ACS Publications. Most Trusted. Most Cited. Most Read
Reduction of Nitrous Oxide to Dinitrogen by a Mixed Valent Tricopper-Disulfido Cluster
My Activity

Figure 1Loading Img
    Communication

    Reduction of Nitrous Oxide to Dinitrogen by a Mixed Valent Tricopper-Disulfido Cluster
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Center for Metals in Biocatalysis, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455
    Other Access OptionsSupporting Information (5)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2009, 131, 8, 2812–2814
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja808917k
    Published February 10, 2009
    Copyright © 2009 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The greenhouse gas N2O is converted to N2 by a μ-sulfido-tetracopper active site in the enzyme nitrous oxide reductase (N2OR) via a process postulated to involve μ-1,3 coordination of N2O to two Cu(I) ions. In efforts to develop synthetic models of the site with which to test mechanistic hypotheses, we have prepared a localized mixed valent Cu(II)Cu(I)2 cluster bridged in a μ-η211 fashion by disulfide, [L3Cu33-S2)]X2 (L = 1,4,7-trimethyl-triazacyclononane, X = O3SCF3 or SbF6). This cluster exhibits spectroscopic features superficially similar to those of the active site in N2OR and reacts with N2O to yield N2 in a reaction that models the function of the enzyme. Computations implicate a transition state structure that features μ-1,1-bridging of N2O via its O-atom to a [L2Cu2(μ-S2)]+ fragment and provide chemical precedence for an alternative pathway for N2O reduction by N2OR.

    Copyright © 2009 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Materials and Methods, details of X-ray crystallography and calculations, and full citation for ref 1b. This information is available free of charge via the Internet at http://pubs.acs.org/.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 74 publications.

    1. Bo Wang, Justin Barnes, Skylar J. Ferrara, Stephen Sproules, Xiaodong Zhang, Joel T. Mague, James P. Donahue. Fully Reduced and Mixed-Valent Multi-Copper Aggregates Supported by Tetradentate Diamino Bis(thiolate) Ligands. Inorganic Chemistry 2023, 62 (25) , 9854-9871. https://doi.org/10.1021/acs.inorgchem.3c00784
    2. Kenneth M. Nicholas, Chance Lander, Yihan Shao. Computational Evaluation of Potential Molecular Catalysts for Nitrous Oxide Decomposition. Inorganic Chemistry 2022, 61 (37) , 14591-14605. https://doi.org/10.1021/acs.inorgchem.2c01598
    3. Wen Wu, Jacqui Tehranchi De Hont, Riffat Parveen, Bess Vlaisavljevich, William B. Tolman. Sulfur-Containing Analogues of the Reactive [CuOH]2+ Core. Inorganic Chemistry 2021, 60 (7) , 5217-5223. https://doi.org/10.1021/acs.inorgchem.1c00216
    4. Christina Ferousi, Sean H. Majer, Ida M. DiMucci, Kyle M. Lancaster. Biological and Bioinspired Inorganic N–N Bond-Forming Reactions. Chemical Reviews 2020, 120 (12) , 5252-5307. https://doi.org/10.1021/acs.chemrev.9b00629
    5. Suresh C. Rathnayaka, Chia-Wei Hsu, Brittany J. Johnson, Sarah J. Iniguez, Neal P. Mankad. Impact of Electronic and Steric Changes of Ligands on the Assembly, Stability, and Redox Activity of Cu4(μ4-S) Model Compounds of the CuZ Active Site of Nitrous Oxide Reductase (N2OR). Inorganic Chemistry 2020, 59 (9) , 6496-6507. https://doi.org/10.1021/acs.inorgchem.0c00564
    6. Joseph D. Schneider, Brett A. Smith, Grant A. Williams, Douglas R. Powell, Felio Perez, Gerard T. Rowe, Lei Yang. Synthesis and Characterization of Cu(II) and Mixed-Valence Cu(I)Cu(II) Clusters Supported by Pyridylamide Ligands. Inorganic Chemistry 2020, 59 (8) , 5433-5446. https://doi.org/10.1021/acs.inorgchem.0c00008
    7. Patricia R. Fontenot, Bing Shan, Bo Wang, Spenser Simpson, Gayathri Ragunathan, Angelique F. Greene, Antony Obanda, Leigh Anna Hunt, Nathan I. Hammer, Charles Edwin Webster, Joel T. Mague, Russell H. Schmehl, James P. Donahue. Photocatalytic H2-Evolution by Homogeneous Molybdenum Sulfide Clusters Supported by Dithiocarbamate Ligands. Inorganic Chemistry 2019, 58 (24) , 16458-16474. https://doi.org/10.1021/acs.inorgchem.9b02252
    8. Charlène Esmieu, Maylis Orio, Stéphane Ménage, Stéphane Torelli. Influence of Copper Coordination Spheres on Nitrous Oxide Reductase (N2Or) Activity of a Mixed-Valent Copper Complex Containing a {Cu2S} Core. Inorganic Chemistry 2019, 58 (17) , 11649-11655. https://doi.org/10.1021/acs.inorgchem.9b01594
    9. Abraham J. Jordan, Rebecca K. Walde, Kelly M. Schultz, John Bacsa, Joseph P. Sadighi. Nitrosonium Reactivity of (NHC)Copper(I) Sulfide Complexes. Inorganic Chemistry 2019, 58 (15) , 9592-9596. https://doi.org/10.1021/acs.inorgchem.9b01676
    10. Brittany J. Johnson, William E. Antholine, Sergey V. Lindeman, Michael J. Graham, and Neal P. Mankad . A One-Hole Cu4S Cluster with N2O Reductase Activity: A Structural and Functional Model for CuZ*. Journal of the American Chemical Society 2016, 138 (40) , 13107-13110. https://doi.org/10.1021/jacs.6b05480
    11. Brittany J. Johnson, Sergey V. Lindeman, and Neal P. Mankad . Assembly, Structure, and Reactivity of Cu4S and Cu3S Models for the Nitrous Oxide Reductase Active Site, CuZ*. Inorganic Chemistry 2014, 53 (19) , 10611-10619. https://doi.org/10.1021/ic501720h
    12. Upul Jayarathne, Sean R. Parmelee, and Neal P. Mankad . Small Molecule Activation Chemistry of Cu–Fe Heterobimetallic Complexes Toward CS2 and N2O. Inorganic Chemistry 2014, 53 (14) , 7730-7737. https://doi.org/10.1021/ic501054z
    13. Gianna N. Di Francesco, Aleth Gaillard, Ion Ghiviriga, Khalil A. Abboud, and Leslie J. Murray . Modeling Biological Copper Clusters: Synthesis of a Tricopper Complex, and Its Chloride- and Sulfide-Bridged Congeners. Inorganic Chemistry 2014, 53 (9) , 4647-4654. https://doi.org/10.1021/ic500333p
    14. Hujun Xie, Liu Yang, Xinchen Ye, and Zexing Cao . Mechanism of Carbon Monoxide Induced N–N Bond Cleavage of Nitrous Oxide Mediated by Molybdenum Complexes: A DFT Study. Organometallics 2014, 33 (7) , 1553-1562. https://doi.org/10.1021/om400935f
    15. Edward I. Solomon, David E. Heppner, Esther M. Johnston, Jake W. Ginsbach, Jordi Cirera, Munzarin Qayyum, Matthew T. Kieber-Emmons, Christian H. Kjaergaard, Ryan G. Hadt, and Li Tian . Copper Active Sites in Biology. Chemical Reviews 2014, 114 (7) , 3659-3853. https://doi.org/10.1021/cr400327t
    16. Margareta R. A. Blomberg, Tomasz Borowski, Fahmi Himo, Rong-Zhen Liao, and Per E. M. Siegbahn . Quantum Chemical Studies of Mechanisms for Metalloenzymes. Chemical Reviews 2014, 114 (7) , 3601-3658. https://doi.org/10.1021/cr400388t
    17. Ming-Li Tsai, Ryan G. Hadt, Pieter Vanelderen, Bert F. Sels, Robert A. Schoonheydt, and Edward I. Solomon . [Cu2O]2+ Active Site Formation in Cu–ZSM-5: Geometric and Electronic Structure Requirements for N2O Activation. Journal of the American Chemical Society 2014, 136 (9) , 3522-3529. https://doi.org/10.1021/ja4113808
    18. Arumugam Thangavel, Marika Wieliczko, John Bacsa, and Christopher C. Scarborough . 1,4,7-Triazacyclononane Ligands Bearing Tertiary Alkyl Nitrogen Substituents. Inorganic Chemistry 2013, 52 (22) , 13282-13287. https://doi.org/10.1021/ic402626p
    19. E. H. Song, J. M. Yan, J. S. Lian, and Q. Jiang . External Electric Field Catalyzed N2O Decomposition on Mn-Embedded Graphene. The Journal of Physical Chemistry C 2012, 116 (38) , 20342-20348. https://doi.org/10.1021/jp304757f
    20. Ritimukta Sarangi, Lei Yang, Stuart G. Winikoff, Laura Gagliardi, Christopher J. Cramer, William B. Tolman, and Edward I. Solomon . X-ray Absorption Spectroscopic and Computational Investigation of a Possible S···S Interaction in the [Cu3S2]3+ Core. Journal of the American Chemical Society 2011, 133 (43) , 17180-17191. https://doi.org/10.1021/ja111323m
    21. Lei Yang, Jacqui Tehranchi, and William B. Tolman . Reactions of Ph3Sb═S with Copper(I) Complexes Supported by N-Donor Ligands: Formation of Stable Adducts and S-Transfer Reactivity. Inorganic Chemistry 2011, 50 (6) , 2606-2612. https://doi.org/10.1021/ic102449m
    22. Nicholas A. Piro, Michael F. Lichterman, W. Hill Harman, and Christopher J. Chang . A Structurally Characterized Nitrous Oxide Complex of Vanadium. Journal of the American Chemical Society 2011, 133 (7) , 2108-2111. https://doi.org/10.1021/ja110798w
    23. (Associate Editor). The Interface of Inorganic Chemistry and Biology. Journal of the American Chemical Society 2010, 132 (42) , 14689-14693. https://doi.org/10.1021/ja108523h
    24. Sirous Jamali, Zahra Mazloomi, S. Masoud Nabavizadeh, Dalibor Milić, Reza Kia and Mehdi Rashidi . Cyclometalated Cluster Complex with a Butterfly-Shaped Pt2Ag2 Core. Inorganic Chemistry 2010, 49 (6) , 2721-2726. https://doi.org/10.1021/ic902044g
    25. Edwin Otten, Rebecca C. Neu and Douglas W. Stephan. Complexation of Nitrous Oxide by Frustrated Lewis Pairs. Journal of the American Chemical Society 2009, 131 (29) , 9918-9919. https://doi.org/10.1021/ja904377v
    26. Pinar Alayoglu, Suresh C. Rathnayaka, Tieyan Chang, SuYin Grass Wang, Yu-Sheng Chen, Neal P. Mankad. Cu site differentiation in tetracopper( i ) sulfide clusters enables biomimetic N 2 O reduction. Chemical Science 2024, 15 (34) , 13668-13675. https://doi.org/10.1039/D4SC00701H
    27. Neal P. Mankad. Triazenide-supported [Cu 4 S] structural mimics of Cu Z that mediate N 2 O disproportionation rather than reduction. Chemical Science 2024, 15 (5) , 1820-1828. https://doi.org/10.1039/D3SC05451A
    28. Diego Sorbelli, Leonardo Belpassi, Paola Belanzoni. Cooperative small molecule activation by apolar and weakly polar bonds through the lens of a suitable computational protocol. Chemical Communications 2024, 60 (10) , 1222-1238. https://doi.org/10.1039/D3CC05614G
    29. Diego Sorbelli, Leonardo Belpassi, Paola Belanzoni. Widening the Landscape of Small Molecule Activation with Gold‐Aluminyl Complexes: A Systematic Study of E−H (E=O, N) Bonds, SO 2 and N 2 O Activation. Chemistry – A European Journal 2023, 29 (21) https://doi.org/10.1002/chem.202203584
    30. Xinyang Zhao, Lu Zhu, Xue Wu, Wei Wei, Jing Zhao. Bio-inspired catalysis. 2023, 373-406. https://doi.org/10.1016/B978-0-12-823144-9.00140-0
    31. Soumen Sinhababu, Yutthana Lakliang, Neal P. Mankad. Recent advances in cooperative activation of CO 2 and N 2 O by bimetallic coordination complexes or binuclear reaction pathways. Dalton Transactions 2022, 51 (16) , 6129-6147. https://doi.org/10.1039/D2DT00210H
    32. Ashta C. Ghosh, Carole Duboc, Marcello Gennari. Synergy between metals for small molecule activation: Enzymes and bio-inspired complexes. Coordination Chemistry Reviews 2021, 428 , 213606. https://doi.org/10.1016/j.ccr.2020.213606
    33. Suresh C. Rathnayaka, Neal P. Mankad. Coordination chemistry of the CuZ site in nitrous oxide reductase and its synthetic mimics. Coordination Chemistry Reviews 2021, 429 , 213718. https://doi.org/10.1016/j.ccr.2020.213718
    34. Miguel Á. Baeza Cinco, Trevor W. Hayton. Progress toward the Isolation of Late Metal Terminal Sulfides. European Journal of Inorganic Chemistry 2020, 2020 (38) , 3613-3626. https://doi.org/10.1002/ejic.202000600
    35. Suresh C. Rathnayaka, Shahidul M. Islam, Ida M. DiMucci, Samantha N. MacMillan, Kyle M. Lancaster, Neal P. Mankad. Probing the electronic and mechanistic roles of the μ 4 -sulfur atom in a synthetic Cu Z model system. Chemical Science 2020, 11 (13) , 3441-3447. https://doi.org/10.1039/C9SC06251C
    36. Chia‐Wei Hsu, Suresh C. Rathnayaka, Shahidul M. Islam, Samantha N. MacMillan, Neal P. Mankad. N 2 O Reductase Activity of a [Cu 4 S] Cluster in the 4Cu I Redox State Modulated by Hydrogen Bond Donors and Proton Relays in the Secondary Coordination Sphere. Angewandte Chemie 2020, 132 (2) , 637-641. https://doi.org/10.1002/ange.201906327
    37. Chia‐Wei Hsu, Suresh C. Rathnayaka, Shahidul M. Islam, Samantha N. MacMillan, Neal P. Mankad. N 2 O Reductase Activity of a [Cu 4 S] Cluster in the 4Cu I Redox State Modulated by Hydrogen Bond Donors and Proton Relays in the Secondary Coordination Sphere. Angewandte Chemie International Edition 2020, 59 (2) , 627-631. https://doi.org/10.1002/anie.201906327
    38. Ming Liu, Xue-Qing Song, Yuan-Di Wu, Jing Qian, Jing-Yuan Xu. Cu( ii )-TACN complexes selectively induce antitumor activity in HepG-2 cells via DNA damage and mitochondrial-ROS-mediated apoptosis. Dalton Transactions 2020, 49 (1) , 114-123. https://doi.org/10.1039/C9DT03641E
    39. Ying-Wu Lin. Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters. Molecules 2019, 24 (15) , 2743. https://doi.org/10.3390/molecules24152743
    40. Sofia R. Pauleta, Marta S.P. Carepo, Isabel Moura. Source and reduction of nitrous oxide. Coordination Chemistry Reviews 2019, 387 , 436-449. https://doi.org/10.1016/j.ccr.2019.02.005
    41. Lisa Roy, Malik H. Al-Afyouni, Daniel E. DeRosha, Bhaskar Mondal, Ida M. DiMucci, Kyle M. Lancaster, Jason Shearer, Eckhard Bill, William W. Brennessel, Frank Neese, Shengfa Ye, Patrick L. Holland. Reduction of CO 2 by a masked two-coordinate cobalt( i ) complex and characterization of a proposed oxodicobalt( ii ) intermediate. Chemical Science 2019, 10 (3) , 918-929. https://doi.org/10.1039/C8SC02599A
    42. Nicolai Lehnert, Hai T. Dong, Jill B. Harland, Andrew P. Hunt, Corey J. White. Reversing nitrogen fixation. Nature Reviews Chemistry 2018, 2 (10) , 278-289. https://doi.org/10.1038/s41570-018-0041-7
    43. Hanwei Li, Mingliang Luo, Guohong Tao, Song Qin. Theoretical Calculations on the Mechanism of Enantioselective Copper(I)-Catalyzed Addition of Enynes to Ketones. Catalysts 2018, 8 (9) , 359. https://doi.org/10.3390/catal8090359
    44. Lanying Yao, Yang Li, Lvtao Huang, Kai Guo, Gerui Ren, Zunyi Wu, Qunfang Lei, Wenjun Fang, Hujun Xie. A DFT study on the mechanisms of hydrogenation and hydrosilylation of nitrous oxide catalyzed by a ruthenium PNP pincer complex. Computational and Theoretical Chemistry 2018, 1128 , 48-55. https://doi.org/10.1016/j.comptc.2018.02.010
    45. Sharareh Bagherzadeh, Neal P. Mankad. Oxidation of a [Cu 2 S] complex by N 2 O and CO 2 : insights into a role of tetranuclearity in the Cu Z site of nitrous oxide reductase. Chemical Communications 2018, 54 (9) , 1097-1100. https://doi.org/10.1039/C7CC09067F
    46. Gui-Juan Cheng. Mechanistic Studies on Copper-Catalyzed sp3-C–H Cross-Dehydrogenative Coupling Reaction. 2017, 111-126. https://doi.org/10.1007/978-981-10-4521-9_5
    47. Hujun Xie, Chengcheng Liu, Ying Yuan, Tao Zhou, Ting Fan, Qunfang Lei, Wenjun Fang. Oxidation of phenyl and hydride ligands of bis(pentamethylcyclopentadienyl)hafnium derivatives by nitrous oxide via selective oxygen atom transfer reactions: insights from quantum chemistry calculations. Dalton Transactions 2016, 45 (3) , 1152-1159. https://doi.org/10.1039/C5DT03264D
    48. Esther M. Johnston, Simone Dell'Acqua, Sofia R. Pauleta, Isabel Moura, Edward I. Solomon. Protonation state of the Cu 4 S 2 Cu Z site in nitrous oxide reductase: redox dependence and insight into reactivity. Chemical Science 2015, 6 (10) , 5670-5679. https://doi.org/10.1039/C5SC02102B
    49. Madhusudan Nandy, Shyamapada Shit, Piu Dhal, Corrado Rizzoli, Carlos J. Gómez–García, Samiran Mitra. Ferromagnetic copper(II)–copper(II) interaction in a single chlorido and dicyanamido bridged mixed–valence copper(I/II) 2-D polymer generated by in situ partial reduction of copper(II). Journal of Coordination Chemistry 2015, 68 (5) , 916-927. https://doi.org/10.1080/00958972.2014.1003814
    50. Brittany J. Johnson, William E. Antholine, Sergey V. Lindeman, Neal P. Mankad. A Cu 4 S model for the nitrous oxide reductase active sites supported only by nitrogen ligands. Chemical Communications 2015, 51 (59) , 11860-11863. https://doi.org/10.1039/C5CC04675K
    51. Andrew J. Timmons, Mark D. Symes. Converting between the oxides of nitrogen using metal–ligand coordination complexes. Chemical Society Reviews 2015, 44 (19) , 6708-6722. https://doi.org/10.1039/C5CS00269A
    52. Charlène Esmieu, Maylis Orio, Stéphane Torelli, Laurent Le Pape, Jacques Pécaut, Colette Lebrun, Stéphane Ménage. N 2 O reduction at a dissymmetric {Cu 2 S}-containing mixed-valent center. Chem. Sci. 2014, 5 (12) , 4774-4784. https://doi.org/10.1039/C4SC01487A
    53. Hangyu Liu, Wei Zhang, Ling He, Mingliang Luo, Song Qin. Computational investigations on the phosphine-ligated CuH-catalyzed conjugate reduction of α-β unsaturated ketones: regioselectivity and stereoselectivity. RSC Advances 2014, 4 (11) , 5726. https://doi.org/10.1039/c3ra44015j
    54. Gui‐Juan Cheng, Li‐Juan Song, Yun‐Fang Yang, Xinhao Zhang, Olaf Wiest, Yun‐Dong Wu. Computational Studies on the Mechanism of the Copper‐Catalyzed sp 3 ‐CH Cross‐Dehydrogenative Coupling Reaction. ChemPlusChem 2013, 78 (9) , 943-951. https://doi.org/10.1002/cplu.201300117
    55. R.L. Peterson, S. Kim, K.D. Karlin. Copper Enzymes. 2013, 149-177. https://doi.org/10.1016/B978-0-08-097774-4.00309-0
    56. M.R. Halvagar, D.J. Salmon, W.B. Tolman. Small Molecule Models: Cu, Ni, Co. 2013, 455-486. https://doi.org/10.1016/B978-0-08-097774-4.00321-1
    57. Sofia R. Pauleta, Simone Dell’Acqua, Isabel Moura. Nitrous oxide reductase. Coordination Chemistry Reviews 2013, 257 (2) , 332-349. https://doi.org/10.1016/j.ccr.2012.05.026
    58. Pieter Vanelderen, Julie Vancauwenbergh, Bert F. Sels, Robert A. Schoonheydt. Coordination chemistry and reactivity of copper in zeolites. Coordination Chemistry Reviews 2013, 257 (2) , 483-494. https://doi.org/10.1016/j.ccr.2012.07.008
    59. Vicente R. de Almeida, Fernando R. Xavier, Renata E. H. M. B. Osório, Luiza M. Bessa, Eduardo L. Schilling, Thiago G. Costa, Tiago Bortolotto, Angélica Cavalett, Frederico A. V. Castro, Felipe Vilhena, Odivaldo C. Alves, Hernán Terenzi, Elis C. A. Eleutherio, Marcos D. Pereira, Wolfgang Haase, Zbigniew Tomkowicz, Bruno Szpoganicz, Adailton J. Bortoluzzi, Ademir Neves. In vitro and in vivo activity of a new unsymmetrical dinuclear copper complex containing a derivative ligand of 1,4,7-triazacyclononane: catalytic promiscuity of [Cu2(L)Cl3]. Dalton Transactions 2013, 42 (19) , 7059. https://doi.org/10.1039/c3dt33046j
    60. Alexander G. Majouga, Elena K. Beloglazkina, Anna A. Moiseeva, Olga V. Shilova, Eugeniy A. Manzheliy, Maria A. Lebedeva, E. Stephen Davies, Andrei N. Khlobystov, Nikolay V. Zyk. Cleavage of the C–S bond with the formation of a binuclear copper complex with 2-thiolato-3-phenyl-5-(pyridine-2-ylmethylene)-3,5-dihydro-4H-imidazole-4-one. A new mimic of the active site of N2O reductase. Dalton Transactions 2013, 42 (18) , 6290. https://doi.org/10.1039/c3dt50422k
    61. Nan Lu, Huatian Wang. Theoretical mechanism studies on the competitive CO-induced N–N bond cleavage of N2O with N–O bond cleavage mediated by (η5-C5Me5)Mo[N(iPr)C(Me)N(iPr)](CO)2. Dalton Transactions 2013, 42 (38) , 13931. https://doi.org/10.1039/c3dt51629f
    62. Mehmed Z. Ertem, Christopher J. Cramer, Fahmi Himo, Per E. M. Siegbahn. N–O bond cleavage mechanism(s) in nitrous oxide reductase. JBIC Journal of Biological Inorganic Chemistry 2012, 17 (5) , 687-698. https://doi.org/10.1007/s00775-012-0888-x
    63. Anukul Jana, Ramachandran Azhakar, Sankaranarayana Pillai Sarish, Prinson P. Samuel, Herbert W. Roesky, Carola Schulzke, Debasis Koley. Reactions of Stable Amidinate Chlorosilylene and [1+4]‐Oxidative Addition of N‐Heterocyclic Silylene with N ‐Benzylideneaniline. European Journal of Inorganic Chemistry 2011, 2011 (32) , 5006-5013. https://doi.org/10.1002/ejic.201100661
    64. Simone Dell’Acqua, Sofia R. Pauleta, Isabel Moura, José J. G. Moura. The tetranuclear copper active site of nitrous oxide reductase: the CuZ center. JBIC Journal of Biological Inorganic Chemistry 2011, 16 (2) , 183-194. https://doi.org/10.1007/s00775-011-0753-3
    65. Juan Forniés, Violeta Sicilia, José M Casas, Antonio Martín, José A. López, Carmen Larraz, Pilar Borja, Carmen Ovejero. Pt–Ag clusters and their neutral mononuclear Pt(ii) starting complexes: structural and luminescence studies. Dalton Transactions 2011, 40 (12) , 2898. https://doi.org/10.1039/c0dt01451f
    66. Jun Matsumoto, Yuji Kajita, Hideki Masuda. Synthesis and Reactivity of µ-η 2 :η 2 -Disulfido Dicopper(II) Complex with N , N ', N ''-Trimethyl-1,3,5- cis , cis -triaminocyclohexane. Japanese Journal of Applied Physics 2011, 50 (1S1) , 01AK04. https://doi.org/10.7567/JJAP.50.01AK04
    67. Stéphane Torelli, Maylis Orio, Jacques Pécaut, Hélène Jamet, Laurent Le Pape, Stéphane Ménage. A {Cu 2 S} 2+ Mixed‐Valent Core Featuring a CuCu Bond. Angewandte Chemie 2010, 122 (44) , 8425-8428. https://doi.org/10.1002/ange.201003411
    68. Stéphane Torelli, Maylis Orio, Jacques Pécaut, Hélène Jamet, Laurent Le Pape, Stéphane Ménage. A {Cu 2 S} 2+ Mixed‐Valent Core Featuring a CuCu Bond. Angewandte Chemie International Edition 2010, 49 (44) , 8249-8252. https://doi.org/10.1002/anie.201003411
    69. Ga Young Park, Dong‐Heon Lee, Kenneth D. Karlin. Copper Enzymes/Models. 2010https://doi.org/10.1002/0471227617.eoc064.pub2
    70. William B. Tolman. Mechanistische Einblicke in die Bindung und Aktivierung von N 2 O an Übergangsmetallzentren. Angewandte Chemie 2010, 122 (6) , 1034-1041. https://doi.org/10.1002/ange.200905364
    71. William B. Tolman. Binding and Activation of N 2 O at Transition‐Metal Centers: Recent Mechanistic Insights. Angewandte Chemie International Edition 2010, 49 (6) , 1018-1024. https://doi.org/10.1002/anie.200905364
    72. Rebecca C. Neu, Edwin Otten, Douglas W. Stephan. Bridging Binding Modes of Phosphine‐Stabilized Nitrous Oxide to Zn(C 6 F 5 ) 2. Angewandte Chemie 2009, 121 (51) , 9889-9892. https://doi.org/10.1002/ange.200905650
    73. Rebecca C. Neu, Edwin Otten, Douglas W. Stephan. Bridging Binding Modes of Phosphine‐Stabilized Nitrous Oxide to Zn(C 6 F 5 ) 2. Angewandte Chemie International Edition 2009, 48 (51) , 9709-9712. https://doi.org/10.1002/anie.200905650
    74. Christopher J. Cramer, Donald G. Truhlar. Density functional theory for transition metals and transition metal chemistry. Physical Chemistry Chemical Physics 2009, 11 (46) , 10757. https://doi.org/10.1039/b907148b

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2009, 131, 8, 2812–2814
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja808917k
    Published February 10, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    3900

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.