ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Ligand-Promoted C3-Selective Arylation of Pyridines with Pd Catalysts: Gram-Scale Synthesis of (±)-Preclamol

View Author Information
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
Syngenta Crop Protection, AG Schaffhauserstrasse, CH-4332 Stein, Switzerland
§ Syngenta Ltd., Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K.
Cite this: J. Am. Chem. Soc. 2011, 133, 47, 19090–19093
Publication Date (Web):November 7, 2011
https://doi.org/10.1021/ja209510q
Copyright © 2011 American Chemical Society

    Article Views

    15407

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The first example of Pd-catalyzed, C3-selective arylation of unprotected pyridines has been developed by employing a catalytic system consisting of Pd(OAc)2 and 1,10-phenanthroline. This protocol provides an expeditious route to an important class of 3-arylpyridines and 3-arylpiperidines frequently found in bioactive compounds. A brief synthesis of the drug molecule (±)-preclamol is also reported.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental procedures and spectral data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 245 publications.

    1. Min Liu, Baojie Qiu, Zhuo Zhang, Yulong Zheng, Junyu Yuan, Hailing Li, Xingxian Zhang. Ligand-Enabled C6-Selective C–H Arylation of Pyrrolo[2,3-d] Pyrimidine Derivatives with Pd Catalysts: An Approach to the Synthesis of EGFR Inhibitor AEE-788. The Journal of Organic Chemistry 2024, Article ASAP.
    2. Si-Yuan Li, Yuan Li, Hui-Zhen Du, Junliang Wu, Gen Luo, Bing-Tao Guan. Mechanistic Investigation on Potassium Amide-Catalyzed Benzylic C–H Bond Addition of Alkylpyridines to Styrenes. Organometallics 2024, 43 (4) , 526-531. https://doi.org/10.1021/acs.organomet.3c00471
    3. Xinghao Sheng, Mingpan Yan, Bo Zhang, Wai-Yeung Wong, Nobuaki Kambe, Renhua Qiu. Nickel-Catalyzed Site-Selective C3–H Functionalization of Quinolines with Electrophilic Reagents at Room Temperature. ACS Catalysis 2023, 13 (14) , 9753-9765. https://doi.org/10.1021/acscatal.3c01553
    4. Zhong Liu, Zhu-Jun Shi, Lu Liu, Ming Zhang, Meng-Chen Zhang, Hao-Yang Guo, Xiao-Chen Wang. Asymmetric C3-Allylation of Pyridines. Journal of the American Chemical Society 2023, 145 (21) , 11789-11797. https://doi.org/10.1021/jacs.3c03056
    5. Guangrong Meng, Zhen Wang, Hau Sun Sam Chan, Nikita Chekshin, Zhen Li, Peng Wang, Jin-Quan Yu. Dual-Ligand Catalyst for the Nondirected C–H Olefination of Heteroarenes. Journal of the American Chemical Society 2023, 145 (14) , 8198-8208. https://doi.org/10.1021/jacs.3c01631
    6. Jian Xue, Zhengli Luo, Jisheng Huang, Yaqi Deng, Suzhen Dong, Shunying Liu. Enantioselective Construction of C3-Multifunctionalization α-Hydroxy-β-amino Pyridines via α-Pyridyl Diazoacetate, Water, and Imines for Drug Hunting. Organic Letters 2022, 24 (51) , 9502-9507. https://doi.org/10.1021/acs.orglett.2c03987
    7. Masayuki Fujinaga, Takayuki Ohkubo, Tomoteru Yamasaki, Katsushi Kumata, Nobuki Nengaki, Ming-Rong Zhang. Scandium Triflate-Catalyzed N-[18F]Fluoroalkylation of Aryl- Or Heteroaryl-Amines with [18F]Epifluorohydrin under Mild Conditions. Organic Letters 2022, 24 (22) , 4024-4028. https://doi.org/10.1021/acs.orglett.2c01459
    8. Vignesh Palani, Melecio A. Perea, Richmond Sarpong. Site-Selective Cross-Coupling of Polyhalogenated Arenes and Heteroarenes with Identical Halogen Groups. Chemical Reviews 2022, 122 (11) , 10126-10169. https://doi.org/10.1021/acs.chemrev.1c00513
    9. Chunqi Jia, Nini Wu, Gang Li, Xiuling Cui. meta-Allylation of Arenes via Ruthenium-Catalyzed Cross-Dehydrogenative Coupling. The Journal of Organic Chemistry 2022, 87 (10) , 6934-6941. https://doi.org/10.1021/acs.joc.2c00332
    10. Soumya Kumar Sinha, Srimanta Guin, Sudip Maiti, Jyoti Prasad Biswas, Sandip Porey, Debabrata Maiti. Toolbox for Distal C–H Bond Functionalizations in Organic Molecules. Chemical Reviews 2022, 122 (6) , 5682-5841. https://doi.org/10.1021/acs.chemrev.1c00220
    11. Zhong Liu, Jia-Hao He, Ming Zhang, Zhu-Jun Shi, Han Tang, Xin-Yue Zhou, Jun-Jie Tian, Xiao-Chen Wang. Borane-Catalyzed C3-Alkylation of Pyridines with Imines, Aldehydes, or Ketones as Electrophiles. Journal of the American Chemical Society 2022, 144 (11) , 4810-4818. https://doi.org/10.1021/jacs.2c00962
    12. Gang Li, Yuan Gao, Chunqi Jia, Shichong Wang, Bingxu Yan, Yu Fang, Suling Yang. Meta-Dehydrogenative Alkylation of Arenes with Ethers, Ketones, and Esters Catalyzed by Ruthenium. Organic Letters 2020, 22 (22) , 8758-8763. https://doi.org/10.1021/acs.orglett.0c02698
    13. A-Xiang Song, Xiao-Xiao Zeng, Bei-Bei Ma, Chang Xu, Feng-Shou Liu. Direct (Hetero)arylation of Heteroarenes Catalyzed by Unsymmetrical Pd-PEPPSI-NHC Complexes under Mild Conditions. Organometallics 2020, 39 (19) , 3524-3534. https://doi.org/10.1021/acs.organomet.0c00494
    14. Rachel M. Shanahan, Aobha Hickey, Lorraine M. Bateman, Mark E. Light, Gerard P. McGlacken. One-Pot Cross-Coupling/C–H Functionalization Reactions: Quinoline as a Substrate and Ligand through N–Pd Interaction. The Journal of Organic Chemistry 2020, 85 (4) , 2585-2596. https://doi.org/10.1021/acs.joc.9b03321
    15. Longzhi Zhu, Xinghao Sheng, You Li, Dong Lu, Renhua Qiu, Nobuaki Kambe. Nickel-Catalyzed Remote C4–H Arylation of 8-Aminoquinolines. Organic Letters 2019, 21 (17) , 6785-6789. https://doi.org/10.1021/acs.orglett.9b02403
    16. Aloisio de A. Bartolomeu, Rodrigo C. Silva, Timothy J. Brocksom, Timothy Noël, Kleber T. de Oliveira. Photoarylation of Pyridines Using Aryldiazonium Salts and Visible Light: An EDA Approach. The Journal of Organic Chemistry 2019, 84 (16) , 10459-10471. https://doi.org/10.1021/acs.joc.9b01879
    17. Chitrala Teja, Fazlur Rahman Nawaz Khan. Choline Chloride-Based Deep Eutectic Systems in Sequential Friedländer Reaction and Palladium-Catalyzed sp3 CH Functionalization of Methyl Ketones. ACS Omega 2019, 4 (5) , 8046-8055. https://doi.org/10.1021/acsomega.9b00310
    18. Lichen Yang, Nao Uemura, Yoshiaki Nakao. meta-Selective C–H Borylation of Benzamides and Pyridines by an Iridium–Lewis Acid Bifunctional Catalyst. Journal of the American Chemical Society 2019, 141 (19) , 7972-7979. https://doi.org/10.1021/jacs.9b03138
    19. Haisheng Xie, Youxiang Shao, Jiao Gui, Jianyong Lan, Zhipeng Liu, Zhuofeng Ke, Yuanfu Deng, Huanfeng Jiang, Wei Zeng. Co(II)-Catalyzed Regioselective Pyridine C–H Coupling with Diazoacetates. Organic Letters 2019, 21 (9) , 3427-3430. https://doi.org/10.1021/acs.orglett.9b01196
    20. Vanesa Salamanca, Alberto Toledo, Ana C. Albéniz. [2,2′-Bipyridin]-6(1H)-one, a Truly Cooperating Ligand in the Palladium-Mediated C–H Activation Step: Experimental Evidence in the Direct C-3 Arylation of Pyridine. Journal of the American Chemical Society 2018, 140 (51) , 17851-17856. https://doi.org/10.1021/jacs.8b10680
    21. Feiyun Jia, Changzhen Yin, Yang Zeng, Rui Sun, Yi-Cen Ge, Dingguo Xu, Ruixiang Li, Hua Chen, Chunchun Zhang, Haiyan Fu. Mechanism of Direct C–H Arylation of Pyridine via a Transient Activator Strategy: A Combined Computational and Experimental Study. The Journal of Organic Chemistry 2018, 83 (17) , 10389-10397. https://doi.org/10.1021/acs.joc.8b01480
    22. Jia Yu, Weiwei Lv, Guolin Cheng. Palladium-Catalyzed Site-Selective C–H Arylation of 2,2′-Bipyridine-6-carboxamides via a Rollover Cyclometalation Pathway. Organic Letters 2018, 20 (16) , 4732-4735. https://doi.org/10.1021/acs.orglett.8b01632
    23. Ananya Banik, Rupankar Paira, Bikash Kumar Shaw, Gonela Vijaykumar, Swadhin K. Mandal. Accessing Heterobiaryls through Transition-Metal-Free C–H Functionalization. The Journal of Organic Chemistry 2018, 83 (6) , 3236-3244. https://doi.org/10.1021/acs.joc.8b00140
    24. Jianjun Li, Yifan Lei, Yang Yu, Cong Qin, Yiwei Fu, Hao Li, and Wei Wang . Co(OAc)2-Catalyzed Trifluoromethylation and C(3)-Selective Arylation of 2-(Propargylamino)pyridines via a 6-Endo-Dig Cyclization. Organic Letters 2017, 19 (22) , 6052-6055. https://doi.org/10.1021/acs.orglett.7b02759
    25. Gang Li, Biao Zhu, Xingxing Ma, Chunqi Jia, Xulu Lv, Junjie Wang, Feng Zhao, Yunhe Lv, and Suling Yang . Ruthenium-Catalyzed ortho/meta-Selective Dual C–H Bonds Functionalizations of Arenes. Organic Letters 2017, 19 (19) , 5166-5169. https://doi.org/10.1021/acs.orglett.7b02439
    26. Kei Murakami, Shuya Yamada, Takeshi Kaneda, and Kenichiro Itami . C–H Functionalization of Azines. Chemical Reviews 2017, 117 (13) , 9302-9332. https://doi.org/10.1021/acs.chemrev.7b00021
    27. Shuo Zhang, You-Hong Niu, and Xin-Shan Ye . General Approach to Five-Membered Nitrogen Heteroaryl C-Glycosides Using a Palladium/Copper Cocatalyzed C–H Functionalization Strategy. Organic Letters 2017, 19 (13) , 3608-3611. https://doi.org/10.1021/acs.orglett.7b01583
    28. Guobao Li, Dongze Li, Jingyu Zhang, Da-Qing Shi, and Yingsheng Zhao . Ligand-Enabled Regioselectivity in the Oxidative Cross-coupling of Arenes with Toluenes and Cycloalkanes Using Ruthenium Catalysts: Tuning the Site-Selectivity from the ortho to meta Positions. ACS Catalysis 2017, 7 (6) , 4138-4143. https://doi.org/10.1021/acscatal.7b01072
    29. Yang Zeng, Chunchun Zhang, Changzhen Yin, Maoshen Sun, Haiyan Fu, Xueli Zheng, Maolin Yuan, Ruixiang Li, and Hua Chen . Direct C–H Functionalization of Pyridine via a Transient Activator Strategy: Synthesis of 2,6-Diarylpyridines. Organic Letters 2017, 19 (8) , 1970-1973. https://doi.org/10.1021/acs.orglett.7b00498
    30. Joydev K. Laha, Krupal P. Jethava, Sagarkumar Patel, and Ketul V. Patel . Intramolecular Acylation of Unactivated Pyridines or Arenes via Multiple C–H Functionalizations: Synthesis of All Four Azafluorenones and Fluorenones. The Journal of Organic Chemistry 2017, 82 (1) , 76-85. https://doi.org/10.1021/acs.joc.6b02065
    31. Vijay Singh, Yoshiaki Nakao, Shigeyoshi Sakaki, and Milind M. Deshmukh . Theoretical Study of Nickel-Catalyzed Selective Alkenylation of Pyridine: Reaction Mechanism and Crucial Roles of Lewis Acid and Ligands in Determining the Selectivity. The Journal of Organic Chemistry 2017, 82 (1) , 289-301. https://doi.org/10.1021/acs.joc.6b02394
    32. Adam J. S. Johnston, Kenneth B. Ling, David Sale, Nathalie Lebrasseur, and Igor Larrosa . Direct ortho-Arylation of Pyridinecarboxylic Acids: Overcoming the Deactivating Effect of sp2-Nitrogen. Organic Letters 2016, 18 (23) , 6094-6097. https://doi.org/10.1021/acs.orglett.6b03085
    33. Fernando Fumagalli and Flavio da Silva Emery . Charting the Chemical Reactivity Space of 2,3-Substituted Furo[2,3-b]pyridines Synthesized via the Heterocyclization of Pyridine-N-oxide Derivatives. The Journal of Organic Chemistry 2016, 81 (21) , 10339-10347. https://doi.org/10.1021/acs.joc.6b01329
    34. Zhoulong Fan, Jiabin Ni, and Ao Zhang . Meta-Selective CAr–H Nitration of Arenes through a Ru3(CO)12-Catalyzed Ortho-Metalation Strategy. Journal of the American Chemical Society 2016, 138 (27) , 8470-8475. https://doi.org/10.1021/jacs.6b03402
    35. Shuya Yamada, Kei Murakami, and Kenichiro Itami . Regiodivergent Cross-Dehydrogenative Coupling of Pyridines and Benzoxazoles: Discovery of Organic Halides as Regio-Switching Oxidants. Organic Letters 2016, 18 (10) , 2415-2418. https://doi.org/10.1021/acs.orglett.6b00932
    36. Yuexuan Li, Gongda Deng, and Xiaoming Zeng . Chromium-Catalyzed Regioselective Hydropyridination of Styrenes. Organometallics 2016, 35 (5) , 747-750. https://doi.org/10.1021/acs.organomet.5b01021
    37. Guo-Lin Gao, Wujiong Xia, Pankaj Jain, and Jin-Quan Yu . Pd(II)-Catalyzed C3-Selective Arylation of Pyridine with (Hetero)arenes. Organic Letters 2016, 18 (4) , 744-747. https://doi.org/10.1021/acs.orglett.5b03712
    38. Bao-Tian Luo, Huan Liu, Zhi-Jie Lin, Jingxing Jiang, Dong-Sheng Shen, Rui-Zhi Liu, Zhuofeng Ke, and Feng-Shou Liu . Aerobic and Efficient Direct Arylation of Five-Membered Heteroarenes and Their Benzocondensed Derivatives with Aryl Bromides by Bulky α-Hydroxyimine Palladium Complexes. Organometallics 2015, 34 (20) , 4881-4894. https://doi.org/10.1021/acs.organomet.5b00181
    39. Song Thi Le, Haruyasu Asahara, and Nagatoshi Nishiwaki . An Alternative Synthetic Approach to 3-Alkylated/Arylated 5-Nitropyridines. The Journal of Organic Chemistry 2015, 80 (17) , 8856-8858. https://doi.org/10.1021/acs.joc.5b01391
    40. Tomohiro Iwai and Masaya Sawamura . Transition-Metal-Catalyzed Site-Selective C–H Functionalization of Quinolines beyond C2 Selectivity. ACS Catalysis 2015, 5 (9) , 5031-5040. https://doi.org/10.1021/acscatal.5b01143
    41. Josep Llaveria, Daniele Leonori, and Varinder K. Aggarwal . Stereospecific Coupling of Boronic Esters with N-Heteroaromatic Compounds. Journal of the American Chemical Society 2015, 137 (34) , 10958-10961. https://doi.org/10.1021/jacs.5b07842
    42. Riko Odani, Koji Hirano, Tetsuya Satoh, and Masahiro Miura . Copper-Mediated Formally Dehydrative Biaryl Coupling of Azine N-Oxides and Oxazoles. The Journal of Organic Chemistry 2015, 80 (4) , 2384-2391. https://doi.org/10.1021/acs.joc.5b00037
    43. Kirika Ueda, Kazuma Amaike, Richard M. Maceiczyk, Kenichiro Itami, and Junichiro Yamaguchi . β-Selective C–H Arylation of Pyrroles Leading to Concise Syntheses of Lamellarins C and I. Journal of the American Chemical Society 2014, 136 (38) , 13226-13232. https://doi.org/10.1021/ja508449y
    44. Guoyong Song, Wylie W. N. O, and Zhaomin Hou . Enantioselective C–H Bond Addition of Pyridines to Alkenes Catalyzed by Chiral Half-Sandwich Rare-Earth Complexes. Journal of the American Chemical Society 2014, 136 (35) , 12209-12212. https://doi.org/10.1021/ja504995f
    45. Matthew A. Larsen and John F. Hartwig . Iridium-Catalyzed C–H Borylation of Heteroarenes: Scope, Regioselectivity, Application to Late-Stage Functionalization, and Mechanism. Journal of the American Chemical Society 2014, 136 (11) , 4287-4299. https://doi.org/10.1021/ja412563e
    46. Jamie M. Neely and Tomislav Rovis . Rh(III)-Catalyzed Decarboxylative Coupling of Acrylic Acids with Unsaturated Oxime Esters: Carboxylic Acids Serve as Traceless Activators. Journal of the American Chemical Society 2014, 136 (7) , 2735-2738. https://doi.org/10.1021/ja412444d
    47. Yaping Shang, Xiaoming Jie, Huaiqing Zhao, Peng Hu, and Weiping Su . Rh(III)-Catalyzed Amide-Directed Cross-Dehydrogenative Heteroarylation of Pyridines. Organic Letters 2014, 16 (2) , 416-419. https://doi.org/10.1021/ol403311b
    48. Cheng-Hao Ying, Shao-Bai Yan, and Wei-Liang Duan . 2-Hydroxy-1,10-phenanthroline vs 1,10-Phenanthroline: Significant Ligand Acceleration Effects in the Palladium-Catalyzed Oxidative Heck Reaction of Arenes. Organic Letters 2014, 16 (2) , 500-503. https://doi.org/10.1021/ol4033804
    49. Xiang-Wei Liu, Jiang-Ling Shi, Jia-Xuan Yan, Jiang-Bo Wei, Kun Peng, Le Dai, Chen-Guang Li, Bi-Qin Wang, and Zhang-Jie Shi . Reigoselective Arylation of Thiazole Derivatives at 5-Position via Pd Catalysis under Ligand-Free Conditions. Organic Letters 2013, 15 (22) , 5774-5777. https://doi.org/10.1021/ol4027073
    50. Xuefeng Cong, Huarong Tang, Chao Wu, and Xiaoming Zeng . Role of Mono-N-protected Amino Acid Ligands in Palladium(II)-Catalyzed Dehydrogenative Heck Reactions of Electron-Deficient (Hetero)arenes: Experimental and Computational Studies. Organometallics 2013, 32 (21) , 6565-6575. https://doi.org/10.1021/om400890p
    51. Keary M. Engle and Jin-Quan Yu . Developing Ligands for Palladium(II)-Catalyzed C–H Functionalization: Intimate Dialogue between Ligand and Substrate. The Journal of Organic Chemistry 2013, 78 (18) , 8927-8955. https://doi.org/10.1021/jo400159y
    52. Fionn O’Hara, Donna G. Blackmond, and Phil S. Baran . Radical-Based Regioselective C–H Functionalization of Electron-Deficient Heteroarenes: Scope, Tunability, and Predictability. Journal of the American Chemical Society 2013, 135 (32) , 12122-12134. https://doi.org/10.1021/ja406223k
    53. Xiao-Chen Wang, Yi Hu, Samuel Bonacorsi, Yang Hong, Richard Burrell, and Jin-Quan Yu . Pd(II)-Catalyzed C–H Iodination Using Molecular I2 as the Sole Oxidant. Journal of the American Chemical Society 2013, 135 (28) , 10326-10329. https://doi.org/10.1021/ja4055492
    54. Jun Zhou, Bo Li, Fang Hu, and Bing-Feng Shi . Rhodium(III)-Catalyzed Oxidative Olefination of Pyridines and Quinolines: Multigram-Scale Synthesis of Naphthyridinones. Organic Letters 2013, 15 (13) , 3460-3463. https://doi.org/10.1021/ol401540k
    55. Hengbin Wang, Gang Li, Keary M. Engle, Jin-Quan Yu, and Huw M. L. Davies . Sequential C–H Functionalization Reactions for the Enantioselective Synthesis of Highly Functionalized 2,3-Dihydrobenzofurans. Journal of the American Chemical Society 2013, 135 (18) , 6774-6777. https://doi.org/10.1021/ja401731d
    56. Nora Hofmann and Lutz Ackermann . meta-Selective C–H Bond Alkylation with Secondary Alkyl Halides. Journal of the American Chemical Society 2013, 135 (15) , 5877-5884. https://doi.org/10.1021/ja401466y
    57. Di Qiu, Liang Jin, Zhitong Zheng, He Meng, Fanyang Mo, Xi Wang, Yan Zhang, and Jianbo Wang . Synthesis of Pinacol Arylboronates from Aromatic Amines: A Metal-Free Transformation. The Journal of Organic Chemistry 2013, 78 (5) , 1923-1933. https://doi.org/10.1021/jo3018878
    58. Daohong Yu, Long Lu, and Qilong Shen . Palladium-Catalyzed Coupling of Polyfluorinated Arenes with Heteroarenes via C–F/C–H Activation. Organic Letters 2013, 15 (4) , 940-943. https://doi.org/10.1021/ol303567t
    59. Jung Min Joo, Pengfei Guo, and Dalibor Sames . C–H Bonds as Ubiquitous Functionality: Preparation of Multiple Regioisomers of Arylated 1,2,4-Triazoles via C–H Arylation. The Journal of Organic Chemistry 2013, 78 (2) , 738-743. https://doi.org/10.1021/jo3021677
    60. Jaesung Kwak, Youhwa Ohk, Yousung Jung, and Sukbok Chang . Rollover Cyclometalation Pathway in Rhodium Catalysis: Dramatic NHC Effects in the C–H Bond Functionalization. Journal of the American Chemical Society 2012, 134 (42) , 17778-17788. https://doi.org/10.1021/ja308205d
    61. Serge I. Gorelsky . Reactivity and Regioselectivity of Palladium-Catalyzed Direct Arylation in Noncooperative and Cooperative Processes. Organometallics 2012, 31 (13) , 4631-4634. https://doi.org/10.1021/om300230b
    62. Serge I. Gorelsky . Tuning the Regioselectivity of Palladium-Catalyzed Direct Arylation of Azoles by Metal Coordination. Organometallics 2012, 31 (3) , 794-797. https://doi.org/10.1021/om2012612
    63. Xu Zhang, Baoqing Liu, Xin Shu, Yang Gao, Haipeng Lv, and Jin Zhu . Silver-Mediated C–H Activation: Oxidative Coupling/Cyclization of N-Arylimines and Alkynes for the Synthesis of Quinolines. The Journal of Organic Chemistry 2012, 77 (1) , 501-510. https://doi.org/10.1021/jo202087j
    64. Pengwei Xu, Zhe Wang, Shu-Min Guo, Armido Studer. Introduction of the difluoromethyl group at the meta- or para-position of pyridines through regioselectivity switch. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-48383-1
    65. Shu‐Min Guo, Pengwei Xu, Armido Studer. Meta ‐Selective Copper‐Catalyzed C−H Arylation of Pyridines and Isoquinolines through Dearomatized Intermediates. Angewandte Chemie 2024, 135 https://doi.org/10.1002/ange.202405385
    66. Shu‐Min Guo, Pengwei Xu, Armido Studer. Meta ‐Selective Copper‐Catalyzed C−H Arylation of Pyridines and Isoquinolines through Dearomatized Intermediates. Angewandte Chemie International Edition 2024, https://doi.org/10.1002/anie.202405385
    67. Zhongyi Zeng, Shi Qin, Mingkai Yang, Mingyao Xu, Zhi-Huan Peng, Jiating Cai, Shengdong Wang, Hui Gao, Zhi Zhou, A. Stephen K. Hashmi, Wei Yi. Electrochemical meta-C−H Sulfonylation of Pyridines with Nucleophilic Sulfinates. 2024https://doi.org/10.21203/rs.3.rs-4243094/v1
    68. Gianluigi Albano. Palladium-catalyzed cross-dehydrogenative coupling of (hetero)arenes. Organic Chemistry Frontiers 2024, 11 (5) , 1495-1622. https://doi.org/10.1039/D3QO01925J
    69. Haiwen Wang, Michael F. Greaney. Regiodivergent Arylation of Pyridines via Zincke Intermediates. Angewandte Chemie International Edition 2024, 63 (8) https://doi.org/10.1002/anie.202315418
    70. Haiwen Wang, Michael F. Greaney. Regiodivergent Arylation of Pyridines via Zincke Intermediates. Angewandte Chemie 2024, 136 (8) https://doi.org/10.1002/ange.202315418
    71. Yoshinori Yamanoi. Recent Progress on the Synthesis of Bipyridine Derivatives. Molecules 2024, 29 (3) , 576. https://doi.org/10.3390/molecules29030576
    72. Pravin Kumar, Manmohan Kapur. Pd-Catalyzed Functionalization of Heterocycles Through C–H Activation. 2024https://doi.org/10.1007/7081_2024_69
    73. Jean Le Bras, Jacques Muzart. Palladium Catalysis: Dependence of the Efficiency of C−C Bond Formation on Carboxylate Ligand and Alkali Metal Carboxylate or Carboxylic Acid Additive. Part A: the C( sp 2 )−C( sp 2 ), C( sp 2 )−C( sp 3 ) and C( sp 3 )−C( sp 3 ) Bonds. Advanced Synthesis & Catalysis 2023, 365 (22) , 3727-3773. https://doi.org/10.1002/adsc.202300903
    74. Gu-Cheng He, Ting-Ting Song, Xiang-Xin Zhang, Yan Liu, Xiao-Yu Wang, Boshun Wan, Shi-Yu Guo, Qing-An Chen. Visible-light-induced catalytic construction of tricyclic aza-arenes from halopyridines. Chem Catalysis 2023, 3 (11) , 100793. https://doi.org/10.1016/j.checat.2023.100793
    75. Soumya Kumar Sinha, Pintu Ghosh, Shubhanshu Jain, Siddhartha Maiti, Shaeel A. Al-Thabati, Abdulmohsen Ali Alshehri, Mohamed Mokhtar, Debabrata Maiti. Transition-metal catalyzed C–H activation as a means of synthesizing complex natural products. Chemical Society Reviews 2023, 52 (21) , 7461-7503. https://doi.org/10.1039/D3CS00282A
    76. Hui Cao, Qiang Cheng, Armido Studer. meta‐ Selektive C−H‐Funktionalisierung von Pyridinen. Angewandte Chemie 2023, 135 (42) https://doi.org/10.1002/ange.202302941
    77. Hui Cao, Qiang Cheng, Armido Studer. meta‐ Selective C−H Functionalization of Pyridines. Angewandte Chemie International Edition 2023, 62 (42) https://doi.org/10.1002/anie.202302941
    78. Takahiro Yamada, Kosaku Tanaka, Yoshimitsu Hashimoto, Nobuyoshi Morita, Osamu Tamura. Electrophilic C3−H Alkenylation of 2,6‐Dialkoxypyridine Derivatives via Pd(II)/Tl(III) Reaction System. Advanced Synthesis & Catalysis 2023, 365 (18) , 3138-3148. https://doi.org/10.1002/adsc.202300650
    79. Jun‐Jie Tian, Rui‐Rui Li, Gui‐Xiu Tian, Xiao‐Chen Wang. Enantioselective C3‐Allylation of Pyridines via Tandem Borane and Palladium Catalysis. Angewandte Chemie 2023, 135 (34) https://doi.org/10.1002/ange.202307697
    80. Jun‐Jie Tian, Rui‐Rui Li, Gui‐Xiu Tian, Xiao‐Chen Wang. Enantioselective C3‐Allylation of Pyridines via Tandem Borane and Palladium Catalysis. Angewandte Chemie International Edition 2023, 62 (34) https://doi.org/10.1002/anie.202307697
    81. Animesh Das, Biplab Maji. Direct C(3)5−H Polyfluoroarylation of 2‐Amino/alkoxy Pyridines Enabled by a Transient and Electron‐deficient Palladium Intermediate. Chemistry – A European Journal 2023, 29 (41) https://doi.org/10.1002/chem.202301436
    82. Shun Li, Juan Tang, Yi-Hua Fu, Xue-Li Zheng, Mao-Lin Yuan, Rui-Xiang Li, Zhi-Shan Su, Hai-Yan Fu, Hua Chen. C3-selective C–H thiolation of quinolines via an N -arylmethyl activation strategy. Organic Chemistry Frontiers 2023, 10 (9) , 2324-2331. https://doi.org/10.1039/D3QO00244F
    83. Jun Zhou, Bing‐Feng Shi. Functionalization of Pyridines, Quinolines, and Isoquinolines. 2023, 357-392. https://doi.org/10.1002/9781119774167.ch8
    84. Ming Zhang, Qingyang Zhou, Heng Luo, Zi‐Lu Tang, Xiufang Xu, Xiao‐Chen Wang. C3‐Cyanation of Pyridines: Constraints on Electrophiles and Determinants of Regioselectivity. Angewandte Chemie 2023, 135 (6) https://doi.org/10.1002/ange.202216894
    85. Ming Zhang, Qingyang Zhou, Heng Luo, Zi‐Lu Tang, Xiufang Xu, Xiao‐Chen Wang. C3‐Cyanation of Pyridines: Constraints on Electrophiles and Determinants of Regioselectivity. Angewandte Chemie International Edition 2023, 62 (6) https://doi.org/10.1002/anie.202216894
    86. Haritha Sindhe, Malladi Mounika Reddy, Karthikeyan Rajkumar, Akshay Kamble, Amardeep Singh, Anand Kumar, Satyasheel Sharma. Pyridine C(sp 2 )–H bond functionalization under transition-metal and rare earth metal catalysis. Beilstein Journal of Organic Chemistry 2023, 19 , 820-863. https://doi.org/10.3762/bjoc.19.62
    87. Wei-Yuan Ma, Huifang Dai, Shaolin Kang, Tianlin Zhang, Xing-Zhong Shu. Hiyama Cross-Coupling Reaction of Aryl Vinylsilanes and Aryl Halides. Chinese Journal of Organic Chemistry 2023, 43 (10) , 3614. https://doi.org/10.6023/cjoc202306025
    88. Hua‐Nan Wang, Raghunath Bag, Selvaraj Karuppu, Gang Chen, Guolan Xiao. CH Functionalization‐Based Strategy in the Synthesis and Late‐Stage Modification of Drug and Bioactive Molecules. 2022, 1-65. https://doi.org/10.1002/9783527834242.chf0217
    89. Ting‐Hsuan Wang, Chen‐Hsun Hung, Tiow‐Gan Ong. Tandem CH/CO Activation as New Paradigm for Molecular Synthesis. 2022, 1-32. https://doi.org/10.1002/9783527834242.chf0221
    90. Arup Mondal, Manuel van Gemmeren. Silberfreie C−H‐Aktivierung: Strategische Ansätze zur Erschließung des vollen Potenzials von C−H‐Aktivierungen in der nachhaltigen organischen Synthese. Angewandte Chemie 2022, 134 (48) https://doi.org/10.1002/ange.202210825
    91. Arup Mondal, Manuel van Gemmeren. Silver‐Free C−H Activation: Strategic Approaches towards Realizing the Full Potential of C−H Activation in Sustainable Organic Synthesis. Angewandte Chemie International Edition 2022, 61 (48) https://doi.org/10.1002/anie.202210825
    92. Hui Cao, Qiang Cheng, Armido Studer. Radical and ionic meta -C–H functionalization of pyridines, quinolines, and isoquinolines. Science 2022, 378 (6621) , 779-785. https://doi.org/10.1126/science.ade6029
    93. Hao‐Ran Ma, Can Tang, Xiao‐Shui Peng. Sequential CH Functionalization in Complex Molecular Synthesis. 2022, 1-33. https://doi.org/10.1002/9783527834242.chf0186
    94. Zhong Jin. Palladium‐Catalyzed Distal CH Functionalization of Arenes. 2022, 1-109. https://doi.org/10.1002/9783527834242.chf0003
    95. Dahan Wang, Li Zhang, Fuhong Xiao, Guojiang Mao, Guo-Jun Deng. The electrochemically selective C3-thiolation of quinolines. Organic Chemistry Frontiers 2022, 9 (11) , 2986-2993. https://doi.org/10.1039/D2QO00148A
    96. Gajanan, K. Rathod, Rahul Jain. Palladium‐Catalyzed Aminocarbonylation of Heteroaryl Iodides. ChemistrySelect 2022, 7 (16) https://doi.org/10.1002/slct.202200773
    97. Yu Chen, Guang‐Yi Zhang, Chan Guo, Ping Lan, Martin G. Banwell, Yu‐Tao He. Silver‐Promoted Radical Ring‐Opening / Pyridylation of Cyclobutanols with N ‐Methoxypyridinium Salts. Chemistry – A European Journal 2022, 28 (16) https://doi.org/10.1002/chem.202104627
    98. Zhucheng Zhang, Qian He, Xiaofei Zhang, Chunhao Yang. Photoredox-catalysed regioselective synthesis of C-4-alkylated pyridines with N -(acyloxy)phthalimides. Organic & Biomolecular Chemistry 2022, 20 (9) , 1969-1973. https://doi.org/10.1039/D2OB00123C
    99. Weilong Wu, Yongkang Jing, Deyi Zhang, Xianghe Yan, Rong Liang, Zhiqiang Lu, Baoming Ji. Palladium-Catalyzed Butoxycarbonylation of Polybromo(hetero)arenes: A Practical Method for the Preparation of (Hetero)arenepolycarboxylates and -carboxylic Acids. Synthesis 2022, 54 (02) , 403-410. https://doi.org/10.1055/a-1587-8859
    100. Tao Zhang, Yu-Xin Luan, Nelson Y. S. Lam, Jiang-Fei Li, Yue Li, Mengchun Ye, Jin-Quan Yu. A directive Ni catalyst overrides conventional site selectivity in pyridine C–H alkenylation. Nature Chemistry 2021, 13 (12) , 1207-1213. https://doi.org/10.1038/s41557-021-00792-1
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect