Reduction of Nitrous Oxide to Dinitrogen by a Mixed Valent Tricopper-Disulfido ClusterClick to copy article linkArticle link copied!
Abstract
The greenhouse gas N2O is converted to N2 by a μ-sulfido-tetracopper active site in the enzyme nitrous oxide reductase (N2OR) via a process postulated to involve μ-1,3 coordination of N2O to two Cu(I) ions. In efforts to develop synthetic models of the site with which to test mechanistic hypotheses, we have prepared a localized mixed valent Cu(II)Cu(I)2 cluster bridged in a μ-η2:η1:η1 fashion by disulfide, [L3Cu3(μ3-S2)]X2 (L = 1,4,7-trimethyl-triazacyclononane, X = O3SCF3− or SbF6−). This cluster exhibits spectroscopic features superficially similar to those of the active site in N2OR and reacts with N2O to yield N2 in a reaction that models the function of the enzyme. Computations implicate a transition state structure that features μ-1,1-bridging of N2O via its O-atom to a [L2Cu2(μ-S2)]+ fragment and provide chemical precedence for an alternative pathway for N2O reduction by N2OR.
Cited By
This article is cited by 74 publications.
- Bo Wang, Justin Barnes, Skylar J. Ferrara, Stephen Sproules, Xiaodong Zhang, Joel T. Mague, James P. Donahue. Fully Reduced and Mixed-Valent Multi-Copper Aggregates Supported by Tetradentate Diamino Bis(thiolate) Ligands. Inorganic Chemistry 2023, 62
(25)
, 9854-9871. https://doi.org/10.1021/acs.inorgchem.3c00784
- Kenneth M. Nicholas, Chance Lander, Yihan Shao. Computational Evaluation of Potential Molecular Catalysts for Nitrous Oxide Decomposition. Inorganic Chemistry 2022, 61
(37)
, 14591-14605. https://doi.org/10.1021/acs.inorgchem.2c01598
- Wen Wu, Jacqui Tehranchi De Hont, Riffat Parveen, Bess Vlaisavljevich, William B. Tolman. Sulfur-Containing Analogues of the Reactive [CuOH]2+ Core. Inorganic Chemistry 2021, 60
(7)
, 5217-5223. https://doi.org/10.1021/acs.inorgchem.1c00216
- Christina Ferousi, Sean H. Majer, Ida M. DiMucci, Kyle M. Lancaster. Biological and Bioinspired Inorganic N–N Bond-Forming Reactions. Chemical Reviews 2020, 120
(12)
, 5252-5307. https://doi.org/10.1021/acs.chemrev.9b00629
- Suresh C. Rathnayaka, Chia-Wei Hsu, Brittany J. Johnson, Sarah J. Iniguez, Neal P. Mankad. Impact of Electronic and Steric Changes of Ligands on the Assembly, Stability, and Redox Activity of Cu4(μ4-S) Model Compounds of the CuZ Active Site of Nitrous Oxide Reductase (N2OR). Inorganic Chemistry 2020, 59
(9)
, 6496-6507. https://doi.org/10.1021/acs.inorgchem.0c00564
- Joseph D. Schneider, Brett A. Smith, Grant A. Williams, Douglas R. Powell, Felio Perez, Gerard T. Rowe, Lei Yang. Synthesis and Characterization of Cu(II) and Mixed-Valence Cu(I)Cu(II) Clusters Supported by Pyridylamide Ligands. Inorganic Chemistry 2020, 59
(8)
, 5433-5446. https://doi.org/10.1021/acs.inorgchem.0c00008
- Patricia R. Fontenot, Bing Shan, Bo Wang, Spenser Simpson, Gayathri Ragunathan, Angelique F. Greene, Antony Obanda, Leigh Anna Hunt, Nathan I. Hammer, Charles Edwin Webster, Joel T. Mague, Russell H. Schmehl, James P. Donahue. Photocatalytic H2-Evolution by Homogeneous Molybdenum Sulfide Clusters Supported by Dithiocarbamate Ligands. Inorganic Chemistry 2019, 58
(24)
, 16458-16474. https://doi.org/10.1021/acs.inorgchem.9b02252
- Charlène Esmieu, Maylis Orio, Stéphane Ménage, Stéphane Torelli. Influence of Copper Coordination Spheres on Nitrous Oxide Reductase (N2Or) Activity of a Mixed-Valent Copper Complex Containing a {Cu2S} Core. Inorganic Chemistry 2019, 58
(17)
, 11649-11655. https://doi.org/10.1021/acs.inorgchem.9b01594
- Abraham J. Jordan, Rebecca K. Walde, Kelly M. Schultz, John Bacsa, Joseph P. Sadighi. Nitrosonium Reactivity of (NHC)Copper(I) Sulfide Complexes. Inorganic Chemistry 2019, 58
(15)
, 9592-9596. https://doi.org/10.1021/acs.inorgchem.9b01676
- Brittany J. Johnson, William E. Antholine, Sergey V. Lindeman, Michael J. Graham, and Neal P. Mankad . A One-Hole Cu4S Cluster with N2O Reductase Activity: A Structural and Functional Model for CuZ*. Journal of the American Chemical Society 2016, 138
(40)
, 13107-13110. https://doi.org/10.1021/jacs.6b05480
- Brittany J. Johnson, Sergey V. Lindeman, and Neal P. Mankad . Assembly, Structure, and Reactivity of Cu4S and Cu3S Models for the Nitrous Oxide Reductase Active Site, CuZ*. Inorganic Chemistry 2014, 53
(19)
, 10611-10619. https://doi.org/10.1021/ic501720h
- Upul Jayarathne, Sean R. Parmelee, and Neal P. Mankad . Small Molecule Activation Chemistry of Cu–Fe Heterobimetallic Complexes Toward CS2 and N2O. Inorganic Chemistry 2014, 53
(14)
, 7730-7737. https://doi.org/10.1021/ic501054z
- Gianna N. Di Francesco, Aleth Gaillard, Ion Ghiviriga, Khalil A. Abboud, and Leslie J. Murray . Modeling Biological Copper Clusters: Synthesis of a Tricopper Complex, and Its Chloride- and Sulfide-Bridged Congeners. Inorganic Chemistry 2014, 53
(9)
, 4647-4654. https://doi.org/10.1021/ic500333p
- Hujun Xie, Liu Yang, Xinchen Ye, and Zexing Cao . Mechanism of Carbon Monoxide Induced N–N Bond Cleavage of Nitrous Oxide Mediated by Molybdenum Complexes: A DFT Study. Organometallics 2014, 33
(7)
, 1553-1562. https://doi.org/10.1021/om400935f
- Edward I. Solomon, David E. Heppner, Esther M. Johnston, Jake W. Ginsbach, Jordi Cirera, Munzarin Qayyum, Matthew T. Kieber-Emmons, Christian H. Kjaergaard, Ryan G. Hadt, and Li Tian . Copper Active Sites in Biology. Chemical Reviews 2014, 114
(7)
, 3659-3853. https://doi.org/10.1021/cr400327t
- Margareta R. A. Blomberg, Tomasz Borowski, Fahmi Himo, Rong-Zhen Liao, and Per E. M. Siegbahn . Quantum Chemical Studies of Mechanisms for Metalloenzymes. Chemical Reviews 2014, 114
(7)
, 3601-3658. https://doi.org/10.1021/cr400388t
- Ming-Li Tsai, Ryan G. Hadt, Pieter Vanelderen, Bert F. Sels, Robert A. Schoonheydt, and Edward I. Solomon . [Cu2O]2+ Active Site Formation in Cu–ZSM-5: Geometric and Electronic Structure Requirements for N2O Activation. Journal of the American Chemical Society 2014, 136
(9)
, 3522-3529. https://doi.org/10.1021/ja4113808
- Arumugam Thangavel, Marika Wieliczko, John Bacsa, and Christopher C. Scarborough . 1,4,7-Triazacyclononane Ligands Bearing Tertiary Alkyl Nitrogen Substituents. Inorganic Chemistry 2013, 52
(22)
, 13282-13287. https://doi.org/10.1021/ic402626p
- E. H. Song, J. M. Yan, J. S. Lian, and Q. Jiang . External Electric Field Catalyzed N2O Decomposition on Mn-Embedded Graphene. The Journal of Physical Chemistry C 2012, 116
(38)
, 20342-20348. https://doi.org/10.1021/jp304757f
- Ritimukta Sarangi, Lei Yang, Stuart G. Winikoff, Laura Gagliardi, Christopher J. Cramer, William B. Tolman, and Edward I. Solomon . X-ray Absorption Spectroscopic and Computational Investigation of a Possible S···S Interaction in the [Cu3S2]3+ Core. Journal of the American Chemical Society 2011, 133
(43)
, 17180-17191. https://doi.org/10.1021/ja111323m
- Lei Yang, Jacqui Tehranchi, and William B. Tolman . Reactions of Ph3Sb═S with Copper(I) Complexes Supported by N-Donor Ligands: Formation of Stable Adducts and S-Transfer Reactivity. Inorganic Chemistry 2011, 50
(6)
, 2606-2612. https://doi.org/10.1021/ic102449m
- Nicholas A. Piro, Michael F. Lichterman, W. Hill Harman, and Christopher J. Chang . A Structurally Characterized Nitrous Oxide Complex of Vanadium. Journal of the American Chemical Society 2011, 133
(7)
, 2108-2111. https://doi.org/10.1021/ja110798w
- (Associate Editor). The Interface of Inorganic Chemistry and Biology. Journal of the American Chemical Society 2010, 132
(42)
, 14689-14693. https://doi.org/10.1021/ja108523h
- Sirous Jamali, Zahra Mazloomi, S. Masoud Nabavizadeh, Dalibor Milić, Reza Kia and Mehdi Rashidi . Cyclometalated Cluster Complex with a Butterfly-Shaped Pt2Ag2 Core. Inorganic Chemistry 2010, 49
(6)
, 2721-2726. https://doi.org/10.1021/ic902044g
- Edwin Otten, Rebecca C. Neu and Douglas W. Stephan. Complexation of Nitrous Oxide by Frustrated Lewis Pairs. Journal of the American Chemical Society 2009, 131
(29)
, 9918-9919. https://doi.org/10.1021/ja904377v
- Pinar Alayoglu, Suresh C. Rathnayaka, Tieyan Chang, SuYin Grass Wang, Yu-Sheng Chen, Neal P. Mankad. Cu site differentiation in tetracopper(
i
) sulfide clusters enables biomimetic N
2
O reduction. Chemical Science 2024, 15
(34)
, 13668-13675. https://doi.org/10.1039/D4SC00701H
- Neal P. Mankad. Triazenide-supported [Cu
4
S] structural mimics of Cu
Z
that mediate N
2
O disproportionation rather than reduction. Chemical Science 2024, 15
(5)
, 1820-1828. https://doi.org/10.1039/D3SC05451A
- Diego Sorbelli, Leonardo Belpassi, Paola Belanzoni. Cooperative small molecule activation by apolar and weakly polar bonds through the lens of a suitable computational protocol. Chemical Communications 2024, 60
(10)
, 1222-1238. https://doi.org/10.1039/D3CC05614G
- Diego Sorbelli, Leonardo Belpassi, Paola Belanzoni. Widening the Landscape of Small Molecule Activation with Gold‐Aluminyl Complexes: A Systematic Study of E−H (E=O, N) Bonds, SO
2
and N
2
O Activation. Chemistry – A European Journal 2023, 29
(21)
https://doi.org/10.1002/chem.202203584
- Xinyang Zhao, Lu Zhu, Xue Wu, Wei Wei, Jing Zhao. Bio-inspired catalysis. 2023, 373-406. https://doi.org/10.1016/B978-0-12-823144-9.00140-0
- Soumen Sinhababu, Yutthana Lakliang, Neal P. Mankad. Recent advances in cooperative activation of CO
2
and N
2
O by bimetallic coordination complexes or binuclear reaction pathways. Dalton Transactions 2022, 51
(16)
, 6129-6147. https://doi.org/10.1039/D2DT00210H
- Ashta C. Ghosh, Carole Duboc, Marcello Gennari. Synergy between metals for small molecule activation: Enzymes and bio-inspired complexes. Coordination Chemistry Reviews 2021, 428 , 213606. https://doi.org/10.1016/j.ccr.2020.213606
- Suresh C. Rathnayaka, Neal P. Mankad. Coordination chemistry of the CuZ site in nitrous oxide reductase and its synthetic mimics. Coordination Chemistry Reviews 2021, 429 , 213718. https://doi.org/10.1016/j.ccr.2020.213718
- Miguel Á. Baeza Cinco, Trevor W. Hayton. Progress toward the Isolation of Late Metal Terminal Sulfides. European Journal of Inorganic Chemistry 2020, 2020
(38)
, 3613-3626. https://doi.org/10.1002/ejic.202000600
- Suresh C. Rathnayaka, Shahidul M. Islam, Ida M. DiMucci, Samantha N. MacMillan, Kyle M. Lancaster, Neal P. Mankad. Probing the electronic and mechanistic roles of the μ
4
-sulfur atom in a synthetic Cu
Z
model system. Chemical Science 2020, 11
(13)
, 3441-3447. https://doi.org/10.1039/C9SC06251C
- Chia‐Wei Hsu, Suresh C. Rathnayaka, Shahidul M. Islam, Samantha N. MacMillan, Neal P. Mankad. N
2
O Reductase Activity of a [Cu
4
S] Cluster in the 4Cu
I
Redox State Modulated by Hydrogen Bond Donors and Proton Relays in the Secondary Coordination Sphere. Angewandte Chemie 2020, 132
(2)
, 637-641. https://doi.org/10.1002/ange.201906327
- Chia‐Wei Hsu, Suresh C. Rathnayaka, Shahidul M. Islam, Samantha N. MacMillan, Neal P. Mankad. N
2
O Reductase Activity of a [Cu
4
S] Cluster in the 4Cu
I
Redox State Modulated by Hydrogen Bond Donors and Proton Relays in the Secondary Coordination Sphere. Angewandte Chemie International Edition 2020, 59
(2)
, 627-631. https://doi.org/10.1002/anie.201906327
- Ming Liu, Xue-Qing Song, Yuan-Di Wu, Jing Qian, Jing-Yuan Xu. Cu(
ii
)-TACN complexes selectively induce antitumor activity in HepG-2 cells
via
DNA damage and mitochondrial-ROS-mediated apoptosis. Dalton Transactions 2020, 49
(1)
, 114-123. https://doi.org/10.1039/C9DT03641E
- Ying-Wu Lin. Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters. Molecules 2019, 24
(15)
, 2743. https://doi.org/10.3390/molecules24152743
- Sofia R. Pauleta, Marta S.P. Carepo, Isabel Moura. Source and reduction of nitrous oxide. Coordination Chemistry Reviews 2019, 387 , 436-449. https://doi.org/10.1016/j.ccr.2019.02.005
- Lisa Roy, Malik H. Al-Afyouni, Daniel E. DeRosha, Bhaskar Mondal, Ida M. DiMucci, Kyle M. Lancaster, Jason Shearer, Eckhard Bill, William W. Brennessel, Frank Neese, Shengfa Ye, Patrick L. Holland. Reduction of CO
2
by a masked two-coordinate cobalt(
i
) complex and characterization of a proposed oxodicobalt(
ii
) intermediate. Chemical Science 2019, 10
(3)
, 918-929. https://doi.org/10.1039/C8SC02599A
- Nicolai Lehnert, Hai T. Dong, Jill B. Harland, Andrew P. Hunt, Corey J. White. Reversing nitrogen fixation. Nature Reviews Chemistry 2018, 2
(10)
, 278-289. https://doi.org/10.1038/s41570-018-0041-7
- Hanwei Li, Mingliang Luo, Guohong Tao, Song Qin. Theoretical Calculations on the Mechanism of Enantioselective Copper(I)-Catalyzed Addition of Enynes to Ketones. Catalysts 2018, 8
(9)
, 359. https://doi.org/10.3390/catal8090359
- Lanying Yao, Yang Li, Lvtao Huang, Kai Guo, Gerui Ren, Zunyi Wu, Qunfang Lei, Wenjun Fang, Hujun Xie. A DFT study on the mechanisms of hydrogenation and hydrosilylation of nitrous oxide catalyzed by a ruthenium PNP pincer complex. Computational and Theoretical Chemistry 2018, 1128 , 48-55. https://doi.org/10.1016/j.comptc.2018.02.010
- Sharareh Bagherzadeh, Neal P. Mankad. Oxidation of a [Cu
2
S] complex by N
2
O and CO
2
: insights into a role of tetranuclearity in the Cu
Z
site of nitrous oxide reductase. Chemical Communications 2018, 54
(9)
, 1097-1100. https://doi.org/10.1039/C7CC09067F
- Gui-Juan Cheng. Mechanistic Studies on Copper-Catalyzed sp3-C–H Cross-Dehydrogenative Coupling Reaction. 2017, 111-126. https://doi.org/10.1007/978-981-10-4521-9_5
- Hujun Xie, Chengcheng Liu, Ying Yuan, Tao Zhou, Ting Fan, Qunfang Lei, Wenjun Fang. Oxidation of phenyl and hydride ligands of bis(pentamethylcyclopentadienyl)hafnium derivatives by nitrous oxide via selective oxygen atom transfer reactions: insights from quantum chemistry calculations. Dalton Transactions 2016, 45
(3)
, 1152-1159. https://doi.org/10.1039/C5DT03264D
- Esther M. Johnston, Simone Dell'Acqua, Sofia R. Pauleta, Isabel Moura, Edward I. Solomon. Protonation state of the Cu
4
S
2
Cu
Z
site in nitrous oxide reductase: redox dependence and insight into reactivity. Chemical Science 2015, 6
(10)
, 5670-5679. https://doi.org/10.1039/C5SC02102B
- Madhusudan Nandy, Shyamapada Shit, Piu Dhal, Corrado Rizzoli, Carlos J. Gómez–García, Samiran Mitra. Ferromagnetic copper(II)–copper(II) interaction in a single chlorido and dicyanamido bridged mixed–valence copper(I/II) 2-D polymer generated by
in situ
partial reduction of copper(II). Journal of Coordination Chemistry 2015, 68
(5)
, 916-927. https://doi.org/10.1080/00958972.2014.1003814
- Brittany J. Johnson, William E. Antholine, Sergey V. Lindeman, Neal P. Mankad. A Cu
4
S model for the nitrous oxide reductase active sites supported only by nitrogen ligands. Chemical Communications 2015, 51
(59)
, 11860-11863. https://doi.org/10.1039/C5CC04675K
- Andrew J. Timmons, Mark D. Symes. Converting between the oxides of nitrogen using metal–ligand coordination complexes. Chemical Society Reviews 2015, 44
(19)
, 6708-6722. https://doi.org/10.1039/C5CS00269A
- Charlène Esmieu, Maylis Orio, Stéphane Torelli, Laurent Le Pape, Jacques Pécaut, Colette Lebrun, Stéphane Ménage. N
2
O reduction at a dissymmetric {Cu
2
S}-containing mixed-valent center. Chem. Sci. 2014, 5
(12)
, 4774-4784. https://doi.org/10.1039/C4SC01487A
- Hangyu Liu, Wei Zhang, Ling He, Mingliang Luo, Song Qin. Computational investigations on the phosphine-ligated CuH-catalyzed conjugate reduction of α-β unsaturated ketones: regioselectivity and stereoselectivity. RSC Advances 2014, 4
(11)
, 5726. https://doi.org/10.1039/c3ra44015j
- Gui‐Juan Cheng, Li‐Juan Song, Yun‐Fang Yang, Xinhao Zhang, Olaf Wiest, Yun‐Dong Wu. Computational Studies on the Mechanism of the Copper‐Catalyzed sp
3
‐CH Cross‐Dehydrogenative Coupling Reaction. ChemPlusChem 2013, 78
(9)
, 943-951. https://doi.org/10.1002/cplu.201300117
- R.L. Peterson, S. Kim, K.D. Karlin. Copper Enzymes. 2013, 149-177. https://doi.org/10.1016/B978-0-08-097774-4.00309-0
- M.R. Halvagar, D.J. Salmon, W.B. Tolman. Small Molecule Models: Cu, Ni, Co. 2013, 455-486. https://doi.org/10.1016/B978-0-08-097774-4.00321-1
- Sofia R. Pauleta, Simone Dell’Acqua, Isabel Moura. Nitrous oxide reductase. Coordination Chemistry Reviews 2013, 257
(2)
, 332-349. https://doi.org/10.1016/j.ccr.2012.05.026
- Pieter Vanelderen, Julie Vancauwenbergh, Bert F. Sels, Robert A. Schoonheydt. Coordination chemistry and reactivity of copper in zeolites. Coordination Chemistry Reviews 2013, 257
(2)
, 483-494. https://doi.org/10.1016/j.ccr.2012.07.008
- Vicente R. de Almeida, Fernando R. Xavier, Renata E. H. M. B. Osório, Luiza M. Bessa, Eduardo L. Schilling, Thiago G. Costa, Tiago Bortolotto, Angélica Cavalett, Frederico A. V. Castro, Felipe Vilhena, Odivaldo C. Alves, Hernán Terenzi, Elis C. A. Eleutherio, Marcos D. Pereira, Wolfgang Haase, Zbigniew Tomkowicz, Bruno Szpoganicz, Adailton J. Bortoluzzi, Ademir Neves. In vitro and in vivo activity of a new unsymmetrical dinuclear copper complex containing a derivative ligand of 1,4,7-triazacyclononane: catalytic promiscuity of [Cu2(L)Cl3]. Dalton Transactions 2013, 42
(19)
, 7059. https://doi.org/10.1039/c3dt33046j
- Alexander G. Majouga, Elena K. Beloglazkina, Anna A. Moiseeva, Olga V. Shilova, Eugeniy A. Manzheliy, Maria A. Lebedeva, E. Stephen Davies, Andrei N. Khlobystov, Nikolay V. Zyk. Cleavage of the C–S bond with the formation of a binuclear copper complex with 2-thiolato-3-phenyl-5-(pyridine-2-ylmethylene)-3,5-dihydro-4H-imidazole-4-one. A new mimic of the active site of N2O reductase. Dalton Transactions 2013, 42
(18)
, 6290. https://doi.org/10.1039/c3dt50422k
- Nan Lu, Huatian Wang. Theoretical mechanism studies on the competitive CO-induced N–N bond cleavage of N2O with N–O bond cleavage mediated by (η5-C5Me5)Mo[N(iPr)C(Me)N(iPr)](CO)2. Dalton Transactions 2013, 42
(38)
, 13931. https://doi.org/10.1039/c3dt51629f
- Mehmed Z. Ertem, Christopher J. Cramer, Fahmi Himo, Per E. M. Siegbahn. N–O bond cleavage mechanism(s) in nitrous oxide reductase. JBIC Journal of Biological Inorganic Chemistry 2012, 17
(5)
, 687-698. https://doi.org/10.1007/s00775-012-0888-x
- Anukul Jana, Ramachandran Azhakar, Sankaranarayana Pillai Sarish, Prinson P. Samuel, Herbert W. Roesky, Carola Schulzke, Debasis Koley. Reactions of Stable Amidinate Chlorosilylene and [1+4]‐Oxidative Addition of N‐Heterocyclic Silylene with
N
‐Benzylideneaniline. European Journal of Inorganic Chemistry 2011, 2011
(32)
, 5006-5013. https://doi.org/10.1002/ejic.201100661
- Simone Dell’Acqua, Sofia R. Pauleta, Isabel Moura, José J. G. Moura. The tetranuclear copper active site of nitrous oxide reductase: the CuZ center. JBIC Journal of Biological Inorganic Chemistry 2011, 16
(2)
, 183-194. https://doi.org/10.1007/s00775-011-0753-3
- Juan Forniés, Violeta Sicilia, José M Casas, Antonio Martín, José A. López, Carmen Larraz, Pilar Borja, Carmen Ovejero. Pt–Ag clusters and their neutral mononuclear Pt(ii) starting complexes: structural and luminescence studies. Dalton Transactions 2011, 40
(12)
, 2898. https://doi.org/10.1039/c0dt01451f
- Jun Matsumoto, Yuji Kajita, Hideki Masuda. Synthesis and Reactivity of µ-η
2
:η
2
-Disulfido Dicopper(II) Complex with
N
,
N
',
N
''-Trimethyl-1,3,5-
cis
,
cis
-triaminocyclohexane. Japanese Journal of Applied Physics 2011, 50
(1S1)
, 01AK04. https://doi.org/10.7567/JJAP.50.01AK04
- Stéphane Torelli, Maylis Orio, Jacques Pécaut, Hélène Jamet, Laurent Le Pape, Stéphane Ménage. A {Cu
2
S}
2+
Mixed‐Valent Core Featuring a CuCu Bond. Angewandte Chemie 2010, 122
(44)
, 8425-8428. https://doi.org/10.1002/ange.201003411
- Stéphane Torelli, Maylis Orio, Jacques Pécaut, Hélène Jamet, Laurent Le Pape, Stéphane Ménage. A {Cu
2
S}
2+
Mixed‐Valent Core Featuring a CuCu Bond. Angewandte Chemie International Edition 2010, 49
(44)
, 8249-8252. https://doi.org/10.1002/anie.201003411
- Ga Young Park, Dong‐Heon Lee, Kenneth D. Karlin. Copper Enzymes/Models. 2010https://doi.org/10.1002/0471227617.eoc064.pub2
- William B. Tolman. Mechanistische Einblicke in die Bindung und Aktivierung von N
2
O an Übergangsmetallzentren. Angewandte Chemie 2010, 122
(6)
, 1034-1041. https://doi.org/10.1002/ange.200905364
- William B. Tolman. Binding and Activation of N
2
O at Transition‐Metal Centers: Recent Mechanistic Insights. Angewandte Chemie International Edition 2010, 49
(6)
, 1018-1024. https://doi.org/10.1002/anie.200905364
- Rebecca C. Neu, Edwin Otten, Douglas W. Stephan. Bridging Binding Modes of Phosphine‐Stabilized Nitrous Oxide to Zn(C
6
F
5
)
2. Angewandte Chemie 2009, 121
(51)
, 9889-9892. https://doi.org/10.1002/ange.200905650
- Rebecca C. Neu, Edwin Otten, Douglas W. Stephan. Bridging Binding Modes of Phosphine‐Stabilized Nitrous Oxide to Zn(C
6
F
5
)
2. Angewandte Chemie International Edition 2009, 48
(51)
, 9709-9712. https://doi.org/10.1002/anie.200905650
- Christopher J. Cramer, Donald G. Truhlar. Density functional theory for transition metals and transition metal chemistry. Physical Chemistry Chemical Physics 2009, 11
(46)
, 10757. https://doi.org/10.1039/b907148b
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.