ACS Publications. Most Trusted. Most Cited. Most Read
Cationic Multidentate Halogen-Bond Donors in Halide Abstraction Organocatalysis: Catalyst Optimization by Preorganization
My Activity

Figure 1Loading Img
    Article

    Cationic Multidentate Halogen-Bond Donors in Halide Abstraction Organocatalysis: Catalyst Optimization by Preorganization
    Click to copy article linkArticle link copied!

    View Author Information
    Fakultät für Chemie und Biochemie, Organische Chemie I, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
    Other Access OptionsSupporting Information (4)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2015, 137, 37, 12110–12120
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.5b07863
    Published September 2, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    In contrast to hydrogen bonding, which is firmly established in organocatalysis, there are still very few applications of halogen bonding in this field. Herein, we present the first catalytic application of cationic halogen-bond donors in a halide abstraction reaction. First, halopyridinium-, haloimidazolium-, and halo-1,2,3-triazolium-based catalysts were systematically tested. In contrast to the pyridinium compounds, both the imidazolium and the triazolium salts showed promising potency. For the haloimidazolium-based organocatalysts, we could show that the catalytic activity is based on halogen bonding using, e.g., the chlorinated derivatives as reference compounds. On the basis of these studies, halobenzimidazolium organocatalysts were then investigated. Monodentate compounds featured the same trends as the corresponding imidazolium analogues but showed a stronger catalytic activity. In order to prepare bidentate versions which are preorganized for anion binding, a new class of rigid bis(halobenzimidazolium) compounds was synthesized and structurally characterized. The corresponding syn isomer showed unprecedented catalytic potency and could be used in as low as 0.5 mol % in the benchmark reaction of 1-chloroisochroman with a silyl enol ether. Calculations confirmed that the syn isomer may bind in a bidentate fashion to chloride. The respective anti isomer is less active and binds halides in a monodentate fashion. Kinetic investigations confirmed that the syn isomer led to a 20-fold rate acceleration compared to a neutral tridentate halogen-bond donor. The strength of the preorganized halogen-bond donor seems to approach the limit under the reaction conditions, as decomposition is observed in the presence of chloride in the same solvent at higher temperatures. Calorimetric titrations of the syn isomer with bromide confirmed the strong halogen-bond donor strength of the former (K ≈ 4 × 106 M–1, ΔG ≈ 38 kJ/mol).

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b07863.

    • Full experimental details, characterization data, ITC spectra, computational data, and X-ray structural analysis (PDF)

    • (CIF)

    • (CIF)

    • (CIF)

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 240 publications.

    1. Ziqiang Zhao, Yi Liu, Yao Wang. Weak Interaction Activates Esters: Reconciling Catalytic Activity and Turnover Contradiction by Tailored Chalcogen Bonding. Journal of the American Chemical Society 2024, 146 (19) , 13296-13305. https://doi.org/10.1021/jacs.4c01541
    2. Caiming Wang, Anna Krupp, Carsten Strohmann, Bastian Grabe, Charles C. J. Loh. Harnessing Multistep Chalcogen Bonding Activation in the α-Stereoselective Synthesis of Iminoglycosides. Journal of the American Chemical Society 2024, 146 (15) , 10608-10620. https://doi.org/10.1021/jacs.4c00262
    3. Ying Li, Chang Zhao, Zhuo Wang, Yanli Zeng. Halogen Bond Catalysis: A Physical Chemistry Perspective. The Journal of Physical Chemistry A 2024, 128 (3) , 507-527. https://doi.org/10.1021/acs.jpca.3c06363
    4. Wenpeng Ma, Jan-Lukas Kirchhoff, Carsten Strohmann, Bastian Grabe, Charles C. J. Loh. Cooperative Bifurcated Chalcogen Bonding and Hydrogen Bonding as Stereocontrolling Elements for Selective Strain-Release Septanosylation. Journal of the American Chemical Society 2023, 145 (49) , 26611-26622. https://doi.org/10.1021/jacs.3c06984
    5. Steve Scheiner, Mariusz Michalczyk, Wiktor Zierkiewicz. Influence of Internal Angular Arrangement on Pnicogen Bond Strength. Inorganic Chemistry 2023, 62 (49) , 20209-20218. https://doi.org/10.1021/acs.inorgchem.3c03141
    6. Steve Scheiner. Transition between the Noncovalency and Covalency of σ–Hole Bonds. The Journal of Physical Chemistry A 2023, 127 (46) , 9760-9770. https://doi.org/10.1021/acs.jpca.3c06093
    7. Yuemei Li, Shuwei Zhang, Han Ding, Zheng Sun, Qiyuan Ma, Yu Yuan, Xiaodong Jia. Halogen Bond (XB) Promoted α-Tribromomethylation of N-Aryltetrahydroisoquinolines and Further Cyclization to 5,6-Dihydroindolo[2,1-a]isoquinolines. The Journal of Organic Chemistry 2023, 88 (15) , 11310-11321. https://doi.org/10.1021/acs.joc.3c00861
    8. Yi Li, Yicen Ge, Rui Sun, Xiao Yang, Shipeng Huang, Huajian Dong, Yunyao Liu, Haodan Xue, Xiaoyan Ma, Haiyan Fu, Zeqin Chen. Balancing Activity and Stability in Halogen-Bonding Catalysis: Iodopyridinium-Catalyzed One-Pot Synthesis of 2,3-Dihydropyridinones. The Journal of Organic Chemistry 2023, 88 (15) , 11069-11082. https://doi.org/10.1021/acs.joc.3c01028
    9. Akhtam Amonov, Steve Scheiner. Competition between Binding to Various Sites of Substituted Imidazoliums. The Journal of Physical Chemistry A 2023, 127 (30) , 6292-6299. https://doi.org/10.1021/acs.jpca.3c04097
    10. Yuheng Zhang, Haimeng Zhu, Boyuan Zhang, Huijuan Yang, Choon-Hong Tan, Chao Wang, Jin Wen, Lili Zong. Hydrogen Bond-Enhanced Halogen Bonding Organocatalyst with C(sp3)–Br and Sulfoxide Moieties. ACS Catalysis 2023, 13 (10) , 7103-7109. https://doi.org/10.1021/acscatal.3c01131
    11. Alafate Adili, John-Paul Webster, Chenfei Zhao, Sharath Chandra Mallojjala, Moises A. Romero-Reyes, Ion Ghiviriga, Khalil A. Abboud, Mathew J. Vetticatt, Daniel Seidel. Mechanism of a Dually Catalyzed Enantioselective Oxa-Pictet–Spengler Reaction and the Development of a Stereodivergent Variant. ACS Catalysis 2023, 13 (4) , 2240-2249. https://doi.org/10.1021/acscatal.2c05484
    12. Xin-Shen Liang, Rui-Dong Li, Wei Sun, Zhong Liu, Xiao-Chen Wang. Coupling of 2H-Chromenes with Silyl Ketene Acetals Enabled by Borane Catalysis. ACS Catalysis 2022, 12 (15) , 9153-9158. https://doi.org/10.1021/acscatal.2c02774
    13. Somraj Guha, Imran Kazi, Dhamodharan Sathish, Govindasamy Sekar. Iodine-Promoted Controlled and Selective Oxidation of (Aryl)(Heteroaryl)Methanes. The Journal of Organic Chemistry 2022, 87 (8) , 5424-5429. https://doi.org/10.1021/acs.joc.1c03067
    14. Xiaofang Zeng, Wei Ding, Hengqi Zou, Meixue Ke, Xinrui Miao, Xiaohong Cheng, Wenli Deng. Solvent Coadsorption Effect on I···O Halogen-Bonded 2D Self-Assembled Nanostructures. The Journal of Physical Chemistry C 2022, 126 (12) , 5777-5783. https://doi.org/10.1021/acs.jpcc.2c00570
    15. Naziha Tarannam, Martin H. H. Voelkel, Stefan M. Huber, Sebastian Kozuch. Chalcogen vs Halogen Bonding Catalysis in a Water-Bridge-Cocatalyzed Nitro-Michael Reaction. The Journal of Organic Chemistry 2022, 87 (3) , 1661-1668. https://doi.org/10.1021/acs.joc.1c00894
    16. Luka Fotović, Nikola Bedeković, Vladimir Stilinović. Evaluation of Halogenopyridinium Cations as Halogen Bond Donors. Crystal Growth & Design 2021, 21 (12) , 6889-6901. https://doi.org/10.1021/acs.cgd.1c00805
    17. Yasushi Yoshida, Takashi Mino, Masami Sakamoto. Chiral Hypervalent Bromine(III) (Bromonium Salt): Hydrogen- and Halogen-Bonding Bifunctional Asymmetric Catalysis by Diaryl-λ3-bromanes. ACS Catalysis 2021, 11 (21) , 13028-13033. https://doi.org/10.1021/acscatal.1c04070
    18. Chunyang Li, Anne-Doriane Manick, Jian Yang, David Givaudan, Bohdan Biletskyi, Sabine Michaud-Chevalier, Jean-Pierre Dutasta, Damien Hérault, Xavier Bugaut, Bastien Chatelet, Alexandre Martinez. The Chloroazaphosphatrane Motif for Halogen Bonding in Solution. Inorganic Chemistry 2021, 60 (16) , 11964-11973. https://doi.org/10.1021/acs.inorgchem.1c01005
    19. Susana Portela, Jorge J. Cabrera-Trujillo, Israel Fernández. Catalysis by Bidentate Iodine(III)-Based Halogen Donors: Surpassing the Activity of Strong Lewis Acids. The Journal of Organic Chemistry 2021, 86 (7) , 5317-5326. https://doi.org/10.1021/acs.joc.1c00534
    20. Yueyan Wang, Peifeng Su. Why Can Cationic Halogen Bond Donors Activate the Ritter-Type Solvolysis of Benzhydryl Bromide but Cationic Hydrogen Bond Donors Can Not?. ACS Omega 2020, 5 (34) , 21862-21872. https://doi.org/10.1021/acsomega.0c03000
    21. Yun-Pu Chang, Teresa Tang, Jake R. Jagannathan, Nadia Hirbawi, Shaoming Sun, Jonah Brown, Annaliese K. Franz. NMR Quantification of Halogen-Bonding Ability To Evaluate Catalyst Activity. Organic Letters 2020, 22 (16) , 6647-6652. https://doi.org/10.1021/acs.orglett.0c02427
    22. Zhengdan Zhu, Zhijian Xu, Weiliang Zhu. Interaction Nature and Computational Methods for Halogen Bonding: A Perspective. Journal of Chemical Information and Modeling 2020, 60 (6) , 2683-2696. https://doi.org/10.1021/acs.jcim.0c00032
    23. Fan Wu, Jeewani P. Ariyarathna, Navdeep Kaur, Nur-E Alom, Maureen L. Kennell, Omar H. Bassiouni, Wei Li. Halogen-Bond-Induced Consecutive Csp3–H Aminations via Hydrogen Atom Transfer Relay Strategy. Organic Letters 2020, 22 (6) , 2135-2140. https://doi.org/10.1021/acs.orglett.0c00081
    24. Xuelei Liu, Shuang Ma, Patrick H. Toy. Halogen Bond-Catalyzed Friedel–Crafts Reactions of Aldehydes and Ketones Using a Bidentate Halogen Bond Donor Catalyst: Synthesis of Symmetrical Bis(indolyl)methanes. Organic Letters 2019, 21 (22) , 9212-9216. https://doi.org/10.1021/acs.orglett.9b03578
    25. Revannath L. Sutar, Stefan M. Huber. Catalysis of Organic Reactions through Halogen Bonding. ACS Catalysis 2019, 9 (10) , 9622-9639. https://doi.org/10.1021/acscatal.9b02894
    26. D. ChangMo Yang, Dong Yeon Kim, Kwang S. Kim. Quantum Monte Carlo Study of the Water Dimer Binding Energy and Halogen−π Interactions. The Journal of Physical Chemistry A 2019, 123 (36) , 7785-7791. https://doi.org/10.1021/acs.jpca.9b04072
    27. Rong Zeng, Jun-Long Li, Xiang Zhang, Yan-Qing Liu, Zhi-Qiang Jia, Hai-Jun Leng, Qian-Wei Huang, Yue Liu, Qing-Zhu Li. Diastereoselective Construction of 6,8-Dioxabicyclo[3.2.1]octane Frameworks from Vinylethylene Carbonates via Palladium-Organo Relay Catalysis. ACS Catalysis 2019, 9 (9) , 8256-8262. https://doi.org/10.1021/acscatal.9b02598
    28. Cher Tian Ser, Hui Yang, Ming Wah Wong. Iodoimidazolinium-Catalyzed Reduction of Quinoline by Hantzsch Ester: Halogen Bond or Brønsted Acid Catalysis. The Journal of Organic Chemistry 2019, 84 (16) , 10338-10348. https://doi.org/10.1021/acs.joc.9b01494
    29. Yuk-Cheung Chan, Ying-Yeung Yeung. Halogen-Bond-Catalyzed Addition of Carbon-Based Nucleophiles to N-Acylimminium Ions. Organic Letters 2019, 21 (14) , 5665-5669. https://doi.org/10.1021/acs.orglett.9b02006
    30. Jonas J. Koenig, Thiemo Arndt, Nora Gildemeister, Jörg-M. Neudörfl, Martin Breugst. Iodine-Catalyzed Nazarov Cyclizations. The Journal of Organic Chemistry 2019, 84 (12) , 7587-7605. https://doi.org/10.1021/acs.joc.9b01083
    31. Imran Kazi, Somraj Guha, Govindasamy Sekar. Halogen Bond-Assisted Electron-Catalyzed Atom Economic Iodination of Heteroarenes at Room Temperature. The Journal of Organic Chemistry 2019, 84 (11) , 6642-6654. https://doi.org/10.1021/acs.joc.9b00174
    32. Mikk Kaasik, Andrus Metsala, Sandra Kaabel, Kadri Kriis, Ivar Järving, Tõnis Kanger. Halo-1,2,3-triazolium Salts as Halogen Bond Donors for the Activation of Imines in Dihydropyridinone Synthesis. The Journal of Organic Chemistry 2019, 84 (7) , 4294-4303. https://doi.org/10.1021/acs.joc.9b00248
    33. Chunfa Xu, Charles C. J. Loh. A Multistage Halogen Bond Catalyzed Strain-Release Glycosylation Unravels New Hedgehog Signaling Inhibitors. Journal of the American Chemical Society 2019, 141 (13) , 5381-5391. https://doi.org/10.1021/jacs.9b00040
    34. Arseni Borissov, Igor Marques, Jason Y. C. Lim, Vítor Félix, Martin D. Smith, Paul D. Beer. Anion Recognition in Water by Charge-Neutral Halogen and Chalcogen Bonding Foldamer Receptors. Journal of the American Chemical Society 2019, 141 (9) , 4119-4129. https://doi.org/10.1021/jacs.9b00148
    35. Kang Kang, Jessica A. Lohrman, Sangaraiah Nagarajan, Lixi Chen, Pengchi Deng, Xin Shen, Kuirong Fu, Wen Feng, Darren W. Johnson, Lihua Yuan. Convergent Ditopic Receptors Enhance Anion Binding upon Alkali Metal Complexation for Catalyzing the Ritter Reaction. Organic Letters 2019, 21 (3) , 652-655. https://doi.org/10.1021/acs.orglett.8b03778
    36. Miguel A. Esteruelas, M. Pilar Gay, Enrique Oñate. Conceptual Extension of the Degradation–Transformation of N-Heterocyclic Carbenes: Unusual Rearrangements on Osmium. Organometallics 2018, 37 (20) , 3412-3424. https://doi.org/10.1021/acs.organomet.8b00110
    37. Stefan Henkel, Iris Trosien, Joel Mieres-Pérez, Thomas Lohmiller, Anton Savitsky, Elsa Sanchez-Garcia, Wolfram Sander. Reactions of Cyclopentadienylidenes with CF3I: Electron Bond Donation versus Halogen Bond Donation of the Iodine Atom. The Journal of Organic Chemistry 2018, 83 (15) , 7586-7592. https://doi.org/10.1021/acs.joc.8b01328
    38. Kohei Matsuzaki, Hiroto Uno, Etsuko Tokunaga, Norio Shibata. Fluorobissulfonylmethyl Iodides: An Efficient Scaffold for Halogen Bonding Catalysts with an sp3-Hybridized Carbon–Iodine Moiety. ACS Catalysis 2018, 8 (7) , 6601-6605. https://doi.org/10.1021/acscatal.8b01330
    39. Alexander S. Mikherdov, Alexander S. Novikov, Mikhail A. Kinzhalov, Vadim P. Boyarskiy, Galina L. Starova, Alexander Yu. Ivanov, Vadim Yu. Kukushkin. Halides Held by Bifurcated Chalcogen–Hydrogen Bonds. Effect of μ(S,N–H)Cl Contacts on Dimerization of Cl(carbene)PdII Species. Inorganic Chemistry 2018, 57 (6) , 3420-3433. https://doi.org/10.1021/acs.inorgchem.8b00190
    40. Mu-Wang Chen, Yue Ji, Jie Wang, Qing-An Chen, Lei Shi, and Yong-Gui Zhou . Asymmetric Hydrogenation of Isoquinolines and Pyridines Using Hydrogen Halide Generated in Situ as Activator. Organic Letters 2017, 19 (18) , 4988-4991. https://doi.org/10.1021/acs.orglett.7b02502
    41. Chenfei Zhao, Christopher A. Sojdak, Wazo Myint, and Daniel Seidel . Reductive Etherification via Anion-Binding Catalysis. Journal of the American Chemical Society 2017, 139 (30) , 10224-10227. https://doi.org/10.1021/jacs.7b05832
    42. Katarzyna Eichstaedt, Javier Jaramillo-Garcia, David A. Leigh, Vanesa Marcos, Simone Pisano, and Thomas A. Singleton . Switching between Anion-Binding Catalysis and Aminocatalysis with a Rotaxane Dual-Function Catalyst. Journal of the American Chemical Society 2017, 139 (27) , 9376-9381. https://doi.org/10.1021/jacs.7b04955
    43. Kayla M. Diemoz, Jason E. Hein, Sean O. Wilson, James C. Fettinger, and Annaliese K. Franz . Reaction Progress Kinetics Analysis of 1,3-Disiloxanediols as Hydrogen-Bonding Catalysts. The Journal of Organic Chemistry 2017, 82 (13) , 6738-6747. https://doi.org/10.1021/acs.joc.7b00875
    44. Leonardo Maugeri, Tomáš Lébl, David B. Cordes, Alexandra M. Z. Slawin, and Douglas Philp . Cooperative Binding in a Phosphine Oxide-Based Halogen Bonded Dimer Drives Supramolecular Oligomerization. The Journal of Organic Chemistry 2017, 82 (4) , 1986-1995. https://doi.org/10.1021/acs.joc.6b02822
    45. Jinchun Qiu, Daniel K. Unruh, and Anthony F. Cozzolino . Design, Synthesis, and Structural Characterization of a Bisantimony(III) Compound for Anion Binding and the Density Functional Theory Evaluation of Halide Binding through Antimony Secondary Bonding Interactions. The Journal of Physical Chemistry A 2016, 120 (46) , 9257-9269. https://doi.org/10.1021/acs.jpca.6b08170
    46. Il Seung Youn, Dong Yeon Kim, Woo Jong Cho, Jenica Marie L. Madridejos, Han Myoung Lee, Maciej Kołaski, Joonho Lee, Chunggi Baig, Seung Koo Shin, Michael Filatov, and Kwang S. Kim . Halogen−π Interactions between Benzene and X2/CX4 (X = Cl, Br): Assessment of Various Density Functionals with Respect to CCSD(T). The Journal of Physical Chemistry A 2016, 120 (46) , 9305-9314. https://doi.org/10.1021/acs.jpca.6b09395
    47. Genta Kawaguchi, Mitsuhiko Maesato, Tokutaro Komatsu, Tatsuro Imakubo, Andhika Kiswandhi, David Graf, and Hiroshi Kitagawa . Use of Halogen Bonding in a Molecular Solid Solution to Simultaneously Control Spin and Charge. Chemistry of Materials 2016, 28 (20) , 7276-7286. https://doi.org/10.1021/acs.chemmater.6b02495
    48. C. Rose Kennedy, Dan Lehnherr, Naomi S. Rajapaksa, David D. Ford, Yongho Park, and Eric N. Jacobsen . Mechanism-Guided Development of a Highly Active Bis-thiourea Catalyst for Anion-Abstraction Catalysis. Journal of the American Chemical Society 2016, 138 (41) , 13525-13528. https://doi.org/10.1021/jacs.6b09205
    49. Xiaoyang Sun, Wenmin Wang, Yanle Li, Jing Ma, and Shouyun Yu . Halogen-Bond-Promoted Double Radical Isocyanide Insertion under Visible-Light Irradiation: Synthesis of 2-Fluoroalkylated Quinoxalines. Organic Letters 2016, 18 (18) , 4638-4641. https://doi.org/10.1021/acs.orglett.6b02271
    50. Choon Wee Kee and Ming Wah Wong . In Silico Design of Halogen-Bonding-Based Organocatalyst for Diels–Alder Reaction, Claisen Rearrangement, and Cope-Type Hydroamination. The Journal of Organic Chemistry 2016, 81 (17) , 7459-7470. https://doi.org/10.1021/acs.joc.6b01147
    51. David D. Ford, Dan Lehnherr, C. Rose Kennedy, and Eric N. Jacobsen . On- and Off-Cycle Catalyst Cooperativity in Anion-Binding Catalysis. Journal of the American Chemical Society 2016, 138 (25) , 7860-7863. https://doi.org/10.1021/jacs.6b04686
    52. Le Liu, Yoann Cotelle, Alyssa-Jennifer Avestro, Naomi Sakai, and Stefan Matile . Asymmetric Anion−π Catalysis of Iminium/Nitroaldol Cascades To Form Cyclohexane Rings with Five Stereogenic Centers Directly on π-Acidic Surfaces. Journal of the American Chemical Society 2016, 138 (25) , 7876-7879. https://doi.org/10.1021/jacs.6b04936
    53. Yoann Cotelle, Vincent Lebrun, Naomi Sakai, Thomas R. Ward, and Stefan Matile . Anion-π Enzymes. ACS Central Science 2016, 2 (6) , 388-393. https://doi.org/10.1021/acscentsci.6b00097
    54. Yingjie Zhao, Yoann Cotelle, Naomi Sakai, and Stefan Matile . Unorthodox Interactions at Work. Journal of the American Chemical Society 2016, 138 (13) , 4270-4277. https://doi.org/10.1021/jacs.5b13006
    55. Binod Nepal and Steve Scheiner . Substituent Effects on the Binding of Halides by Neutral and Dicationic Bis(triazolium) Receptors. The Journal of Physical Chemistry A 2015, 119 (52) , 13064-13073. https://doi.org/10.1021/acs.jpca.5b09738
    56. Ronny Tepper, Benjamin Schulze, Helmar Görls, Peter Bellstedt, Michael Jäger, and Ulrich S. Schubert . Preorganization in a Cleft-Type Anion Receptor Featuring Iodo-1,2,3-Triazoles As Halogen Bond Donors. Organic Letters 2015, 17 (23) , 5740-5743. https://doi.org/10.1021/acs.orglett.5b02760
    57. Sunil Kumar, K. R. Justin Thomas. Halogen Bond Assisted Light Responsiveness of Para ‐Quinone Methides for 1,6‐Conjugate Addition Reactions. ChemCatChem 2024, 210 https://doi.org/10.1002/cctc.202401087
    58. Peter Wendt, Julia Bader, Paul L. Waltersmann, Peter Wendt, Jan‐Hendrik Schröder, Mira Keßler, Hans‐Georg Stammler, Beate Neumann, Axel Delp, Franziska Paesler, Michael Schulte, Berthold Hoge. Halogen Bonding in N ‐Alkyl‐Bromo‐/Lodo‐Pyridinium Salts and its Application in Chromatography. Chemistry – A European Journal 2024, https://doi.org/10.1002/chem.202403062
    59. J. Louis Beckmann, Natalia Tiessen, Beate Neumann, Hans-Georg Stammler, Berthold Hoge, Norbert W. Mitzel. Polydentate chalcogen bonding: anion trapping with a water-stable host compound carrying Se–CF 3 functions. Dalton Transactions 2024, 53 (29) , 12234-12239. https://doi.org/10.1039/D4DT01730G
    60. Wenpeng Ma, Annika Schmidt, Carsten Strohmann, Charles C. J. Loh. Stereoselective Entry into α,α’‐ C ‐Oxepane Scaffolds through a Chalcogen Bonding Catalyzed Strain‐Release C ‐Septanosylation Strategy. Angewandte Chemie 2024, 136 (29) https://doi.org/10.1002/ange.202405706
    61. Wenpeng Ma, Annika Schmidt, Carsten Strohmann, Charles C. J. Loh. Stereoselective Entry into α,α’‐ C ‐Oxepane Scaffolds through a Chalcogen Bonding Catalyzed Strain‐Release C ‐Septanosylation Strategy. Angewandte Chemie International Edition 2024, 63 (29) https://doi.org/10.1002/anie.202405706
    62. J. Louis Beckmann, Beate Neumann, Hans‐Georg Stammler, Norbert W. Mitzel. Selectivity in Adduct Formation of a Bidentate Boron Lewis Acid. Chemistry – A European Journal 2024, 30 (27) https://doi.org/10.1002/chem.202400081
    63. David Givaudan, Bohdan Biletskyi, Antonio Recupido, Virginie Héran, Olivier Chuzel, Thierry Constantieux, Jean‐Luc Parrain, Xavier Bugaut. Bifunctional Iodoazolium Salts: Searching for Cooperation Between Halogen Bonding and Hydrogen Bonding. European Journal of Organic Chemistry 2024, 27 (15) https://doi.org/10.1002/ejoc.202300261
    64. Hao Guo, Jan‐Lukas Kirchhoff, Carsten Strohmann, Bastian Grabe, Charles C. J. Loh. Exploiting π and Chalcogen Interactions for the β‐Selective Glycosylation of Indoles through Glycal Conformational Distortion. Angewandte Chemie International Edition 2024, 63 (7) https://doi.org/10.1002/anie.202316667
    65. Hao Guo, Jan‐Lukas Kirchhoff, Carsten Strohmann, Bastian Grabe, Charles C. J. Loh. Exploiting π and Chalcogen Interactions for the β‐Selective Glycosylation of Indoles through Glycal Conformational Distortion. Angewandte Chemie 2024, 136 (7) https://doi.org/10.1002/ange.202316667
    66. Christian Schumacher, Khai-Nghi Truong, Jas S. Ward, Rakesh Puttreddy, Anssi Rajala, Elias Lassila, Carsten Bolm, Kari Rissanen. Halogen bonding and mechanochemistry combined: synthesis, characterization, and application of N -iodosaccharin pyridine complexes. Organic Chemistry Frontiers 2024, 11 (3) , 781-795. https://doi.org/10.1039/D3QO01512B
    67. Eirini M. Galathri, Thomas J. Kuczmera, Boris J. Nachtsheim, Christoforos G. Kokotos. Organocatalytic Friedel–Crafts arylation of aldehydes with indoles utilizing N-heterocyclic iod(az)olium salts as halogen-bonding catalysts. Green Chemistry 2024, 26 (2) , 825-831. https://doi.org/10.1039/D3GC03687A
    68. Dominik L. Reinhard, Dana Kutzinski, Masahito Hatta, Elric Engelage, Stefan M. Huber. Evaluation of a Bidentate ‘Clamp-Like’ Halogen-Bond Donor Motif Based on Iodonium(III) Moieties. Synlett 2024, 35 (02) , 209-214. https://doi.org/10.1055/a-2198-3914
    69. Nabarupa Bhattacharjee, Xinfeng Gao, Akash Nathani, James R. Dobscha, Maren Pink, Takashi Ito, Amar H. Flood. Solvent Acts as the Referee in a Match‐Up Between Charged and Preorganized Receptors. Chemistry – A European Journal 2023, 29 (68) https://doi.org/10.1002/chem.202302339
    70. Christoph J. Vonnemann, David Bulfield, Elric Engelage, Stefan M. Huber. A halogen bonding molecular tweezer. Organic Chemistry Frontiers 2023, 10 (24) , 6146-6152. https://doi.org/10.1039/D3QO01593A
    71. J. Louis Beckmann, Jonas Krieft, Yury V. Vishnevskiy, Beate Neumann, Hans-Georg Stammler, Norbert W. Mitzel. Poly-pnictogen bonding: trapping halide ions by a tetradentate antimony( iii ) Lewis acid. Chemical Science 2023, 14 (46) , 13551-13559. https://doi.org/10.1039/D3SC04594C
    72. Akhtam Amonov, Steve Scheiner. Relation between Halogen Bond Strength and IR and NMR Spectroscopic Markers. Molecules 2023, 28 (22) , 7520. https://doi.org/10.3390/molecules28227520
    73. Wiktor Zierkiewicz, Beata Kizior, Mariusz Michalczyk, Aneta Jezierska, Steve Scheiner. Pd and Pt metal atoms as electron donors in σ-hole bonded complexes. Physical Chemistry Chemical Physics 2023, 25 (38) , 26172-26184. https://doi.org/10.1039/D3CP03171C
    74. Dhananjoy Pal, Tim Steinke, Lukas Vogel, Elric Engelage, Sascha Heinrich, Dana Kutzinski, Stefan M. Huber. A Combined Halogen‐ and Chalcogen‐Bonding Organocatalyst. Advanced Synthesis & Catalysis 2023, 365 (16) , 2718-2723. https://doi.org/10.1002/adsc.202300502
    75. Chang Zhao, Ying Li, Xiaoyan Li, Yanli Zeng. Iodine( i )-based and iodine( iii )-based halogen bond catalysis on the Friedel–Crafts reaction: a theoretical study. Physical Chemistry Chemical Physics 2023, 25 (31) , 21100-21108. https://doi.org/10.1039/D3CP02541A
    76. Ona Šivickytė, Paulo J. Costa. Intrinsic bond strength index as a halogen bond interaction energy predictor. Physical Chemistry Chemical Physics 2023, 25 (26) , 17535-17546. https://doi.org/10.1039/D2CP04786A
    77. Adrian V. Wolfenden, Chloe M. Taylor, Curtis C. Ho, Jack K. Clegg, Nathan L. Kilah. Disorder in 2-bromoimidazolium hexafluorophosphate salts: the role of halogen bonds. CrystEngComm 2023, 25 (12) , 1763-1774. https://doi.org/10.1039/D2CE01643E
    78. Thiemo Arndt, Abhinav Raina, Martin Breugst. Iodine‐Catalyzed Claisen‐Rearrangements of Allyl Aryl Ethers and Subsequent Iodocyclizations. Chemistry – An Asian Journal 2023, 18 (5) https://doi.org/10.1002/asia.202201279
    79. Xue Zhang, Nuoyu Liang, Ruining Li, Zhankui Sun. Application of Halogen-Bonding Catalysis for Markovnikov-Type Hydrothiolation of Alkenes. Synlett 2023, 34 (04) , 379-387. https://doi.org/10.1055/a-1984-9105
    80. Yaxin Wang, Zehui Cao, Qin He, Xin Huang, Jiaxi Liu, Helfried Neumann, Gong Chen, Matthias Beller. Activation of perfluoroalkyl iodides by anions: extending the scope of halogen bond activation to C(sp 3 )–H amidation, C(sp 2 )–H iodination, and perfluoroalkylation reactions. Chemical Science 2023, 14 (7) , 1732-1741. https://doi.org/10.1039/D2SC06145G
    81. Tim Steinke, Elric Engelage, Stefan M. Huber. Chalcogen bonding in the solid-state structures of 1,3-bis(benzimidazoliumyl)benzene-based chalcogen-bonding donors. Acta Crystallographica Section C Structural Chemistry 2023, 79 (2) , 26-35. https://doi.org/10.1107/S2053229622011536
    82. Mikk Kaasik, Tõnis Kanger. Halogen‐Bonding Organocatalysis – New Opportunities for Asymmetric Synthesis. 2023, 203-224. https://doi.org/10.1002/9783527832217.ch6
    83. Alexander Düfert. Organokatalyse. 2023, 789-845. https://doi.org/10.1007/978-3-662-65244-2_8
    84. Mohammed S. Abdelbassit, Owen J. Curnow, Mark R. Waterland. Halocyclopropenium‐Halide Halogen‐Bonded Ion Pairs and Their Hydrogen‐Bonded Halide Solvates. Helvetica Chimica Acta 2023, 106 (1) https://doi.org/10.1002/hlca.202200163
    85. Qiaozhuo Wu, Xiaoying Xie, Qingzhong Li, Steve Scheiner. Enhancement of tetrel bond involving tetrazole-TtR 3 (Tt = C, Si; R = H, F). Promotion of SiR 3 transfer by a triel bond. Physical Chemistry Chemical Physics 2022, 24 (42) , 25895-25903. https://doi.org/10.1039/D2CP04194D
    86. Shyamal K. Bera, Anima Bose, Prasenjit Mal. CH Functionalization by Weak Interactions. 2022, 1-24. https://doi.org/10.1002/9783527834242.chf0205
    87. Katsuhiko Moriyama, Yukari Oka, Tatsuo Kaiho. A Chiral N-Tetrafluoroiodobenzyl-N-sulfonyl Aminomethylpyrrolidine Catalyst for the Enantioselective Michael/Hemiaminal Formation Cascade Reaction of α,β-Unsaturated Iminoindoles with ­Aldehydes. Synlett 2022, 33 (17) , 1763-1769. https://doi.org/10.1055/a-1893-7329
    88. Shyamal Kanti Bera, Rajat Rajiv Maharana, Kousik Samanta, Prasenjit Mal. CBr 4 catalyzed activation of α,β-unsaturated ketones. Organic & Biomolecular Chemistry 2022, 20 (35) , 7085-7091. https://doi.org/10.1039/D2OB01223E
    89. Lukas-M. Entgelmeier, Olga García Mancheño. Activation Modes in Asymmetric Anion-Binding Catalysis. Synthesis 2022, 54 (18) , 3907-3927. https://doi.org/10.1055/a-1846-6139
    90. Raffaella Papagna, Dana Kutzinski, Stefan M. Huber. Polymer‐Bound Halogen Bonding Organocatalysis**. European Journal of Organic Chemistry 2022, 2022 (31) https://doi.org/10.1002/ejoc.202200852
    91. Dan Ni Zheng, Patrick M. J. Szell, Safaa Khiri, Jeffrey S. Ovens, David L. Bryce. Solid-state multinuclear magnetic resonance and X-ray crystallographic investigation of the phosphorus...iodine halogen bond in a bis(dicyclohexylphenylphosphine)(1,6-diiodoperfluorohexane) cocrystal. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 2022, 78 (3) , 557-563. https://doi.org/10.1107/S2052520622004322
    92. Émer M. Foyle, Hui Min Tay, Nicholas G. White. Towards hydrogen and halogen bonded frameworks based on 3,5-bis(triazolyl)pyridinium motifs. CrystEngComm 2022, 24 (17) , 3268-3279. https://doi.org/10.1039/D2CE00273F
    93. Revannath L. Sutar, Stefan M. Huber *. Catalysis by Halogen Bonding Based on Iodine. 2022, 27-67. https://doi.org/10.1002/9783527829569.ch3
    94. Yuanyuan Sun, Ying Li, Xiaoyan Li, Yanli Zeng. The mechanism and impact of mono/bis(iodoimidazolium) halogen bond donor catalysts on Michael addition of indole with trans -crotonophenone: DFT calculations. Physical Chemistry Chemical Physics 2022, 24 (11) , 6690-6698. https://doi.org/10.1039/D2CP00075J
    95. Yasushi Yoshida, Tappei Fujimura, Takashi Mino, Masami Sakamoto. Chiral Binaphthyl‐Based Iodonium Salt (Hypervalent Iodine(III)) as Hydrogen‐ and Halogen‐Bonding Bifunctional Catalyst: Insight into Abnormal Counteranion Effect and Asymmetric Synthesis of N , S ‐Acetals. Advanced Synthesis & Catalysis 2022, 364 (6) , 1091-1098. https://doi.org/10.1002/adsc.202101380
    96. Revannath L. Sutar, Stefan M. Huber. Exploration of Halogen Bonding for the Catalysis of Organic Reactions. 2022, 413-426. https://doi.org/10.1002/9783527832033.ch28
    97. Raffaella Papagna, Lukas Vogel, Stefan M. Huber. Anion‐Binding Catalysis by Halogen, Chalcogen, Pnictogen, and Tetrel Bonding. 2022, 307-343. https://doi.org/10.1002/9783527830664.ch10
    98. Edward G. Sheetz, David Van Craen, Amar H. Flood. Anion Recognition and Binding Constant Determination. 2022, 79-109. https://doi.org/10.1002/9783527830664.ch2
    99. Daniil M. Ivanov, Nadezhda A. Bokach, Vadim Yu. Kukushkin, Antonio Frontera. Metal Centers as Nucleophiles: Oxymoron of Halogen Bond‐Involving Crystal Engineering. Chemistry – A European Journal 2022, 28 (2) https://doi.org/10.1002/chem.202103173
    100. Koji Takagi, Nao Sakakibara, Shoko Kikkawa, Seiji Tsuzuki. Dicationic oligotelluroxane or mononuclear telluronium cation? Elucidation of the true catalytic species and activation mechanism of the benzylic carbon-halogen bond. Chemical Communications 2021, 57 (100) , 13736-13739. https://doi.org/10.1039/D1CC06311A
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2015, 137, 37, 12110–12120
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.5b07863
    Published September 2, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    10k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.