ACS Publications. Most Trusted. Most Cited. Most Read
Synthesis of Functionalized 1,4-Azaborinines by the Cyclization of Di-tert-butyliminoborane and Alkynes
My Activity

Figure 1Loading Img
    Article

    Synthesis of Functionalized 1,4-Azaborinines by the Cyclization of Di-tert-butyliminoborane and Alkynes
    Click to copy article linkArticle link copied!

    View Author Information
    Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
    Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
    § Insitute für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
    Other Access OptionsSupporting Information (3)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2016, 138, 26, 8212–8220
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.6b04128
    Published June 10, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Di-tert-butyliminoborane is found to be a very useful synthon for the synthesis of a variety of functionalized 1,4-azaborinines by the Rh-mediated cyclization of iminoboranes with alkynes. The reactions proceed via [2 + 2] cycloaddition of iminoboranes and alkynes in the presence of [RhCl(PiPr3)2]2, which gives a rhodium η4-1,2-azaborete complex that yields 1,4-azaborinines upon reaction with acetylene. This reaction is compatible with substrates containing more than one alkynyl unit, cleanly affording compounds containing multiple 1,4-azaborinines. The substitution of terminal alkynes for acetylene also led to 1,4-azaborinines, enabling ring substitution at a predetermined location. We report the first general synthesis of this new methodology, which provides highly regioselective access to valuable 1,4-azaborinines in moderate yields. A mechanistic rationale for this reaction is supported by DFT calculations, which show the observed regioselectivity to arise from steric effects in the B–C bond coupling en route to the rhodium η4-1,2-azaborete complex and the selective oxidative cleavage of the B–N bond of the 1,2-azaborete ligand in its subsequent reaction with acetylene.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b04128.

    • Procedures and additional data (PDF)

    • Computed Cartesian coordinates (XYZ)

    • Crystallographic data for 3, 4, 6, 810, and 12 (CIF)

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 47 publications.

    1. Yanli Zhang, Wenlong Li, Ruijun Jiang, Lei Zhang, Yuanhao Li, Xiaoyang Xu, Xuguang Liu. Synthetic Doping of Acenaphthylene through BN/CC Isosterism and a Direct Comparison with BN-Acenaphthene. The Journal of Organic Chemistry 2022, 87 (19) , 12986-12996. https://doi.org/10.1021/acs.joc.2c01534
    2. Junyi Wang, Penghui Jia, Weicheng Sun, Yuxiang Wei, Zhenyang Lin, Qing Ye. Synthesis of Iminoboryl o-Carboranes by Lewis Base Promoted Aminoborirane-to-Iminoborane Isomerization. Inorganic Chemistry 2022, 61 (23) , 8879-8886. https://doi.org/10.1021/acs.inorgchem.2c00944
    3. Cameron R. McConnell, Fredrik Haeffner, Andrew W. Baggett, Shih-Yuan Liu. 1,2-Azaborine’s Distinct Electronic Structure Unlocks Two New Regioisomeric Building Blocks via Resolution Chemistry. Journal of the American Chemical Society 2019, 141 (22) , 9072-9078. https://doi.org/10.1021/jacs.9b03611
    4. Koichi Mitsudo, Keisuke Shigemori, Hiroki Mandai, Atsushi Wakamiya, Seiji Suga. Synthesis and Properties of Dithieno-Fused 1,4-Azaborine Derivatives. Organic Letters 2018, 20 (22) , 7336-7340. https://doi.org/10.1021/acs.orglett.8b03316
    5. Zachary X. Giustra and Shih-Yuan Liu . The State of the Art in Azaborine Chemistry: New Synthetic Methods and Applications. Journal of the American Chemical Society 2018, 140 (4) , 1184-1194. https://doi.org/10.1021/jacs.7b09446
    6. Deng-Tao Yang, Yonggang Shi, Tai Peng, and Suning Wang . BN-Heterocycles Bearing Two BN Units: Influence of the Linker and the Location of BN Units on Electronic Properties and Photoreactivity. Organometallics 2017, 36 (14) , 2654-2660. https://doi.org/10.1021/acs.organomet.7b00261
    7. Yong-gang Shi, Xiang Wang, Nan Wang, Tai Peng, and Suning Wang . Influence of Extended Conjugation on Photophysical/Electronic Properties and Photoelimination of BN-Heterocycles. Organometallics 2017, 36 (14) , 2677-2684. https://doi.org/10.1021/acs.organomet.7b00290
    8. Arumugam Jayaraman, Benedikt Ritschel, Merle Arrowsmith, Christian Markl, Malte Jürgensen, Anel Halkić, Yannick Konrad, Andreas Stoy, Krzysztof Radacki, Holger Braunschweig. Experimentelle Beobachtung eines terminalen Borylen‐Distickstoff‐Addukts durch Spaltung eines 1,2,3,4,5‐Diboratriazolins. Angewandte Chemie 2024, https://doi.org/10.1002/ange.202412307
    9. Arumugam Jayaraman, Benedikt Ritschel, Merle Arrowsmith, Christian Markl, Malte Jürgensen, Anel Halkić, Yannick Konrad, Andreas Stoy, Krzysztof Radacki, Holger Braunschweig. Experimental Observation of a Terminal Borylene‐Dinitrogen Adduct via Cleavage of a 1,2,3,4,5‐Diboratriazoline. Angewandte Chemie International Edition 2024, 59 https://doi.org/10.1002/anie.202412307
    10. Anna Lamprecht, Merle Arrowsmith, Maximilian Dietz, Sonja Fuchs, Anna Rempel, Marcel Härterich, Holger Braunschweig. Synthesis, reduction and C–H activation chemistry of azaborinines with redox-active organoboryl substituents. Dalton Transactions 2024, 53 (3) , 1004-1013. https://doi.org/10.1039/D3DT03826B
    11. Divanshu Gupta, Ralf Einholz, Holger F. Bettinger. Strain induced reactivity of cyclic iminoboranes: the (2 + 2) cycloaddition of a 1 H -1,3,2-diazaborepine with ethene. Chemical Science 2024, 15 (2) , 666-674. https://doi.org/10.1039/D3SC04901A
    12. Ke Jing, Panke Zhang, Senmiao Xu. Application of 1,4-Azaborines in Organic and Transition Metal Catalysis. Chinese Journal of Organic Chemistry 2023, 43 (5) , 1742. https://doi.org/10.6023/cjoc202301018
    13. Yonghao Fan, Jingjing Cui, Lingbing Kong. Recent Advances in the Chemistry of Iminoborane Derivatives. European Journal of Organic Chemistry 2022, 2022 (43) https://doi.org/10.1002/ejoc.202201086
    14. Cheng Chen, Cheng‐Zhuo Du, Xiao‐Ye Wang. The Rise of 1,4‐BN‐Heteroarenes: Synthesis, Properties, and Applications. Advanced Science 2022, 9 (19) https://doi.org/10.1002/advs.202200707
    15. Peng‐Fei Zhang, Jing‐Cai Zeng, Fang‐Dong Zhuang, Ke‐Xiang Zhao, Ze‐Hao Sun, Ze‐Fan Yao, Yang Lu, Xiao‐Ye Wang, Jie‐Yu Wang, Jian Pei. Parent B 2 N 2 ‐Perylenes with Different BN Orientations. Angewandte Chemie 2021, 133 (43) , 23501-23507. https://doi.org/10.1002/ange.202108519
    16. Peng‐Fei Zhang, Jing‐Cai Zeng, Fang‐Dong Zhuang, Ke‐Xiang Zhao, Ze‐Hao Sun, Ze‐Fan Yao, Yang Lu, Xiao‐Ye Wang, Jie‐Yu Wang, Jian Pei. Parent B 2 N 2 ‐Perylenes with Different BN Orientations. Angewandte Chemie International Edition 2021, 60 (43) , 23313-23319. https://doi.org/10.1002/anie.202108519
    17. Jun Li, Constantin G. Daniliuc, Jonas Matern, Gustavo Fernández, Gerald Kehr, Gerhard Erker. Multi-component synthesis of dihydro-1,3-azaborinine derived oxindole isosteres. Chemical Communications 2021, 57 (62) , 7689-7692. https://doi.org/10.1039/D1CC02557K
    18. Merlin Heß, Ivo Krummenacher, Theresa Dellermann, Holger Braunschweig. Rhodium‐Mediated Stoichiometric Synthesis of Mono‐, Bi‐, and Bis‐1,2‐Azaborinines: 1‐Rhoda‐3,2‐azaboroles as Reactive Precursors. Chemistry – A European Journal 2021, 27 (37) , 9503-9507. https://doi.org/10.1002/chem.202100795
    19. Alberto Abengózar, Patricia García-García, Manuel A. Fernández-Rodríguez, David Sucunza, Juan J. Vaquero. Recent developments in the chemistry of BN-aromatic hydrocarbons. 2021, 197-259. https://doi.org/10.1016/bs.aihch.2021.01.001
    20. Merlin Heß, Tom E. Stennett, Felipe Fantuzzi, Rüdiger Bertermann, Marvin Schock, Marius Schäfer, Torsten Thiess, Holger Braunschweig. Diverse ring-opening reactions of rhodium η 4 -azaborete complexes. Chemical Science 2020, 11 (34) , 9134-9140. https://doi.org/10.1039/D0SC02283G
    21. Marc Devillard, Gilles Alcaraz. The Chemistry of Multibonded Organoboron Compounds. 2020, 1-100. https://doi.org/10.1002/9780470682531.pat0972
    22. Ni Yan, Fengyan Wang, Junji Wei, Jiale Song, Luke Yan, Jishun Luo, Zhongyuan Fang, Zhijun Wang, Weidong Zhang, Gang He. Highly emissive B←N unit containing four-coordinate C,N-Chelated organoboron compound for the detection of fluoride ions. Dyes and Pigments 2019, 166 , 410-415. https://doi.org/10.1016/j.dyepig.2019.03.057
    23. James T. Goettel, Holger Braunschweig. Recent advances in boron-centered ligands and their transition metal complexes. Coordination Chemistry Reviews 2019, 380 , 184-200. https://doi.org/10.1016/j.ccr.2018.09.013
    24. Frieder Jäkle. Borylated Polystyrenes as Versatile Functional Materials. 2019, 59-76. https://doi.org/10.1007/978-981-13-2889-3_4
    25. Wen‐Ming Wan, Di Tian, Ya‐Nan Jing, Xiao‐Yun Zhang, Wei Wu, Hao Ren, Hong‐Li Bao. NBN‐Doped Conjugated Polycyclic Aromatic Hydrocarbons as an AIEgen Class for Extremely Sensitive Detection of Explosives. Angewandte Chemie 2018, 130 (47) , 15736-15742. https://doi.org/10.1002/ange.201809844
    26. Wen‐Ming Wan, Di Tian, Ya‐Nan Jing, Xiao‐Yun Zhang, Wei Wu, Hao Ren, Hong‐Li Bao. NBN‐Doped Conjugated Polycyclic Aromatic Hydrocarbons as an AIEgen Class for Extremely Sensitive Detection of Explosives. Angewandte Chemie International Edition 2018, 57 (47) , 15510-15516. https://doi.org/10.1002/anie.201809844
    27. Lena Winner, William C. Ewing, K. Geetharani, Theresa Dellermann, Brian Jouppi, Thomas Kupfer, Marius Schäfer, Holger Braunschweig. Spontaner metallfreier Wasserstofftransfer zwischen Amminboranen und Iminoboranen. Angewandte Chemie 2018, 130 (38) , 12455-12459. https://doi.org/10.1002/ange.201807435
    28. Lena Winner, William C. Ewing, K. Geetharani, Theresa Dellermann, Brian Jouppi, Thomas Kupfer, Marius Schäfer, Holger Braunschweig. Spontaneous Metal‐Free Transfer Hydrogenation of Iminoboranes with Ammonia Borane and Amine Boranes. Angewandte Chemie International Edition 2018, 57 (38) , 12275-12279. https://doi.org/10.1002/anie.201807435
    29. Zheng Wang, Yu Zhou, Jing‐Xuan Zhang, Ivo Krummenacher, Holger Braunschweig, Zhenyang Lin. DFT Studies on the Reactions of Boroles with Alkynes. Chemistry – A European Journal 2018, 24 (38) , 9612-9621. https://doi.org/10.1002/chem.201801094
    30. Lena Winner, Alexander Hermann, Guillaume Bélanger-Chabot, Oscar F. González-Belman, J. Oscar C. Jiménez-Halla, Hauke Kelch, Holger Braunschweig. Cleavage of BN triple bonds by main group reagents. Chemical Communications 2018, 54 (59) , 8210-8213. https://doi.org/10.1039/C8CC02317D
    31. Guillaume Bélanger‐Chabot, Holger Braunschweig, Dipak Kumar Roy. Recent Developments in Azaborinine Chemistry. European Journal of Inorganic Chemistry 2017, 2017 (38-39) , 4353-4368. https://doi.org/10.1002/ejic.201700562
    32. Marija Baranac‐Stojanović. 4π‐Electron B–N Monocycles: Stability and (Anti)aromaticity. European Journal of Organic Chemistry 2017, 2017 (34) , 5163-5169. https://doi.org/10.1002/ejoc.201700959
    33. Zheng Wang, Yu Zhou, Ka‐Ho Lee, Wai Han Lam, Rian D. Dewhurst, Holger Braunschweig, Todd B. Marder, Zhenyang Lin. DFT Studies of Dimerization Reactions of Boroles. Chemistry – A European Journal 2017, 23 (48) , 11587-11597. https://doi.org/10.1002/chem.201701737
    34. Amy N. Price, Gary S. Nichol, Michael J. Cowley. Phosphaborenes: Accessible Reagents for the Synthesis of C−C/P−B Isosteres. Angewandte Chemie 2017, 129 (33) , 10085-10089. https://doi.org/10.1002/ange.201705050
    35. Amy N. Price, Gary S. Nichol, Michael J. Cowley. Phosphaborenes: Accessible Reagents for the Synthesis of C−C/P−B Isosteres. Angewandte Chemie International Edition 2017, 56 (33) , 9953-9957. https://doi.org/10.1002/anie.201705050
    36. Marco Nutz, Bitupon Borthakur, Rian D. Dewhurst, Andrea Deißenberger, Theresa Dellermann, Marius Schäfer, Ivo Krummenacher, Ashwini K. Phukan, Holger Braunschweig. Synthese und Nachweis von Iminoboranen durch M=B/C=N‐Bindungsmetathese. Angewandte Chemie 2017, 129 (27) , 8084-8089. https://doi.org/10.1002/ange.201703324
    37. Marco Nutz, Bitupon Borthakur, Rian D. Dewhurst, Andrea Deißenberger, Theresa Dellermann, Marius Schäfer, Ivo Krummenacher, Ashwini K. Phukan, Holger Braunschweig. Synthesis and Trapping of Iminoboranes by M=B/C=N Bond Metathesis. Angewandte Chemie International Edition 2017, 56 (27) , 7975-7979. https://doi.org/10.1002/anie.201703324
    38. Holger Braunschweig, Rian D. Dewhurst, William C. Ewing, Maximilian W. Kuntze‐Fechner, Marius Schäfer. Isolation of a Reactive Cyclopropane Intermediate via a Unique Catalyst‐Free Spontaneous Cyclopropanation Step at 0 °C. Chemistry – A European Journal 2017, 23 (25) , 5953-5956. https://doi.org/10.1002/chem.201605514
    39. Peng Zhao, David O. Nettleton, Rajeshri G. Karki, Frédéric J. Zécri, Shih‐Yuan Liu. Medicinal Chemistry Profiling of Monocyclic 1,2‐Azaborines. ChemMedChem 2017, 12 (5) , 358-361. https://doi.org/10.1002/cmdc.201700047
    40. Thomas Lorenz, Merian Crumbach, Thomas Eckert, Artur Lik, Holger Helten. Poly( p ‐phenyleniminoboran): ein Bor‐Stickstoff‐Analogon von Poly( p ‐phenylenvinylen). Angewandte Chemie 2017, 129 (10) , 2824-2828. https://doi.org/10.1002/ange.201612476
    41. Thomas Lorenz, Merian Crumbach, Thomas Eckert, Artur Lik, Holger Helten. Poly( p ‐phenylene iminoborane): A Boron–Nitrogen Analogue of Poly( p ‐phenylene vinylene). Angewandte Chemie International Edition 2017, 56 (10) , 2780-2784. https://doi.org/10.1002/anie.201612476
    42. Rajarshi Dasgupta, Atanu Panda, Shiv Pal, Puthan Veetil Muhasina, Susmita De, Pattiyil Parameswaran, Shabana Khan. Catalyst free boron carbon bond cleavage and facile formation of five-membered PNBCC heterocycles. Dalton Transactions 2017, 46 (44) , 15190-15194. https://doi.org/10.1039/C7DT03565A
    43. Nicolas A. Riensch, Ayse Deniz, Sebastian Kühl, Lars Müller, Alina Adams, Andrij Pich, Holger Helten. Borazine-based inorganic–organic hybrid cyclomatrix microspheres by silicon/boron exchange precipitation polycondensation. Polymer Chemistry 2017, 8 (35) , 5264-5268. https://doi.org/10.1039/C7PY01006K
    44. Ozan Ayhan, Thomas Eckert, Felix A. Plamper, Holger Helten. Poly(iminoborane)s: An Elusive Class of Main‐Group Polymers?. Angewandte Chemie International Edition 2016, 55 (42) , 13321-13325. https://doi.org/10.1002/anie.201607131
    45. Ozan Ayhan, Thomas Eckert, Felix A. Plamper, Holger Helten. Poly(iminoborane): Eine schwer fassbare Klasse von anorganischen Hauptgruppenpolymeren?. Angewandte Chemie 2016, 128 (42) , 13515-13519. https://doi.org/10.1002/ange.201607131
    46. Wen-Ming Wan, Andrew W. Baggett, Fei Cheng, Huina Lin, Shih-Yuan Liu, Frieder Jäkle. Synthesis by free radical polymerization and properties of BN-polystyrene and BN-poly(vinylbiphenyl). Chemical Communications 2016, 52 (93) , 13616-13619. https://doi.org/10.1039/C6CC07332H
    47. Rüdiger Bertermann, Holger Braunschweig, Mehmet Ali Celik, Theresa Dellermann, Hauke Kelch. Cyclisation of biscarbenoids – a novel mode of cyclobutadiene stabilisation. Chemical Communications 2016, 52 (90) , 13249-13252. https://doi.org/10.1039/C6CC07741B

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2016, 138, 26, 8212–8220
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.6b04128
    Published June 10, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    2494

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.