ACS Publications. Most Trusted. Most Cited. Most Read
Elucidating the Mechanism of Multiferroicity in (NH4)3Cr(O2)4 and Its Tailoring by Alkali Metal Substitution
My Activity

Figure 1Loading Img
    Article

    Elucidating the Mechanism of Multiferroicity in (NH4)3Cr(O2)4 and Its Tailoring by Alkali Metal Substitution
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
    National High Magnetic Field Laboratory, Tallahassee, Florida 32312-4005, United States
    Other Access OptionsSupporting Information (6)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 38, 15953–15962
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja3065705
    Published August 30, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The antiferromagnetic Cr(V) peroxychromates, M3Cr(O2)4, M = K, Rb, and Cs, become ferroelectric when mixed with NH4+, but the underlying mechanism is not understood. Our dielectric relaxation, Raman scattering, and high-frequency EPR measurements on the M3–x(NH4)xCr(O2)4 family clarify this mechanism. At 295 K, (NH4)3Cr(O2)4 is tetragonal (I4̅2m), with the NH4+ ions occupying two distinctly different sites, N1 and N2. A ferroelectric transition at Tc1 = 250 K is revealed by λ-type anomalies in Cp and dielectric constant, and lowering of symmetry to Cmc2(1). Below Tc1, the N1 sites lose their tetrahedral symmetry and thus polarization develops. Raman detection of translational modes involving the NH4+ ions around 193 cm–1 supports this model. EPR around Tc1 revealed that the [Cr(O2)4]3– ions reorient by about 10°. A minor peak at Tc2 ≈ 207 K is attributed to a short-range ordering that culminates in a long-range, structural order at Tc3 ≈ 137 K. At Tc3, the symmetry is lowered to P1 with significant changes in the cell parameters. Rb+ and Cs+ substitutions that block the N1 and N2 sites selectively show that Tc1 is related to the torsional motion of the N1 site, while Tc2 and Tc3 are governed by the motional slowing down of the N2 site. These data show that the multiferroic behavior of this family is governed by the rotational and translational dynamics of the NH4+ ions and is tunable by their controlled substitutions. Relevance to other classes of possible multiferroics is pointed out.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Crystallographic data (CIF) and the structure showing the twisting of Cr(O2)4 moiety by ∼10° below the ferroelectric phase transition. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 32 publications.

    1. Yu-Qing Wu, Jia-Yao Zhang, Xiang He, Zhao-Xi Wang, Hong-Ling Cai, Ming-Xing Li. Phase Transition and Ferroelectricity of Two Perovskite-Like Mn(II) Metal–Organic Frameworks Tuned by Phosphonium Cations and Dicyanamide Ligand. Crystal Growth & Design 2021, 21 (11) , 6245-6253. https://doi.org/10.1021/acs.cgd.1c00717
    2. Mirosław Mączka, Jan K. Zaręba, Anna Gągor, Dagmara Stefańska, Maciej Ptak, Krystian Roleder, Dariusz Kajewski, Andrzej Soszyński, Katarzyna Fedoruk, Adam Sieradzki. [Methylhydrazinium]2PbBr4, a Ferroelectric Hybrid Organic–Inorganic Perovskite with Multiple Nonlinear Optical Outputs. Chemistry of Materials 2021, 33 (7) , 2331-2342. https://doi.org/10.1021/acs.chemmater.0c04440
    3. Mirosław Mączka, Maciej Ptak, Anna Gągor, Dagmara Stefańska, Adam Sieradzki. Layered Lead Iodide of [Methylhydrazinium]2PbI4 with a Reduced Band Gap: Thermochromic Luminescence and Switchable Dielectric Properties Triggered by Structural Phase Transitions. Chemistry of Materials 2019, 31 (20) , 8563-8575. https://doi.org/10.1021/acs.chemmater.9b03775
    4. Sha-Sha Wang, Rui-Kang Huang, Xiao-Xian Chen, Wei-Jian Xu, Wei-Xiong Zhang, Xiao-Ming Chen. Temperature-Induced Structural Phase Transitions in Two New Postperovskite Coordination Polymers. Crystal Growth & Design 2019, 19 (2) , 1111-1117. https://doi.org/10.1021/acs.cgd.8b01615
    5. Mirosław Mączka, Anna Gągor, Maciej Ptak, Waldeci Paraguassu, Tercio Almeida da Silva, Adam Sieradzki, and Adam Pikul . Phase Transitions and Coexistence of Magnetic and Electric Orders in the Methylhydrazinium Metal Formate Frameworks. Chemistry of Materials 2017, 29 (5) , 2264-2275. https://doi.org/10.1021/acs.chemmater.6b05249
    6. Yi Zhang, Wei-Qiang Liao, Da-Wei Fu, Heng-Yun Ye, Zhong-Ning Chen, and Ren-Gen Xiong . Highly Efficient Red-Light Emission in An Organic–Inorganic Hybrid Ferroelectric: (Pyrrolidinium)MnCl3. Journal of the American Chemical Society 2015, 137 (15) , 4928-4931. https://doi.org/10.1021/jacs.5b01680
    7. Mirosław Mączka, Paweł Kadłubański, Paulo Tarso Cavalcante Freire, Bogusław Macalik, Waldeci Paraguassu, Krysztof Hermanowicz, and Jerzy Hanuza . Temperature- and Pressure-Induced Phase Transitions in the Metal Formate Framework of [ND4][Zn(DCOO)3] and [NH4][Zn(HCOO)3]. Inorganic Chemistry 2014, 53 (18) , 9615-9624. https://doi.org/10.1021/ic501074x
    8. Mirosław Mączka, Aneta Ciupa, Anna Gągor, Adam Sieradzki, Adam Pikul, Bogusław Macalik, and Marek Drozd . Perovskite Metal Formate Framework of [NH2-CH+-NH2]Mn(HCOO)3]: Phase Transition, Magnetic, Dielectric, and Phonon Properties. Inorganic Chemistry 2014, 53 (10) , 5260-5268. https://doi.org/10.1021/ic500479e
    9. Mirosław Mączka, Adam Pietraszko, Bogusław Macalik, and Krzysztof Hermanowicz . Structure, Phonon Properties, and Order–Disorder Transition in the Metal Formate Framework of [NH4][Mg(HCOO)3]. Inorganic Chemistry 2014, 53 (2) , 787-794. https://doi.org/10.1021/ic4020702
    10. Mirosław Mączka, Anna Gągor, Bogusław Macalik, Adam Pikul, Maciej Ptak, and Jerzy Hanuza . Order–Disorder Transition and Weak Ferromagnetism in the Perovskite Metal Formate Frameworks of [(CH3)2NH2][M(HCOO)3] and [(CH3)2ND2][M(HCOO)3] (M = Ni, Mn). Inorganic Chemistry 2014, 53 (1) , 457-467. https://doi.org/10.1021/ic402425n
    11. Raghabendra Samantaray, Debashis Acharya, Anulipsa Priyadarshini, Rojalin Sahu, T. Besara, Naresh S. Dalal. Understanding the motional dynamics of the ammonium ion in the mechanism of multiferroicity of Cr( v ) peroxychromates: a 1 H NMR study. Physical Chemistry Chemical Physics 2024, 26 (37) , 24585-24590. https://doi.org/10.1039/D4CP02769H
    12. W. Tian, L. L. Daemen, Y. Q. Cheng, Fei Li, Jaime A. Fernandez-Baca. Linking NH 4 + motion to magnetism in molecular multiferroic ( NH 4 ) 2 [ FeCl 5 ( H 2 O ) ] : A neutron vibrational spectroscopy study. Physical Review B 2024, 110 (6) https://doi.org/10.1103/PhysRevB.110.064410
    13. Juan S. Rodríguez-Hernández, Mayra A. P. Gómez, D. S. Abreu, Ariel Nonato, Rosivaldo Xavier da Silva, Alberto García-Fernández, María A. Señarís-Rodríguez, Manuel Sánchez-Andújar, A. P. Ayala, C. W. A. Paschoal. Uniaxial negative thermal expansion in the [(CH 3 ) 2 NH 2 ]PbBr 3 hybrid perovskite. Journal of Materials Chemistry C 2022, 10 (46) , 17567-17576. https://doi.org/10.1039/D2TC02708A
    14. Yong Ai, Rong Sun, Yu-Ling Zeng, Jun-Chao Liu, Yuan-Yuan Tang, Bing-Wu Wang, Zhe-Ming Wang, Song Gao, Ren-Gen Xiong. Coexistence of magnetic and electric orderings in a divalent Cr 2+ -based multiaxial molecular ferroelectric. Chemical Science 2021, 12 (28) , 9742-9747. https://doi.org/10.1039/D1SC01871J
    15. Xiaojian Bai, Randy S. Fishman, Gabriele Sala, Daniel M. Pajerowski, V. Ovidiu Garlea, Tao Hong, Minseong Lee, Jaime A. Fernandez-Baca, Huibo Cao, Wei Tian. Magnetic excitations of the hybrid multiferroic ( ND 4 ) 2 FeCl 5 · D 2 O . Physical Review B 2021, 103 (22) https://doi.org/10.1103/PhysRevB.103.224411
    16. Mirosław Mączka, Dagmara Stefańska, Maciej Ptak, Anna Gągor, Adam Pikul, Adam Sieradzki. Cadmium and manganese hypophosphite perovskites templated by formamidinium cations: dielectric, optical and magnetic properties. Dalton Transactions 2021, 50 (7) , 2639-2647. https://doi.org/10.1039/D0DT03995K
    17. Yanyan Li, Liting Lin, Jie Yang, Kun Qian, Tao Jiang, Hong Li. Red/green-light emission in continuous dielectric phase transition materials: [Me 3 NVinyl] 2 [MnX 4 ] (X = Cl, Br). RSC Advances 2021, 11 (4) , 2329-2336. https://doi.org/10.1039/D0RA08795E
    18. H. Yurtseven, O. Tari. Thermodynamic study on the magnetic transition and structural phase transition in [(CH3)2NH2][Na0.5Fe0.5(HCOO)3] by using the Landau phenomenological model. Journal of Applied Physics 2020, 128 (20) https://doi.org/10.1063/5.0027326
    19. Raghabendra Samantaray, Haidong Zhou. Variable temperature X-ray diffraction and high field EPR study of phase transition in multiferroic mixed ammonium peroxychromates, Rb1.36 (NH4)1.64Cr(O2)4. Materials Research Bulletin 2018, 107 , 41-45. https://doi.org/10.1016/j.materresbull.2018.07.009
    20. Maciej Ptak, Dagmara Stefańska, Anna Gągor, Katrine L. Svane, Aron Walsh, Waldeci Paraguassu. Heterometallic perovskite-type metal–organic framework with an ammonium cation: structure, phonons, and optical response of [NH 4 ]Na 0.5 Cr x Al 0.5−x (HCOO) 3 ( x = 0, 0.025 and 0.5). Physical Chemistry Chemical Physics 2018, 20 (34) , 22284-22295. https://doi.org/10.1039/C8CP03788D
    21. Mirosław Mączka, Jan Janczak, Monika Trzebiatowska, Adam Sieradzki, Sebastian Pawlus, Adam Pikul. Synthesis and temperature-dependent studies of a perovskite-like manganese formate framework templated with protonated acetamidine. Dalton Transactions 2017, 46 (26) , 8476-8485. https://doi.org/10.1039/C7DT01251A
    22. W. Tian, Huibo Cao, Jincheng Wang, Feng Ye, M. Matsuda, J.-Q. Yan, Yaohua Liu, V. O. Garlea, Harish K. Agrawal, B. C. Chakoumakos, B. C. Sales, Randy S. Fishman, J. A. Fernandez-Baca. Spin-lattice coupling mediated multiferroicity in ( ND 4 ) 2 FeCl 5 · D 2 O . Physical Review B 2016, 94 (21) https://doi.org/10.1103/PhysRevB.94.214405
    23. Aneta Ciupa, Monika Trzebiatowska-Gusowska, Maciej Ptak. Vibrational properties of the mixed-valence iron oxo-complex. Vibrational Spectroscopy 2016, 86 , 218-222. https://doi.org/10.1016/j.vibspec.2016.07.016
    24. Mirosław Mączka, Anna Gągor, Krzysztof Hermanowicz, Adam Sieradzki, Lucyna Macalik, Adam Pikul. Structural, magnetic and phonon properties of Cr(III)-doped perovskite metal formate framework [(CH3)2NH2][Mn(HCOO)3]. Journal of Solid State Chemistry 2016, 237 , 150-158. https://doi.org/10.1016/j.jssc.2016.02.010
    25. José Alberto Rodríguez-Velamazán, Óscar Fabelo, Ángel Millán, Javier Campo, Roger D. Johnson, Laurent Chapon. Magnetically-induced ferroelectricity in the (ND4)2[FeCl5(D2O)] molecular compound. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep14475
    26. Jared S. Kinyon, Ronald Clark, Naresh S. Dalal, Eun S. Choi, Haidong Zhou. Ferroelectricity in the gapless quantum antiferromagnet NH 4 CuCl 3 . Physical Review B 2015, 92 (14) https://doi.org/10.1103/PhysRevB.92.144103
    27. M. Mączka, K. Szymborska-Małek, A. Ciupa, J. Hanuza. Comparative studies of vibrational properties and phase transitions in metal-organic frameworks of [NH4][M(HCOO)3] with M=Mg, Zn, Ni, Fe, Mn. Vibrational Spectroscopy 2015, 77 , 17-24. https://doi.org/10.1016/j.vibspec.2015.02.003
    28. Zi‐Yi Du, Ting‐Ting Xu, Bo Huang, Yu‐Jun Su, Wei Xue, Chun‐Ting He, Wei‐Xiong Zhang, Xiao‐Ming Chen. Switchable Guest Molecular Dynamics in a Perovskite‐Like Coordination Polymer toward Sensitive Thermoresponsive Dielectric Materials. Angewandte Chemie 2015, 127 (3) , 928-932. https://doi.org/10.1002/ange.201408491
    29. Zi‐Yi Du, Ting‐Ting Xu, Bo Huang, Yu‐Jun Su, Wei Xue, Chun‐Ting He, Wei‐Xiong Zhang, Xiao‐Ming Chen. Switchable Guest Molecular Dynamics in a Perovskite‐Like Coordination Polymer toward Sensitive Thermoresponsive Dielectric Materials. Angewandte Chemie International Edition 2015, 54 (3) , 914-918. https://doi.org/10.1002/anie.201408491
    30. Zi-Yi Du, Yu-Zhi Sun, Shao-Li Chen, Bo Huang, Yu-Jun Su, Ting-Ting Xu, Wei-Xiong Zhang, Xiao-Ming Chen. Insight into the molecular dynamics of guest cations confined in deformable azido coordination frameworks. Chemical Communications 2015, 51 (86) , 15641-15644. https://doi.org/10.1039/C5CC06863K
    31. Aneta Ciupa, Mirosław Mączka, Anna Gągor, Adam Sieradzki, Justyna Trzmiel, Adam Pikul, Maciej Ptak. Temperature-dependent studies of [(CH 3 ) 2 NH 2 ][Fe III M II (HCOO) 6 ] frameworks (M II = Fe and Mg): structural, magnetic, dielectric and phonon properties. Dalton Transactions 2015, 44 (19) , 8846-8854. https://doi.org/10.1039/C5DT00512D
    32. M Ackermann, D Brüning, T Lorenz, P Becker, L Bohatý. Thermodynamic properties of the new multiferroic material (NH 4 ) 2 [FeCl 5 (H 2 O)]. New Journal of Physics 2013, 15 (12) , 123001. https://doi.org/10.1088/1367-2630/15/12/123001

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 38, 15953–15962
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja3065705
    Published August 30, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    872

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.