridines. Tetrahedron 1997, 53 (2) , 593-602. https://doi.org/10.1016/S0040-4020(96)01005-8
    46. Gerd Kaupp, Jens Schmeyers, Fumio Toda, Hideaki Takumi, Hideko Koshima. Mechanism of solid-solid resolution of pantolactone. Journal of Physical Organic Chemistry 1996, 9 (12) , 795-800. https://doi.org/10.1002/(SICI)1099-1395(199612)9:12<795::AID-POC849>3.0.CO;2-C
    47. Franz Effenberger, Joachim Eichhorn, Jürgen Roos. Enzyme catalyzed addition of hydrocyanic acid to substituted pivalaldehydes — A novel synthesis of (R)-pantolactone. Tetrahedron: Asymmetry 1995, 6 (1) , 271-282. https://doi.org/10.1016/0957-4166(94)00384-N
    48. Richard Neidlein, Sheng Li. Synthese von Phosphinico‐Analog des Pantetheins. Helvetica Chimica Acta 1994, 77 (6) , 1570-1576. https://doi.org/10.1002/hlca.19940770612
    49. Richard Neidlein, Peter Greulich. Synthesen der Phosphono‐ bzw. Phosphino‐Analoga des Pantothensäure‐ethylesters und des Phosphono‐Analogons des Pantetheins. Helvetica Chimica Acta 1992, 75 (8) , 2545-2552. https://doi.org/10.1002/hlca.19920750809
    50. S. A. Kazaryan, É. A. Ekmedzhyan, Z. O. Mndzhoyan. β-Alanine and its derivatives (review). Pharmaceutical Chemistry Journal 1991, 25 (9) , 649-656. https://doi.org/10.1007/BF00777691
    51. Corinne Hatat, Nicolas Kokel, André Mortreux, Francis Petit. New chiral mixed AMPP ligands and their use in asymmetric hydrogenation of activated ketones on rhodium catalysts. Tetrahedron Letters 1990, 31 (29) , 4139-4142. https://doi.org/10.1016/S0040-4039(00)97563-4
    52. Masanobu Yotagai, Takashi Ohnuki. Asymmetric reduction of functionalized ketones with a sodium borohydride–( L )-tartaric acid system. J. Chem. Soc., Perkin Trans. 1 1990, 43 (6) , 1826-1828. https://doi.org/10.1039/P19900001826
    53. Kazuhide Tani, Kenichi Suwa, Eiji Tanigawa, Tomokazu Ise, Tsuneaki Yamagata, Yoshitaka Tatsuno, Sei Otsuka. Preparation of optically active peralkyldiphosphines and their use, as the rhodium(I) complex, in the asymmetric catalytic hydrogenation of ketones. Journal of Organometallic Chemistry 1989, 370 (1-3) , 203-221. https://doi.org/10.1016/0022-328X(89)87285-7
    54. Fumio Toda, Atsushi Sato, Koichi Tanaka, Thomas C W Mak. Optical Resolution of Pantolactone by Inclusion Crystallization with ( R , R )-(−)- trans -2,3-Bis(diphenylhydroxymethyl)-1,4-dioxaspiro[4.5]decane, and Crystal Structure of the Resulting 1:1 Complex. Chemistry Letters 1989, 18 (5) , 873-876. https://doi.org/10.1246/cl.1989.873
    55. S. Shimizu, H. Yamada. Pantothenic Acid (Vitamin B5), Coenzyme A and Related Compounds. 1989, 199-219. https://doi.org/10.1007/978-94-009-1111-6_12
    56. B.I. Glänzer, K. Faber, H. Griengl. Microbial resolution of O-acetylpantoyl lactone. Enzyme and Microbial Technology 1988, 10 (11) , 689-690. https://doi.org/10.1016/0141-0229(88)90062-2
    57. Toshiaki Morimoto, Mitsuo Chiba, Kazuo Achiwa. Catalytic asymmetric hydrogenation with rhodium complexes of improved DIOPS bearing para-dimethylamino group on the basis of our designing concept. Tetrahedron Letters 1988, 29 (37) , 4755-4758. https://doi.org/10.1016/S0040-4039(00)80599-7
    58. Corinne Hatat, Abdallah Karim, Nicolas Kokel, André Mortreux, Francis Petit. Asymmetric hydrogenation of activated keto compounds catalyzed by new chiral peralkyl-ampp rhodium complexes. Tetrahedron Letters 1988, 29 (30) , 3675-3678. https://doi.org/10.1016/S0040-4039(00)82151-6
    59. Mitsuo Chiba, Hitoe Takahashi, Hisashi Takahashi, Toshiaki Morimoto, Kazuo Achiwa. Synthesis and application of a novel bisphosphine ligand, (−)-DIOCP, as an unsymmetrized diop to prove the general utility of new designing concept.. Tetrahedron Letters 1987, 28 (32) , 3675-3678. https://doi.org/10.1016/S0040-4039(00)96352-4
    60. Toshiaki Morimoto, Hisashi Takahashi, Katsuyasu Fujii, Mitsuo Chiba, Kazuo Achiwa. Synthesis of a New Chiral Pyrrolidine Ligand Bearing Two Different Types of Phosphino Groups and Their Effects on the Asymmetric Hydrogenation of Ketopantolactone. Chemistry Letters 1986, 15 (12) , 2061-2064. https://doi.org/10.1246/cl.1986.2061
    61. Andrzej E. Wróblewski. STEREOCHEMISTRY OF 1,2-OXAPHOSPHOLANES. V. Phosphorus Shifts as a Probe of Configuration of Substituted 1,2-Oxaphospholan-3-ols. Phosphorous and Sulfur and the Related Elements 1986, 28 (3) , 371-377. https://doi.org/10.1080/03086648608072829
    62. Hisashi Takahashi, Masaaki Hattori, Mitsuo Chiba, Toshiaki Morimoto, Kazuo Achiwa. Preparation of new chiral pyrrolidinebisphosphines as highly effective ligands for catalytic asymmetric synthesis of R-(−)-pantolactone. Tetrahedron Letters 1986, 27 (37) , 4477-4480. https://doi.org/10.1016/S0040-4039(00)84983-7
    63. Sakayu Shimizu, Hiroyuki Hata, Hideaki Yamada. Reduction of Ketopantoyl Lactone to D-(—)-Pantoyl Lactone by Microorganisms. Agricultural and Biological Chemistry 1984, 48 (9) , 2285-2291. https://doi.org/10.1080/00021369.1984.10866497
    64. Frank A. Lee. The Vitamins. 1983, 199-224. https://doi.org/10.1007/978-94-011-7376-6_8
    65. Stanley R. Sandler, Wolf Karo. ALCOHOLS AND PHENOLS. 1983, 98-128. https://doi.org/10.1016/B978-0-08-092556-1.50008-7
    66. Daniel Wasmuth, Duilio Arigoni, Dieter Seebach. Zum stereochemischen Verlauf der Biosynthese von 2‐Oxo‐pantolacton: Synthese von stereospezifisch indiziertem Pantolacton aus Äpfelsäure. Helvetica Chimica Acta 1982, 65 (1) , 344-352. https://doi.org/10.1002/hlca.19820650136
    67. Iwao Ojima, Tetsuo Kogure. The asymmetric hydrogenation of α-keto esters catalyzed by rhodium(I) complexes with chiral diphosphine ligands. On the catalytic cycles and the mechanism of asymmetric induction. Journal of Organometallic Chemistry 1980, 195 (2) , 239-248. https://doi.org/10.1016/S0022-328X(00)90008-1
    68. Roslyn B. Alfin-Slater, Rose Mirenda. Nutrient Requirements: What They Are and Bases for Recommendations. 1980, 1-48. https://doi.org/10.1007/978-1-4613-3015-8_1
    69. Gerd Fouquet, Franz Merger, Rolf Platz. Über die Tischtschenko‐Reaktion von Aldolen. Liebigs Annalen der Chemie 1979, 1979 (10) , 1591-1601. https://doi.org/10.1002/jlac.197919791019
    70. David R. Wilken, Robert E. Dyar. Stereospecificity of pantoyl lactone formed by yeast cells and purified yeast ketopantoyl lactone reductases. Archives of Biochemistry and Biophysics 1978, 189 (2) , 251-255. https://doi.org/10.1016/0003-9861(78)90210-2
    71. Iwao Ojima. Homogeneous Asymmetric Hydrogenation and Hydrosilylation of Keto Esters Catalyzed by Chiral Rhodium Complexes. 1978, 181-206. https://doi.org/10.1007/978-1-4615-7041-7_13
    72. Kazuo Tsuzuki, Yasuyuki Nakajima, Takahiro Watanabe, Mitsutoshi Yanagiya, Takeshi Matsumoto. Total synthesis of d1 pedaldehyde. Tetrahedron Letters 1978, 19 (11) , 989-992. https://doi.org/10.1016/S0040-4039(01)85432-0
    73. Kazuo Achiwa, Tetsuo Kogure, Iwao Ojima. Catalytic asymmetric syntheses of R(−)- and S(+)-pantolactone. Tetrahedron Letters 1977, 18 (50) , 4431-4432. https://doi.org/10.1016/S0040-4039(01)83528-0
    74. Walter Karrer. Vitamine. 1976, 1078-1095. https://doi.org/10.1007/978-3-0348-5142-8_37
    75. Lawrence S. Dillon. The origins of the genetic code. The Botanical Review 1973, 39 (4) , 301-345. https://doi.org/10.1007/BF02859159
    76. Hans‐Rudolf Krüger, Helga Marschall, Peter Weyerstahl, Friedrich Nerdel. Fragmentierungsreaktionen an Carbonylverbindungen mit β‐ständigen elektronegativen Substituenten, XXIII. cis ‐ und trans ‐4.4.8.8‐Tetraalkyl‐2.6‐dioxa‐bicyclo[3.3.0]octane aus 1.6‐Bis‐ p ‐toluolsulfonyloxy‐2.2.5 5‐tetraalkyl‐hexandionen‐(3.4). Chemische Berichte 1973, 106 (1) , 91-104. https://doi.org/10.1002/cber.19731060113
    77. John E. Halver. THE VITAMINS. 1972, 29-103. https://doi.org/10.1016/B978-0-12-319650-7.50007-9
    78. Masao Shimizu. [55] Pantothenic acid and coenzyme A: Preparation of CoA analogs. 1970, 322-338. https://doi.org/10.1016/0076-6879(71)18323-1
    79. L. Caglioti, D. Misiti, R. Mondelli, A. Selva, F. Arcamone, G. Cassinelli. The structure of neoantimycin. Tetrahedron 1969, 25 (10) , 2193-2221. https://doi.org/10.1016/S0040-4020(01)82768-X
    80. Friedrich Nerdel, Dieter Frank, Hans‐Joachim Lengert, Peter Weyerstahl. Fragmentierungsreaktionen an Carbonylverbindungen mit β‐ständigen elektronegativen Substituenten, IX. 2‐Alkoxy‐oxetane aus β‐Tosyloxy‐aldehyden. Chemische Berichte 1968, 101 (5) , 1850-1862. https://doi.org/10.1002/cber.19681010538
    81. F.A. ROBINSON. PANTOTHENIC ACID. 1966, 406-486. https://doi.org/10.1016/B978-1-4831-6823-4.50009-4
    82. C. McFall DeSha, R. Fuerst. Chemical and enzymatic synthesis of γ-pantothenate. Biochimica et Biophysica Acta (BBA) - General Subjects 1964, 86 (1) , 33-38. https://doi.org/10.1016/0304-4165(64)90155-2
    83. HERBERT P. SARETT, JOSEPH J. BARBORIAK. Inhibition ofd-Pantothenate byl-Pantothenate in the Rat. The American Journal of Clinical Nutrition 1963, 13 (6) , 378-384. https://doi.org/10.1093/ajcn/13.6.378
    84. VERNON H. CHELDELIN, ANNETTE BAICH. THE BIOSYNTHESIS OF THE WATER-SOLUBLE VITAMINS. 1963, 679-742. https://doi.org/10.1016/B978-0-08-002925-2.50017-6
    85. ROGER J. WILLIAMS. Pantothenic Acid. 1963, 59-65. https://doi.org/10.1016/B978-1-4831-9711-1.50013-2
    86. A. Betz. Das Pantothens�urebed�rfnis der Hefe. Archiv f�r Mikrobiologie 1960, 35 (1) , 1-33. https://doi.org/10.1007/BF00425592
    87. Walter Karrer. Vitamine. 1958, 1078-1095. https://doi.org/10.1007/978-3-0348-6808-2_37
    88. Richard Kuhn, Dieter Weiser. Aminozucker‐Synthesen VII. α‐Amino‐β,β‐Dimethyl‐γ‐Hydroxy‐Butyraldehyd. Justus Liebigs Annalen der Chemie 1957, 602 (1) , 208-217. https://doi.org/10.1002/jlac.19576020117
    89. H. Rudy, H.-J. Bielig, K. Schreier, H. Wolf. Vitamine. 1957, 627-865. https://doi.org/10.1007/978-3-662-30610-9_6
    90. Taketami Sakuragi, Fred A. Kummerow. The Biological Utilization of the Palmitic Acid Esters of Pantothenic Acid. The Journal of Nutrition 1956, 59 (3) , 327-336. https://doi.org/10.1093/jn/59.3.327
    91. J. Baddiley. The Structure of Coenzyme A. 1955, 1-21. https://doi.org/10.1002/9780470122617.ch1
    92. H. P. Kaufmann. Vitamine und Hormone. 1953, 295-518. https://doi.org/10.1007/978-3-642-85665-5_9
    93. Franz Bergel, Nathan C. Hindley, Alexander L. Morrison, A. Ronald Moss. Über Abkömmlinge des Pantothenals. Chemische Berichte 1952, 85 (7-8) , 711-716. https://doi.org/10.1002/cber.19520850707
    94. E. Lehnartz. Chemie der Nahrungsstoffe. 1952, 1-64. https://doi.org/10.1007/978-3-642-86255-7_1
    95. W.W. Ackermann, William. Shive. α-AMINO-β, β-DIMETHYL-γ-HYDROXYBUTYRIC ACID; A PRECURSOR OF PANTOIC ACID. Journal of Biological Chemistry 1948, 175 (2) , 867-870. https://doi.org/10.1016/S0021-9258(18)57205-7
    96. Theodor Wieland, Ernst Friedrich Möller. Über biologisch aktive Homologe der Pantothensäure; 2 diastereomere N ‐[α.γ‐Dioxy‐β‐methyl‐β‐äthyl‐butyryl]‐β‐alanine. Chemische Berichte 1948, 81 (4) , 316-322. https://doi.org/10.1002/cber.19480810408
    97. F. A. Robinson. Some Recently Characterized Members of the Vitamin B 2 Complex. Proceedings of the Nutrition Society 1946, 4 (2) , 106-116. https://doi.org/10.1079/PNS19460023
    98. Theodor Wieland, Irmentraut Löw. Zur Biochemie der Vitamin B-Gruppe (Pantothensäure und Vitamin B6). 1945, 28-63. https://doi.org/10.1007/978-3-7091-7182-0_2
    99. B.C.J.G. Knight. Growth Factors in Microbiology. 1945, 105-228b. https://doi.org/10.1016/S0083-6729(08)61112-7
    100. Henry T. Scott, Morris Ant, Fuller D. Baird, Howard J. Cannon, Paul L. Day, Conrad A. Elvehjem, Elmer M. Nelson, Robert W. Pilcher. Report of the Committee on Assay of Foods (II. Vitamin B Complex. Status of Assay Methods and Need of These Substances by Man). American Journal of Public Health and the Nations Health 1944, 34 (7) , 783-794. https://doi.org/10.2105/AJPH.34.7.783
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect