ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Controlling Cancer Cell Fate Using Localized Biocatalytic Self-Assembly of an Aromatic Carbohydrate Amphiphile

View Author Information
3B’s Research Group−Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal
ICVS/3B’s PT Government Associate Laboratory, Braga/Guimarães, Portugal
§ Department of Pure and Applied Chemistry/WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
Advanced Science Research Center (ASRC) & Hunter College, City University of New York (CUNY), 85 St Nicholas Terrace, New York, New York 10027, United States
Cite this: J. Am. Chem. Soc. 2015, 137, 2, 576–579
Publication Date (Web):December 25, 2014
https://doi.org/10.1021/ja5111893
Copyright © 2014 American Chemical Society

    Article Views

    6996

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We report on a simple carbohydrate amphiphile able to self-assemble into nanofibers upon enzymatic dephosphorylation. The self-assembly can be triggered by alkaline phosphatase (ALP) in solution or in situ by the ALP produced by osteosarcoma cell line, SaOs2. In the latter case, assembly and localized gelation occurs mainly on the cell surface. The gelation of the pericellular environment induces a reduction of the SaOs2 metabolic activity at an initial stage (≤7 h) that results in cell death at longer exposure periods (≥24 h). We show that this effect depends on the phosphatase concentration, and thus, it is cell-selective with prechondrocytes ATDC5 (that express ∼15–20 times lower ALP activity compared to SaOs2) not being affected at concentrations ≤1 mM. These results demonstrate that simple carbohydrate derivatives can be used in an antiosteosarcoma strategy with limited impact on the surrounding healthy cells/tissues.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental details and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 249 publications.

    1. Tingfen Deng, Wei Xie, Xiaojing Huang, Xia Wu, Xiang Shen, Junfeng Shi, Dan Yuan. A Dual-Responsive Peptide Hydrogel Protects Normal Cells from Anticancer Drug Treatments. ACS Applied Nano Materials 2024, Article ASAP.
    2. Yuchen Qiao, Grace Wu, Zhiyu Liu, Hongjian He, Weiyi Tan, Bing Xu. Assessment of the Enzymatic Dephosphorylation Kinetics in the Assemblies of a Phosphopentapeptide that Forms Intranuclear Nanoribbons. Biomacromolecules 2024, 25 (2) , 1310-1318. https://doi.org/10.1021/acs.biomac.3c01288
    3. Meihui Yi, Zhaoqianqi Feng, Hongjian He, Daniela Dinulescu, Bing Xu. Evaluating Alkaline Phosphatase-Instructed Self-Assembly of d-Peptides for Selectively Inhibiting Ovarian Cancer Cells. Journal of Medicinal Chemistry 2023, 66 (14) , 10027-10035. https://doi.org/10.1021/acs.jmedchem.3c00949
    4. Juanjuan Cao, Xiaomeng Yuan, Xinyu Sun, Fanhu Meng, Hongjie Li, Zexin Hong, Yun Liu, Xiaoqing Zhai, Jihong Ma, Shan Peng, Yuqi Zhou, Xiaoying Liu, Jingcheng Hao, Jingkun Bai. Matrix Metalloproteinase-2-Induced Morphologic Transformation of Self-Assembled Peptide Nanocarriers Inhibits Tumor Growth and Metastasis. ACS Materials Letters 2023, 5 (3) , 900-908. https://doi.org/10.1021/acsmaterialslett.2c01093
    5. Xuejiao Yang, Honglei Lu, Bihan Wu, Huaimin Wang. Triggered Self-Sorting of Peptides to Form Higher-Order Assemblies in a Living System. ACS Nano 2022, 16 (11) , 18244-18252. https://doi.org/10.1021/acsnano.2c05825
    6. Xuejiao Yang, Bihan Wu, Jiong Zhou, Honglei Lu, Hongyue Zhang, Feihe Huang, Huaimin Wang. Controlling Intracellular Enzymatic Self-Assembly of Peptide by Host–Guest Complexation for Programming Cancer Cell Death. Nano Letters 2022, 22 (18) , 7588-7596. https://doi.org/10.1021/acs.nanolett.2c02612
    7. Kenta Morita, Kanon Nishimura, Shota Yamamoto, Natsumi Shimizu, Tomoko Yashiro, Ryoko Kawabata, Takashi Aoi, Atsuo Tamura, Tatsuo Maruyama. In Situ Synthesis of an Anticancer Peptide Amphiphile Using Tyrosine Kinase Overexpressed in Cancer Cells. JACS Au 2022, 2 (9) , 2023-2028. https://doi.org/10.1021/jacsau.2c00301
    8. Meihui Yi, Fengbin Wang, Weiyi Tan, Jer-Tsong Hsieh, Edward H. Egelman, Bing Xu. Enzyme Responsive Rigid-Rod Aromatics Target “Undruggable” Phosphatases to Kill Cancer Cells in a Mimetic Bone Microenvironment. Journal of the American Chemical Society 2022, 144 (29) , 13055-13059. https://doi.org/10.1021/jacs.2c05491
    9. Jingbo Wang, Qinghao Zhou, Xiang Li, Debabrata Dutta, Zhishen Ge. Glutathione-Triggered Mitochondria-Targeting Reassembly from Polymeric Micelles to Nanofibers for a Synergistic Anticancer Effect. ACS Macro Letters 2022, 11 (4) , 543-548. https://doi.org/10.1021/acsmacrolett.2c00059
    10. Zhongying Gong, Baolong Zhou, Xiaoying Liu, Juanjuan Cao, Zexin Hong, Jingye Wang, Xirui Sun, Xiaomeng Yuan, Haining Tan, Hongjie Ji, Jingkun Bai. Enzyme-Induced Transformable Peptide Nanocarriers with Enhanced Drug Permeability and Retention to Improve Tumor Nanotherapy Efficacy. ACS Applied Materials & Interfaces 2021, 13 (47) , 55913-55927. https://doi.org/10.1021/acsami.1c17917
    11. Sayuri L. Higashi, Masato Ikeda. Development of an Amino Sugar-Based Supramolecular Hydrogelator with Reduction Responsiveness. JACS Au 2021, 1 (10) , 1639-1646. https://doi.org/10.1021/jacsau.1c00270
    12. Shuang Liu, Qiuxin Zhang, Adrianna N. Shy, Meihui Yi, Hongjian He, Shijiang Lu, Bing Xu. Enzymatically Forming Intranuclear Peptide Assemblies for Selectively Killing Human Induced Pluripotent Stem Cells. Journal of the American Chemical Society 2021, 143 (38) , 15852-15862. https://doi.org/10.1021/jacs.1c07923
    13. Shota Yamamoto, Kanon Nishimura, Kenta Morita, Sayuki Kanemitsu, Yuki Nishida, Tomoyuki Morimoto, Takashi Aoi, Atsuo Tamura, Tatsuo Maruyama. Microenvironment pH-Induced Selective Cell Death for Potential Cancer Therapy Using Nanofibrous Self-Assembly of a Peptide Amphiphile. Biomacromolecules 2021, 22 (6) , 2524-2531. https://doi.org/10.1021/acs.biomac.1c00267
    14. Pranab Chandra Saha, Tapas Bera, Tanima Chatterjee, Jayeeta Samanta, Arunima Sengupta, Maitree Bhattacharyya, Samit Guha. Supramolecular Dipeptide-Based Near-Infrared Fluorescent Nanotubes for Cellular Mitochondria Targeted Imaging and Early Apoptosis. Bioconjugate Chemistry 2021, 32 (4) , 833-841. https://doi.org/10.1021/acs.bioconjchem.1c00106
    15. Changjoon Keum, Jiyoung Hong, Doyeon Kim, Sang-Yup Lee, Hyuncheol Kim. Lysosome-Instructed Self-Assembly of Amino-Acid-Functionalized Perylene Diimide for Multidrug-Resistant Cancer Cells. ACS Applied Materials & Interfaces 2021, 13 (13) , 14866-14874. https://doi.org/10.1021/acsami.0c20050
    16. Seongeon Jin, M. T. Jeena, Batakrishna Jana, Minhyeok Moon, Huyeon Choi, Eunji Lee, Ja-Hyoung Ryu. Spatiotemporal Self-Assembly of Peptides Dictates Cancer-Selective Toxicity. Biomacromolecules 2020, 21 (12) , 4806-4813. https://doi.org/10.1021/acs.biomac.0c01000
    17. Hongjian He, Weiyi Tan, Jiaqi Guo, Meihui Yi, Adrianna N. Shy, Bing Xu. Enzymatic Noncovalent Synthesis. Chemical Reviews 2020, 120 (18) , 9994-10078. https://doi.org/10.1021/acs.chemrev.0c00306
    18. Pranab Chandra Saha, Rabi Sankar Das, Tanima Chatterjee, Maitree Bhattacharyya, Samit Guha. Supramolecular β-Sheet Forming Peptide Conjugated with Near-Infrared Chromophore for Selective Targeting, Imaging, and Dysfunction of Mitochondria. Bioconjugate Chemistry 2020, 31 (5) , 1301-1306. https://doi.org/10.1021/acs.bioconjchem.0c00153
    19. Chunhui Liang, Zhongyan Wang, Tengyan Xu, Yaoxia Chen, Debin Zheng, Lushuai Zhang, Wenwen Zhang, Zhimou Yang, Yang Shi, Jie Gao. Preorganization Increases the Self-Assembling Ability and Antitumor Efficacy of Peptide Nanomedicine. ACS Applied Materials & Interfaces 2020, 12 (20) , 22492-22498. https://doi.org/10.1021/acsami.0c02572
    20. Md Masrul Huda, Neeraj Rai. Probing Early-Stage Aggregation of Low Molecular Weight Gelator in an Organic Solvent. The Journal of Physical Chemistry B 2020, 124 (11) , 2277-2288. https://doi.org/10.1021/acs.jpcb.9b11865
    21. Beom Jin Kim, Bing Xu. Enzyme-Instructed Self-Assembly for Cancer Therapy and Imaging. Bioconjugate Chemistry 2020, 31 (3) , 492-500. https://doi.org/10.1021/acs.bioconjchem.0c00025
    22. Wang-Wei Guo, Zhen-Tao Zhang, QiChun Wei, Yi Zhou, Meng-Ting Lin, Jie-Jian Chen, Tian-Tian Wang, Ning-Ning Guo, Xin-Cheng Zhong, Yi-Ying Lu, Qi-Yao Yang, Min Han, JianQing Gao. Intracellular Restructured Reduced Glutathione-Responsive Peptide Nanofibers for Synergetic Tumor Chemotherapy. Biomacromolecules 2020, 21 (2) , 444-453. https://doi.org/10.1021/acs.biomac.9b01202
    23. Xia Zhao, Hao Zhang, Yuxia Gao, Yuan Lin, Jun Hu. A Simple Injectable Moldable Hydrogel Assembled from Natural Glycyrrhizic Acid with Inherent Antibacterial Activity. ACS Applied Bio Materials 2020, 3 (1) , 648-653. https://doi.org/10.1021/acsabm.9b01007
    24. Jianxun Ding, Xiangru Feng, Zhongyu Jiang, Weiguo Xu, Hui Guo, Xiuli Zhuang, Xuesi Chen. Polymer-Mediated Penetration-Independent Cancer Therapy. Biomacromolecules 2019, 20 (12) , 4258-4271. https://doi.org/10.1021/acs.biomac.9b01263
    25. M. T. Jeena, Keunsoo Jeong, Eun Min Go, Yuri Cho, Seokyung Lee, Seongeon Jin, Suk-Won Hwang, Joo Hee Jang, Chi Soo Kang, Woo-Young Bang, Eunji Lee, Sang Kyu Kwak, Sehoon Kim, Ja-Hyoung Ryu. Heterochiral Assembly of Amphiphilic Peptides Inside the Mitochondria for Supramolecular Cancer Therapeutics. ACS Nano 2019, 13 (10) , 11022-11033. https://doi.org/10.1021/acsnano.9b02522
    26. Enming Du, Xunwu Hu, Guanying Li, Shijin Zhang, Dingze Mang, Sona Roy, Toshio Sasaki, Ye Zhang. Self-Assembly-Directed Cancer Cell Membrane Insertion of Synthetic Analogues for Permeability Alteration. Langmuir 2019, 35 (23) , 7376-7382. https://doi.org/10.1021/acs.langmuir.8b02107
    27. Ippei Takashima, Kosuke Kusamori, Hayase Hakariya, Megumi Takashima, Thi Hue Vu, Yuya Mizukami, Naotaka Noda, Yukiya Takayama, Yousuke Katsuda, Shin-ichi Sato, Yoshinobu Takakura, Makiya Nishikawa, Motonari Uesugi. Multifunctionalization of Cells with a Self-Assembling Molecule to Enhance Cell Engraftment. ACS Chemical Biology 2019, 14 (4) , 775-783. https://doi.org/10.1021/acschembio.9b00109
    28. Jiye Son, Daniela Kalafatovic, Mohit Kumar, Barney Yoo, Mike A. Cornejo, María Contel, Rein V. Ulijn. Customizing Morphology, Size, and Response Kinetics of Matrix Metalloproteinase-Responsive Nanostructures by Systematic Peptide Design. ACS Nano 2019, 13 (2) , 1555-1562. https://doi.org/10.1021/acsnano.8b07401
    29. Chengfan Wu, Rui Zhang, Wei Du, Liang Cheng, Gaolin Liang. Alkaline Phosphatase-Triggered Self-Assembly of Near-Infrared Nanoparticles for the Enhanced Photoacoustic Imaging of Tumors. Nano Letters 2018, 18 (12) , 7749-7754. https://doi.org/10.1021/acs.nanolett.8b03482
    30. Zhaoqianqi Feng, Huaimin Wang, Bing Xu. Instructed Assembly of Peptides for Intracellular Enzyme Sequestration. Journal of the American Chemical Society 2018, 140 (48) , 16433-16437. https://doi.org/10.1021/jacs.8b10542
    31. Zhaoqianqi Feng, Huaimin Wang, Shiyu Wang, Qiang Zhang, Xixiang Zhang, Avital A. Rodal, Bing Xu. Enzymatic Assemblies Disrupt the Membrane and Target Endoplasmic Reticulum for Selective Cancer Cell Death. Journal of the American Chemical Society 2018, 140 (30) , 9566-9573. https://doi.org/10.1021/jacs.8b04641
    32. Yune Zhao, Zhen Wang, Chenyang Mei, Zhengxuan Jiang, Yifan Feng, Rongrong Gao, Qinmei Wang, Jinhai Huang. Protein Enables Conformation Transition of a Hydrogel Based on Pentapeptide and Boosts Immune Response in Vivo. Bioconjugate Chemistry 2018, 29 (5) , 1519-1524. https://doi.org/10.1021/acs.bioconjchem.8b00044
    33. Jie Li, Domenico Bullara, Xuewen Du, Hongjian He, Stavroula Sofou, Ioannis G. Kevrekidis, Irving R. Epstein, Bing Xu. Kinetic Analysis of Nanostructures Formed by Enzyme-Instructed Intracellular Assemblies against Cancer Cells. ACS Nano 2018, 12 (4) , 3804-3815. https://doi.org/10.1021/acsnano.8b01016
    34. Huaimin Wang, Zhaoqianqi Feng, Steven J. Del Signore, Avital A. Rodal, Bing Xu. Active Probes for Imaging Membrane Dynamics of Live Cells with High Spatial and Temporal Resolution over Extended Time Scales and Areas. Journal of the American Chemical Society 2018, 140 (10) , 3505-3509. https://doi.org/10.1021/jacs.7b13307
    35. Jie Zhou, Xuewen Du, Xiaoyi Chen, Jiaqing Wang, Ning Zhou, Difei Wu, and Bing Xu . Enzymatic Self-Assembly Confers Exceptionally Strong Synergism with NF-κB Targeting for Selective Necroptosis of Cancer Cells. Journal of the American Chemical Society 2018, 140 (6) , 2301-2308. https://doi.org/10.1021/jacs.7b12368
    36. Maria P. Conte, Jugal Kishore Sahoo, Yousef M. Abul-Haija, K. H. Aaron Lau, and Rein V. Ulijn . Biocatalytic Self-Assembly on Magnetic Nanoparticles. ACS Applied Materials & Interfaces 2018, 10 (3) , 3069-3075. https://doi.org/10.1021/acsami.7b15456
    37. Ruiying Yang, Xiaoxia Yan, Yanmei Li, Xiaohua Zhang, and Jinhua Chen . Nitrogen-Doped Porous Carbon-ZnO Nanopolyhedra Derived from ZIF-8: New Materials for Photoelectrochemical Biosensors. ACS Applied Materials & Interfaces 2017, 9 (49) , 42482-42491. https://doi.org/10.1021/acsami.7b10856
    38. Zhaoqianqi Feng, Huaimin Wang, Xiaoyi Chen, Bing Xu. Self-Assembling Ability Determines the Activity of Enzyme-Instructed Self-Assembly for Inhibiting Cancer Cells. Journal of the American Chemical Society 2017, 139 (43) , 15377-15384. https://doi.org/10.1021/jacs.7b07147
    39. Yuting Zhou, Jianmin Song, Lei Wang, Xuting Xue, Xiaoman Liu, Hui Xie, and Xin Huang . In Situ Gelation-Induced Death of Cancer Cells Based on Proteinosomes. Biomacromolecules 2017, 18 (8) , 2446-2453. https://doi.org/10.1021/acs.biomac.7b00598
    40. Sheng-Lin Qiao, Yang Ma, Yi Wang, Yao-Xin Lin, Hong-Wei An, Li-Li Li, and Hao Wang . General Approach of Stimuli-Induced Aggregation for Monitoring Tumor Therapy. ACS Nano 2017, 11 (7) , 7301-7311. https://doi.org/10.1021/acsnano.7b03375
    41. Jie Zhan, Yanbin Cai, Shenglu Ji, Shuangshuang He, Yi Cao, Dan Ding, Ling Wang, and Zhimou Yang . Spatiotemporal Control of Supramolecular Self-Assembly and Function. ACS Applied Materials & Interfaces 2017, 9 (11) , 10012-10018. https://doi.org/10.1021/acsami.7b00784
    42. Zhaoqianqi Feng, Huaimin Wang, Rong Zhou, Jie Li, and Bing Xu . Enzyme-Instructed Assembly and Disassembly Processes for Targeting Downregulation in Cancer Cells. Journal of the American Chemical Society 2017, 139 (11) , 3950-3953. https://doi.org/10.1021/jacs.7b00070
    43. Yao-Xin Lin, Sheng-Lin Qiao, Yi Wang, Ruo-Xin Zhang, Hong-Wei An, Yang Ma, R. P. Yeshan J. Rajapaksha, Zeng-Ying Qiao, Lei Wang, and Hao Wang . An in Situ Intracellular Self-Assembly Strategy for Quantitatively and Temporally Monitoring Autophagy. ACS Nano 2017, 11 (2) , 1826-1839. https://doi.org/10.1021/acsnano.6b07843
    44. M. P. Conte, K. H. A. Lau, and R. V. Ulijn . Biocatalytic Self-Assembly Using Reversible and Irreversible Enzyme Immobilization. ACS Applied Materials & Interfaces 2017, 9 (4) , 3266-3271. https://doi.org/10.1021/acsami.6b13162
    45. Lye Lin Lock, Yuguo Li, Xinpei Mao, Hanwei Chen, Verena Staedtke, Renyuan Bai, Wang Ma, Ran Lin, Yi Li, Guanshu Liu, and Honggang Cui . One-Component Supramolecular Filament Hydrogels as Theranostic Label-Free Magnetic Resonance Imaging Agents. ACS Nano 2017, 11 (1) , 797-805. https://doi.org/10.1021/acsnano.6b07196
    46. Jie Li, Xuewen Du, Saqib Hashim, Adrianna Shy, and Bing Xu . Aromatic–Aromatic Interactions Enable α-Helix to β-Sheet Transition of Peptides to Form Supramolecular Hydrogels. Journal of the American Chemical Society 2017, 139 (1) , 71-74. https://doi.org/10.1021/jacs.6b11512
    47. Huaimin Wang, Zhaoqianqi Feng, Youzhi Wang, Rong Zhou, Zhimou Yang, and Bing Xu . Integrating Enzymatic Self-Assembly and Mitochondria Targeting for Selectively Killing Cancer Cells without Acquired Drug Resistance. Journal of the American Chemical Society 2016, 138 (49) , 16046-16055. https://doi.org/10.1021/jacs.6b09783
    48. Richard Haburcak, Junfeng Shi, Xuewen Du, Dan Yuan, and Bing Xu . Ligand–Receptor Interaction Modulates the Energy Landscape of Enzyme-Instructed Self-Assembly of Small Molecules. Journal of the American Chemical Society 2016, 138 (47) , 15397-15404. https://doi.org/10.1021/jacs.6b07677
    49. Huaimin Wang, Zhaoqianqi Feng, Dongdong Wu, Keith J. Fritzsching, Mike Rigney, Jie Zhou, Yujie Jiang, Klaus Schmidt-Rohr, and Bing Xu . Enzyme-Regulated Supramolecular Assemblies of Cholesterol Conjugates against Drug-Resistant Ovarian Cancer Cells. Journal of the American Chemical Society 2016, 138 (34) , 10758-10761. https://doi.org/10.1021/jacs.6b06075
    50. Mei-Yu Yeh, Ching-Ting Huang, Tsung-Sheng Lai, Fang-Yi Chen, Nien-Tzu Chu, Dion Tzu-Huan Tseng, Shih-Chieh Hung, and Hsin-Chieh Lin . Effect of Peptide Sequences on Supramolecular Interactions of Naphthaleneimide/Tripeptide Conjugates. Langmuir 2016, 32 (30) , 7630-7638. https://doi.org/10.1021/acs.langmuir.6b01809
    51. Frank Versluis, Daphne M. van Elsland, Serhii Mytnyk, Dayinta L. Perrier, Fanny Trausel, Jos M. Poolman, Chandan Maity, Vincent A. A. le Sage, Sander I. van Kasteren, Jan H. van Esch, and Rienk Eelkema . Negatively Charged Lipid Membranes Catalyze Supramolecular Hydrogel Formation. Journal of the American Chemical Society 2016, 138 (28) , 8670-8673. https://doi.org/10.1021/jacs.6b03853
    52. Amirhossein Tavangar, Priyatha Premnath, Bo Tan, and Krishnan Venkatakrishnan . Noble Hybrid Nanostructures as Efficient Anti-Proliferative Platforms for Human Breast Cancer Cell. ACS Applied Materials & Interfaces 2016, 8 (16) , 10253-10265. https://doi.org/10.1021/acsami.6b02720
    53. Jie Zhou, Xuewen Du, Natsuko Yamagata, and Bing Xu . Enzyme-Instructed Self-Assembly of Small d-Peptides as a Multiple-Step Process for Selectively Killing Cancer Cells. Journal of the American Chemical Society 2016, 138 (11) , 3813-3823. https://doi.org/10.1021/jacs.5b13541
    54. Yanbin Cai, Jie Zhan, Haosheng Shen, Duo Mao, Shenglu Ji, Ruihua Liu, Bing Yang, Deling Kong, Ling Wang, and Zhimou Yang . Optimized Ratiometric Fluorescent Probes by Peptide Self-Assembly. Analytical Chemistry 2016, 88 (1) , 740-745. https://doi.org/10.1021/acs.analchem.5b02955
    55. Xuewen Du, Jie Zhou, Junfeng Shi, and Bing Xu . Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chemical Reviews 2015, 115 (24) , 13165-13307. https://doi.org/10.1021/acs.chemrev.5b00299
    56. Yunlong Sun, Yingqin Hou, Xuhao Zhou, Jingsong Yuan, Jingyu Wang, and Hua Lu . Controlled Synthesis and Enzyme-Induced Hydrogelation of Poly(l-phosphotyrosine)s via Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydride. ACS Macro Letters 2015, 4 (9) , 1000-1003. https://doi.org/10.1021/acsmacrolett.5b00429
    57. Dan Yuan, Junfeng Shi, Xuewen Du, Ning Zhou, and Bing Xu . Supramolecular Glycosylation Accelerates Proteolytic Degradation of Peptide Nanofibrils. Journal of the American Chemical Society 2015, 137 (32) , 10092-10095. https://doi.org/10.1021/jacs.5b05888
    58. Jie Zhou and Bing Xu . Enzyme-Instructed Self-Assembly: A Multistep Process for Potential Cancer Therapy. Bioconjugate Chemistry 2015, 26 (6) , 987-999. https://doi.org/10.1021/acs.bioconjchem.5b00196
    59. Yanyan Zhou, Lingling Xu, Xianbao Sun, Wenjun Zhan, Gaolin Liang. In situ peptide assemblies for bacterial infection imaging and treatment. Nanoscale 2024, 16 (7) , 3211-3225. https://doi.org/10.1039/D3NR05557D
    60. Surusch Djalali, Nishu Yadav, Martina Delbianco. Towards glycan foldamers and programmable assemblies. Nature Reviews Materials 2024, 117 https://doi.org/10.1038/s41578-023-00638-x
    61. T. Miki, M. Hashimoto, H. Takahashi, M. Shimizu, H. Mihara. Intracellular artificial supramolecular architectures based on de novo designed peptides. 2024, 64-85. https://doi.org/10.1039/BK9781839169328-00064
    62. Jing‐Jing Hu, Niya Lin, Yunfan Zhang, Fan Xia, Xiaoding Lou. Nanofibers in Organelles: From Structure Design to Biomedical Applications. Angewandte Chemie International Edition 2024, 63 (5) https://doi.org/10.1002/anie.202313139
    63. Jing‐Jing Hu, Niya Lin, Yunfan Zhang, Fan Xia, Xiaoding Lou. Nanofibers in Organelles: From Structure Design to Biomedical Applications. Angewandte Chemie 2024, 136 (5) https://doi.org/10.1002/ange.202313139
    64. Manas Kumar Pradhan, Surya Suresh Puthenpurackal, Aasheesh Srivastava. Enzymatic Dimerization‐Induced Self‐Assembly of Alanine‐Tyramine Conjugates into Versatile, Uniform, Enzyme‐Loaded Organic Nanoparticles. Angewandte Chemie International Edition 2024, 63 (2) https://doi.org/10.1002/anie.202314960
    65. Manas Kumar Pradhan, Surya Suresh Puthenpurackal, Aasheesh Srivastava. Enzymatic Dimerization‐Induced Self‐Assembly of Alanine‐Tyramine Conjugates into Versatile, Uniform, Enzyme‐Loaded Organic Nanoparticles. Angewandte Chemie 2024, 136 (2) https://doi.org/10.1002/ange.202314960
    66. Han Wang, Jason Mills, Boran Sun, Honggang Cui. Therapeutic supramolecular polymers: Designs and applications. Progress in Polymer Science 2024, 148 , 101769. https://doi.org/10.1016/j.progpolymsci.2023.101769
    67. Xiangyang Zhang, Junxia Wang, Ying Zhang, Zhimou Yang, Jie Gao, Zhen Gu. Synthesizing biomaterials in living organisms. Chemical Society Reviews 2023, 52 (23) , 8126-8164. https://doi.org/10.1039/D2CS00999D
    68. Xiaojiao Ge, Yi Cao, Xueli Zhu, Bo Yuan, Lulu He, Aiguo Wu, Juan Li. Self‐Assembly of Organelle‐Localized Neuropeptides Triggers Intrinsic Apoptosis Against Breast Cancer. Advanced Healthcare Materials 2023, 12 (25) https://doi.org/10.1002/adhm.202300265
    69. David Caballero, Rui L. Reis, Subhas C. Kundu. Trapping metastatic cancer cells with mechanical ratchet arrays. Acta Biomaterialia 2023, 170 , 202-214. https://doi.org/10.1016/j.actbio.2023.08.034
    70. David Caballero, Rui L. Reis, Subhas C. Kundu. Cancer Traps: Implantable and On‐Chip Solutions for Early Cancer Detection and Treatment. Advanced Materials Technologies 2023, 8 (18) https://doi.org/10.1002/admt.202300491
    71. Jiaqi Guo, Shane T. Rich-New, Chen Liu, Yimeng Huang, Weiyi Tan, Hongjian He, Meihui Yi, Xixiang Zhang, Edward H. Egelman, Fengbin Wang, Bing Xu. Hierarchical assembly of intrinsically disordered short peptides. Chem 2023, 9 (9) , 2530-2546. https://doi.org/10.1016/j.chempr.2023.04.023
    72. Ziling Yan, Yanfei Liu, Licheng Zhao, Jiaxin Hu, Yimin Du, Xingxing Peng, Zhenbao Liu. In situ stimulus-responsive self-assembled nanomaterials for drug delivery and disease treatment. Materials Horizons 2023, 10 (9) , 3197-3217. https://doi.org/10.1039/D3MH00592E
    73. Karan Kumar, Sheetu Wadhwa, Arun Sharma, Gurvinder Singh, Rajesh Kumar. Natural Carbohydrates-based Nanoparticles: A Review of Pharmaceutical Applications. The Natural Products Journal 2023, 13 (5) https://doi.org/10.2174/2210315512666220826145928
    74. Hongyue Zhang, Xuejiao Yang, Juan Liang, Kaihua Chen, Huaimin Wang. Hierarchical Self‐assembly of G‐Quadruplexes Based Hydrogel Consisting of Guanine and Peptide Epitope †. Chinese Journal of Chemistry 2023, 41 (14) , 1727-1732. https://doi.org/10.1002/cjoc.202300039
    75. Hao Zhang, Zhilong Wang, Tongxin Gao, Zhongyan Wang, Chunhua Ren, Jianfeng Liu. An enzyme-instructed self-assembly system induces tumor acidosis via sequential-dual effect for cancer selective therapy. Acta Biomaterialia 2023, 164 , 447-457. https://doi.org/10.1016/j.actbio.2023.03.036
    76. Jonathan Bietsch, Logan Baker, Anna Duffney, Alice Mao, Mary Foutz, Cheandri Ackermann, Guijun Wang. Para-Methoxybenzylidene Acetal-Protected D-Glucosamine Derivatives as pH-Responsive Gelators and Their Applications for Drug Delivery. Gels 2023, 9 (6) , 445. https://doi.org/10.3390/gels9060445
    77. Yingbing Liang, Shigesaburo Ogawa, Hiroshi Inaba, Kazunori Matsuura. Dramatic morphological changes in liposomes induced by peptide nanofibers reversibly polymerized and depolymerized by the photoisomerization of spiropyran. Frontiers in Molecular Biosciences 2023, 10 https://doi.org/10.3389/fmolb.2023.1137885
    78. Shun Yao, Robin Brahmi, Anaïs Bouschon, Jing Chen, Sami Halila. Supramolecular carbohydrate-based hydrogels from oxidative hydroxylation of amphiphilic β- C -glycosylbarbiturates and α-glucosidase-induced hydrogelation. Green Chemistry 2023, 25 (1) , 330-335. https://doi.org/10.1039/D2GC04180D
    79. Ana M. Martins, Alexandra Brito, Maria Grazia Barbato, Alessia Felici, Rui L. Reis, Ricardo A. Pires, Iva Pashkuleva, Paolo Decuzzi. Efficacy of molecular and nano-therapies on brain tumor models in microfluidic devices. Biomaterials Advances 2023, 144 , 213227. https://doi.org/10.1016/j.bioadv.2022.213227
    80. Jingjing Chen, Hucheng Wang, Feng Long, Shengyu Bai, Yiming Wang. Dynamic supramolecular hydrogels mediated by chemical reactions. Chemical Communications 2023, 295 https://doi.org/10.1039/D3CC04353C
    81. M. T. Jeena, Seongeon Jin, Keunsoo Jeong, Yuri Cho, Jin Chul Kim, Jeong Hyeon Lee, Seokyoung Lee, Suk‐Won Hwang, Sang Kyu Kwak, Sehoon Kim, Ja‐Hyoung Ryu. Cancer‐Selective Supramolecular Chemotherapy by Disassembly‐Assembly Approach. Advanced Functional Materials 2022, 32 (52) https://doi.org/10.1002/adfm.202208098
    82. Falin Tian, Min Yang, Qingxin Yao, Jialei Song, Jianxin He, Xinghua Shi, Yuan Gao. Kinetic selectivity dictates the construction of cancer cell-targeting enzyme instructed supramolecular assemblies. Nano Today 2022, 47 , 101658. https://doi.org/10.1016/j.nantod.2022.101658
    83. Cheng Cheng, Qingyun Sun, Xiuping Wang, Bingfang He, Tianyue Jiang. Enzyme-manipulated hydrogelation of small molecules for biomedical applications. Acta Biomaterialia 2022, 151 , 88-105. https://doi.org/10.1016/j.actbio.2022.08.016
    84. Zhao Ma, Kai Lin, Menghuan Tang, Mythili Ramachandran, Reng Qiu, Jin Li, Lucas N. Solano, Yanyu Huang, Cristabelle De Souza, Sara Abou‐Adas, Bai Xiang, Lanwei Zhang, Minyong Li, Yuanpei Li. A pH‐Driven Small‐Molecule Nanotransformer Hijacks Lysosomes and Overcomes Autophagy‐Induced Resistance in Cancer. Angewandte Chemie 2022, 134 (35) https://doi.org/10.1002/ange.202204567
    85. Zhao Ma, Kai Lin, Menghuan Tang, Mythili Ramachandran, Reng Qiu, Jin Li, Lucas N. Solano, Yanyu Huang, Cristabelle De Souza, Sara Abou‐Adas, Bai Xiang, Lanwei Zhang, Minyong Li, Yuanpei Li. A pH‐Driven Small‐Molecule Nanotransformer Hijacks Lysosomes and Overcomes Autophagy‐Induced Resistance in Cancer. Angewandte Chemie International Edition 2022, 61 (35) https://doi.org/10.1002/anie.202204567
    86. Ji Qi, Shaorui Jia, Xiaoying Kang, Xinying Wu, Yuning Hong, Ke Shan, Xianglong Kong, Zhiming Wang, Dan Ding. Semiconducting Polymer Nanoparticles with Surface‐Mimicking Protein Secondary Structure as Lysosome‐Targeting Chimaeras for Self‐Synergistic Cancer Immunotherapy. Advanced Materials 2022, 34 (31) https://doi.org/10.1002/adma.202203309
    87. Sheng-Lin Qiao, Muhetaerjiang Mamuti, Hong-Wei An, Hao Wang. Thermoresponsive Polymer Assemblies: From Molecular Design to Theranostics Application. Progress in Polymer Science 2022, 131 , 101578. https://doi.org/10.1016/j.progpolymsci.2022.101578
    88. Ana M. Martins, Alexander B. Cook, Martina Di Francesco, Maria Grazia Barbato, Sayanti Brahmachari, Martina Pannuzzo, Paolo Decuzzi. Embedding Hydrogels into Microfluidic Chips: Vascular Transport Analyses and Drug Delivery Optimization. 2022, 275-294. https://doi.org/10.1002/9783527825820.ch12
    89. Sílvia Pérez‐Rafael, Eva Ramon, Tzanko Tzanov. Enzyme‐Assisted Hydrogel Formation for Tissue Engineering Applications. 2022, 63-95. https://doi.org/10.1002/9783527825820.ch4
    90. Shuang Liu, Bing Xu. Supramolecular Assemblies for Cancer Diagnosis and Treatment. 2022, 161-194. https://doi.org/10.1002/9783527825820.ch8
    91. Cyprien Muller, Aymeric Ontani, Alexis Bigo-Simon, Pierre Schaaf, Loïc Jierry. Localized Enzyme-Assisted Self-Assembly of low molecular weight hydrogelators. Mechanism, applications and perspectives. Advances in Colloid and Interface Science 2022, 304 , 102660. https://doi.org/10.1016/j.cis.2022.102660
    92. Beom Jin Kim. Enzyme‐Instructed Self‐Assembly of Peptides: From Concept to Representative Applications. Chemistry – An Asian Journal 2022, 17 (7) https://doi.org/10.1002/asia.202200094
    93. Li-Han Liu, Xian-Zheng Zhang. Carrier-free nanomedicines for cancer treatment. Progress in Materials Science 2022, 125 , 100919. https://doi.org/10.1016/j.pmatsci.2021.100919
    94. Arun Kumar Rachamalla, Vara Prasad Rebaka, Tohira Banoo, Ravinder Pawar, Mohmmad Faizan, Krishnamoorthy Lalitha, Subbiah Nagarajan. A facile synthesis of amphiphilic N -glycosyl naphthalimides and fabrication of flexible semiconductors using molecular self-assembly. Green Chemistry 2022, 24 (6) , 2451-2463. https://doi.org/10.1039/D1GC04509A
    95. Bao Le‐Vinh, Zeynep Burcu Akkuş‐Dağdeviren, Nguyet‐Minh Nguyen Le, Imran Nazir, Andreas Bernkop‐Schnürch. Alkaline Phosphatase: A Reliable Endogenous Partner for Drug Delivery and Diagnostics. Advanced Therapeutics 2022, 5 (2) https://doi.org/10.1002/adtp.202100219
    96. Chengfan Wu, Chenchen Wang, Tong Zhang, Ge Gao, Mengxing Wei, Yinglu Chen, Xiaoyan Li, Fuqiang Wang, Gaolin Liang. Lysosome‐Targeted and Fluorescence‐Turned “On” Cytotoxicity Induced by Alkaline Phosphatase‐Triggered Self‐Assembly. Advanced Healthcare Materials 2022, 11 (1) https://doi.org/10.1002/adhm.202101346
    97. Jing Wang, Liangbo Hu, Hongyue Zhang, Yu Fang, Tingliang Wang, Huaimin Wang. Intracellular Condensates of Oligopeptide for Targeting Lysosome and Addressing Multiple Drug Resistance of Cancer. Advanced Materials 2022, 34 (1) https://doi.org/10.1002/adma.202104704
    98. Cheng Cheng, Qingyun Sun, Bingfang He, Tianyue Jiang. Progress of Enzyme-Manipulated Hydrogelation of Small Molecules for Biomedical Applications. SSRN Electronic Journal 2022, 54 https://doi.org/10.2139/ssrn.4115140
    99. Qiuxin Zhang, Weiyi Tan, Bing Xu. Synthesis and bioactivity of pyrrole-conjugated phosphopeptides. Beilstein Journal of Organic Chemistry 2022, 18 , 159-166. https://doi.org/10.3762/bjoc.18.17
    100. David Caballero, Catarina M. Abreu, Ana C. Lima, Nuno M. Neves, Rui L. Reis, Subhas C. Kundu. Precision biomaterials in cancer theranostics and modelling. Biomaterials 2022, 280 , 121299. https://doi.org/10.1016/j.biomaterials.2021.121299
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect