ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Dual-Reporter Drift Correction To Enhance the Performance of Electrochemical Aptamer-Based Sensors in Whole Blood

View Author Information
Department of Chemistry and Biochemistry, University of California—Santa Barbara, Santa Barbara, California 93106, United States
Center for Bioengineering, University of California—Santa Barbara, Santa Barbara, California 93106, United States
§ Department of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
Consorzio Interuniversitario Biostrutture e Biosistemi “INBB”, Rome 00136, Italy
Cite this: J. Am. Chem. Soc. 2016, 138, 49, 15809–15812
Publication Date (Web):November 6, 2016
https://doi.org/10.1021/jacs.6b08671
Copyright © 2016 American Chemical Society

    Article Views

    4813

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The continuous, real-time monitoring of specific molecular targets in unprocessed clinical samples would enable many transformative medical applications. Electrochemical aptamer-based (E-AB) sensors appear to be a promising approach to this end because of their selectivity (performance in complex samples, such as serum) and reversible, single-step operation. E-AB sensors suffer, however, from often-severe baseline drift when challenged in undiluted whole blood. In response we report here a dual-reporter approach to performing E-AB baseline drift correction. The approach incorporates two redox reporters on the aptamer, one of which serves as the target-responsive sensor and the other, which reports at a distinct, nonoverlapping redox potential, serving as a drift-correcting reference. Taking the difference in their relative signals largely eliminates the drift observed for these sensors in flowing, undiluted whole blood, reducing drift of up to 50% to less than 2% over many hours of continuous operation under these challenging conditions.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b08671.

    • Detailed description of the experimental procedures, figures, and references (PDF)

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 105 publications.

    1. Shaoguang Li, Jun Dai, Man Zhu, Netzahualcóyotl Arroyo-Currás, Hongxing Li, Yuanyuan Wang, Quan Wang, Xiaoding Lou, Tod E. Kippin, Shixuan Wang, Kevin W. Plaxco, Hui Li, Fan Xia. Implantable Hydrogel-Protective DNA Aptamer-Based Sensor Supports Accurate, Continuous Electrochemical Analysis of Drugs at Multiple Sites in Living Rats. ACS Nano 2023, 17 (18) , 18525-18538. https://doi.org/10.1021/acsnano.3c06520
    2. Ya-Chen Tsai, Wei-Yang Weng, Yu-Tung Yeh, Jun-Chau Chien. Dual-Aptamer Drift Canceling Techniques to Improve Long-Term Stability of Real-Time Structure-Switching Aptasensors. ACS Sensors 2023, 8 (9) , 3380-3388. https://doi.org/10.1021/acssensors.3c00509
    3. David Kodr, Mayreli Ortiz, Veronika Sýkorová, Cansu Pinar Yenice, Zbigniew J. Lesnikowski, Ciara K. O’Sullivan, Michal Hocek. Normalized Multipotential Redox Coding of DNA Bases for Determination of Total Nucleotide Composition. Analytical Chemistry 2023, 95 (34) , 12586-12589. https://doi.org/10.1021/acs.analchem.3c02023
    4. Shaoguang Li, Hongyuan Zhang, Man Zhu, Zhujun Kuang, Xun Li, Fan Xu, Siyuan Miao, Zishuo Zhang, Xiaoding Lou, Hui Li, Fan Xia. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chemical Reviews 2023, 123 (12) , 7953-8039. https://doi.org/10.1021/acs.chemrev.1c00759
    5. Man Zhu, Zhujun Kuang, Fan Xu, Shaoguang Li, Hui Li, Fan Xia. Employing a Redox Reporter-Modified Self-Assembly Monolayer in Electrochemical Aptamer-Based Sensors to Enable Calibration-Free Measurements. ACS Applied Bio Materials 2023, 6 (4) , 1586-1593. https://doi.org/10.1021/acsabm.3c00001
    6. Zishuo Zhang, Yuanyuan Wang, Ziyin Mei, Yiming Wang, Hui Li, Shaoguang Li, Fan Xia. Incorporating Hydrophobic Moieties into Self-Assembled Monolayers to Enable Electrochemical Aptamer-Based Sensors Deployed Directly in a Complex Matrix. ACS Sensors 2022, 7 (9) , 2615-2624. https://doi.org/10.1021/acssensors.2c00995
    7. Gyeongho Kim, Hyejin Cho, Ponnusamy Nandhakumar, Jin Kyoon Park, Kwang-Sun Kim, Haesik Yang. Wash-Free, Sandwich-Type Protein Detection Using Direct Electron Transfer and Catalytic Signal Amplification of Multiple Redox Labels. Analytical Chemistry 2022, 94 (4) , 2163-2171. https://doi.org/10.1021/acs.analchem.1c04615
    8. Rahul Tevatia, Alicia Chan, Lance Oltmanns, Jay Min Lim, Ander Christensen, Michael Stoller, Ravi F. Saraf. Electrochemical Beacon Method to Quantify 10 Attomolar Nucleic Acids with a Semilog Dynamic Range of 7 Orders of Magnitude. Analytical Chemistry 2021, 93 (49) , 16409-16416. https://doi.org/10.1021/acs.analchem.1c03020
    9. Min Li, Fangfei Yin, Lu Song, Xiuhai Mao, Fan Li, Chunhai Fan, Xiaolei Zuo, Qiang Xia. Nucleic Acid Tests for Clinical Translation. Chemical Reviews 2021, 121 (17) , 10469-10558. https://doi.org/10.1021/acs.chemrev.1c00241
    10. Zhijuan Duan, Liuxi Tan, Ruilin Duan, Mengxi Chen, Fan Xia, Fujian Huang. Photoactivated Biosensing Process for Dictated ATP Detection in Single Living Cells. Analytical Chemistry 2021, 93 (33) , 11547-11556. https://doi.org/10.1021/acs.analchem.1c02049
    11. Shaoguang Li, Hongxing Li, Xun Li, Man Zhu, Hui Li, Fan Xia. Hybridization Chain Reaction-Amplified Electrochemical DNA-Based Sensors Enable Calibration-Free Measurements of Nucleic Acids Directly in Whole Blood. Analytical Chemistry 2021, 93 (23) , 8354-8361. https://doi.org/10.1021/acs.analchem.1c01436
    12. David Kodr, Cansu Pinar Yenice, Anna Simonova, Dijana Pavlović Saftić, Radek Pohl, Veronika Sýkorová, Mayreli Ortiz, Ludĕk Havran, Miroslav Fojta, Zbigniew J. Lesnikowski, Ciara K. O’Sullivan, Michal Hocek. Carborane- or Metallacarborane-Linked Nucleotides for Redox Labeling. Orthogonal Multipotential Coding of all Four DNA Bases for Electrochemical Analysis and Sequencing. Journal of the American Chemical Society 2021, 143 (18) , 7124-7134. https://doi.org/10.1021/jacs.1c02222
    13. Shaoguang Li, Yuanyuan Wang, Zishuo Zhang, Yiming Wang, Hui Li, Fan Xia. Exploring End-Group Effect of Alkanethiol Self-Assembled Monolayers on Electrochemical Aptamer-Based Sensors in Biological Fluids. Analytical Chemistry 2021, 93 (14) , 5849-5855. https://doi.org/10.1021/acs.analchem.1c00085
    14. Shaoguang Li, Chengcheng Li, Yuanyuan Wang, Hui Li, Fan Xia. Re-engineering Electrochemical Aptamer-Based Biosensors to Tune Their Useful Dynamic Range via Distal-Site Mutation and Allosteric Inhibition. Analytical Chemistry 2020, 92 (19) , 13427-13433. https://doi.org/10.1021/acs.analchem.0c02782
    15. Alexander Shaver, Samuel D. Curtis, Netzahualcóyotl Arroyo-Currás. Alkanethiol Monolayer End Groups Affect the Long-Term Operational Stability and Signaling of Electrochemical, Aptamer-Based Sensors in Biological Fluids. ACS Applied Materials & Interfaces 2020, 12 (9) , 11214-11223. https://doi.org/10.1021/acsami.9b22385
    16. Min Qing, Shengliang Chen, Shunbi Xie, Ying Tang, Jin Zhang, Ruo Yuan. Encapsulation and Release of Recognition Probes Based on a Rigid Three-Dimensional DNA “Nanosafe-box” for Construction of a Electrochemical Biosensor. Analytical Chemistry 2020, 92 (2) , 1811-1817. https://doi.org/10.1021/acs.analchem.9b03627
    17. Cong Xu, Fei Wu, Ping Yu, Lanqun Mao. In Vivo Electrochemical Sensors for Neurochemicals: Recent Update. ACS Sensors 2019, 4 (12) , 3102-3118. https://doi.org/10.1021/acssensors.9b01713
    18. Yao Wu, Israel Belmonte, Kiana S. Sykes, Yi Xiao, Ryan J. White. Perspective on the Future Role of Aptamers in Analytical Chemistry. Analytical Chemistry 2019, 91 (24) , 15335-15344. https://doi.org/10.1021/acs.analchem.9b03853
    19. Mark D. Holtan, Subramaniam Somasundaram, Niamat Khuda, Christopher J. Easley. Nonfaradaic Current Suppression in DNA-Based Electrochemical Assays with a Differential Potentiostat. Analytical Chemistry 2019, 91 (24) , 15833-15839. https://doi.org/10.1021/acs.analchem.9b04149
    20. Mengying Deng, Min Li, Fan Li, Xiuhai Mao, Qian Li, Jianlei Shen, Chunhai Fan, Xiaolei Zuo. Programming Accessibility of DNA Monolayers for Degradation-Free Whole-Blood Biosensors. ACS Materials Letters 2019, 1 (6) , 671-676. https://doi.org/10.1021/acsmaterialslett.9b00404
    21. Jiancong Ni, Hua Lin, Weiqiang Yang, Yuhui Liao, Qingxiang Wang, Fang Luo, Longhua Guo, Bin Qiu, Zhenyu Lin. Homogeneous Electrochemiluminescence Biosensor for the Detection of RNase A Activity and Its Inhibitor. Analytical Chemistry 2019, 91 (22) , 14751-14756. https://doi.org/10.1021/acs.analchem.9b04194
    22. Mirelis Santos-Cancel, Laura W. Simpson, Jennie B. Leach, Ryan J. White. Direct, Real-Time Detection of Adenosine Triphosphate Release from Astrocytes in Three-Dimensional Culture Using an Integrated Electrochemical Aptamer-Based Sensor. ACS Chemical Neuroscience 2019, 10 (4) , 2070-2079. https://doi.org/10.1021/acschemneuro.9b00033
    23. Isabel Álvarez-Martos, Arne Møller, Elena E. Ferapontova. Dopamine Binding and Analysis in Undiluted Human Serum and Blood by the RNA-Aptamer Electrode. ACS Chemical Neuroscience 2019, 10 (3) , 1706-1715. https://doi.org/10.1021/acschemneuro.8b00616
    24. Yao Wu, Beksultan Midinov, Ryan J. White. Electrochemical Aptamer-Based Sensor for Real-Time Monitoring of Insulin. ACS Sensors 2019, 4 (2) , 498-503. https://doi.org/10.1021/acssensors.8b01573
    25. Herschel M. Watkins, Francesco Ricci, Kevin W. Plaxco. Experimental Measurement of Surface Charge Effects on the Stability of a Surface-Bound Biopolymer. Langmuir 2018, 34 (49) , 14993-14999. https://doi.org/10.1021/acs.langmuir.8b01004
    26. Frances D. Morris, Eric M. Peterson, Jennifer M. Heemstra, Joel M. Harris. Single-Molecule Kinetic Investigation of Cocaine-Dependent Split-Aptamer Assembly. Analytical Chemistry 2018, 90 (21) , 12964-12970. https://doi.org/10.1021/acs.analchem.8b03637
    27. Hui Li, Jacob Somerson, Fan Xia, Kevin W. Plaxco. Electrochemical DNA-Based Sensors for Molecular Quality Control: Continuous, Real-Time Melamine Detection in Flowing Whole Milk. Analytical Chemistry 2018, 90 (18) , 10641-10645. https://doi.org/10.1021/acs.analchem.8b01993
    28. Netzahualcóyotl Arroyo-Currás, Philippe Dauphin-Ducharme, Gabriel Ortega, Kyle L. Ploense, Tod E. Kippin, and Kevin W. Plaxco . Subsecond-Resolved Molecular Measurements in the Living Body Using Chronoamperometrically Interrogated Aptamer-Based Sensors. ACS Sensors 2018, 3 (2) , 360-366. https://doi.org/10.1021/acssensors.7b00787
    29. Saimon Moraes Silva, Roya Tavallaie, Vinicius R. Gonçales, Robert H. Utama, Mehran B. Kashi, D. Brynn Hibbert, Richard D. Tilley, and J. Justin Gooding . Dual Signaling DNA Electrochemistry: An Approach To Understand DNA Interfaces. Langmuir 2018, 34 (4) , 1249-1255. https://doi.org/10.1021/acs.langmuir.7b02787
    30. Rui Liu, Chaoqun Wang, Yuming Xu, Jianyu Hu, Dongyan Deng, and Yi Lv . Label-Free DNA Assay by Metal Stable Isotope Detection. Analytical Chemistry 2017, 89 (24) , 13269-13274. https://doi.org/10.1021/acs.analchem.7b03327
    31. Jingjing Zhang, Lukas P. Smaga, Nitya Sai Reddy Satyavolu, Jefferson Chan, and Yi Lu . DNA Aptamer-Based Activatable Probes for Photoacoustic Imaging in Living Mice. Journal of the American Chemical Society 2017, 139 (48) , 17225-17228. https://doi.org/10.1021/jacs.7b07913
    32. Tianxiang Wei, Tingting Dong, Hong Xing, Ying Liu, and Zhihui Dai . Cucurbituril and Azide Cofunctionalized Graphene Oxide for Ultrasensitive Electro-Click Biosensing. Analytical Chemistry 2017, 89 (22) , 12237-12243. https://doi.org/10.1021/acs.analchem.7b03068
    33. Hui Li, Philippe Dauphin-Ducharme, Gabriel Ortega, and Kevin W. Plaxco . Calibration-Free Electrochemical Biosensors Supporting Accurate Molecular Measurements Directly in Undiluted Whole Blood. Journal of the American Chemical Society 2017, 139 (32) , 11207-11213. https://doi.org/10.1021/jacs.7b05412
    34. Sahar S. Mahshid, Francesco Ricci, Shana O. Kelley, and Alexis Vallée-Bélisle . Electrochemical DNA-Based Immunoassay That Employs Steric Hindrance To Detect Small Molecules Directly in Whole Blood. ACS Sensors 2017, 2 (6) , 718-723. https://doi.org/10.1021/acssensors.7b00176
    35. Xiaoxuan Xu, Yimei Zuo, Shu Chen, Amir Hatami, Hui Gu. Advancements in Brain Research: The In Vivo/In Vitro Electrochemical Detection of Neurochemicals. Biosensors 2024, 14 (3) , 125. https://doi.org/10.3390/bios14030125
    36. Haowei Duan, Shi-Yang Tang, Keisuke Goda, Ming Li. Enhancing the sensitivity and stability of electrochemical aptamer-based sensors by AuNPs@MXene nanocomposite for continuous monitoring of biomarkers. Biosensors and Bioelectronics 2024, 246 , 115918. https://doi.org/10.1016/j.bios.2023.115918
    37. Celeste R. Rousseau, Hope Kumakli, Ryan J. White. Perspective—Assessing Electrochemical, Aptamer-Based Sensors for Dynamic Monitoring of Cellular Signaling. ECS Sensors Plus 2023, 2 (4) , 042401. https://doi.org/10.1149/2754-2726/ad15a1
    38. Yecheol Bak, Tikum Florence Anjong, Jihwan Park, Sang Hyeon Jeon, Jihwan Kim, Kangwon Lee, Iksoo Shin, Sehoon Kim. Monitoring disease-implicated hydrogen sulfide in blood using a facile deproteinization-based electrochemiluminescence chemosensor system. Sensors and Actuators B: Chemical 2023, 394 , 134364. https://doi.org/10.1016/j.snb.2023.134364
    39. Nicolas Fontaine, Philippe Dauphin-Ducharme. Confounding effects on the response of electrochemical aptamer-based biosensors. Current Opinion in Electrochemistry 2023, 41 , 101361. https://doi.org/10.1016/j.coelec.2023.101361
    40. Philippe Dauphin‐Ducharme, Zachary R. Churcher, Aron A. Shoara, Erfan Rahbarimehr, Sladjana Slavkovic, Nicolas Fontaine, Olivia Boisvert, Philip E. Johnson. Redox Reporter ‐ Ligand Competition to Support Signaling in the Cocaine‐Binding Electrochemical Aptamer‐Based Biosensor. Chemistry – A European Journal 2023, 29 (35) https://doi.org/10.1002/chem.202300618
    41. Alexander Shaver, Netzahualcóyotl Arroyo-Currás. Expanding the Monolayer Scope for Nucleic Acid-Based Electrochemical Sensors Beyond Thiols on Gold: Alkylphosphonic Acids on ITO. ECS Sensors Plus 2023, 2 (1) , 010601. https://doi.org/10.1149/2754-2726/acc4d9
    42. Xuewei Du, Wanxue Zhang, Suyan Yi, Hui Li, Shaoguang Li, Fan Xia. Electrochemical Biosensors and the Signaling. 2023, 17-37. https://doi.org/10.1007/978-981-99-5644-9_2
    43. Zhenjuan Xu, Peipei Li, Haoyu Chen, Xiaohua Zhu, Youyu Zhang, Meiling Liu, Shouzhuo Yao. Picomolar glutathione detection based on the dual-signal self-calibration electrochemical sensor of ferrocene-functionalized copper metal-organic framework via solid-state electrochemistry of cuprous chloride. Journal of Colloid and Interface Science 2022, 628 , 798-806. https://doi.org/10.1016/j.jcis.2022.08.107
    44. Nicolò Maganzini, Ian Thompson, Brandon Wilson, Hyongsok Tom Soh. Pre-equilibrium biosensors as an approach towards rapid and continuous molecular measurements. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-34778-5
    45. Yihan Wang, Huan Feng, Ke Huang, Jinfeng Quan, Fangfang Yu, Xiaohui Liu, Hui Jiang, Xuemei Wang. Target-triggered hybridization chain reaction for ultrasensitive dual-signal miRNA detection. Biosensors and Bioelectronics 2022, 215 , 114572. https://doi.org/10.1016/j.bios.2022.114572
    46. Alejandro Chamorro-Garcia, Claudio Parolo, Gabriel Ortega, Andrea Idili, Joshua Green, Francesco Ricci, Kevin W. Plaxco. The sequestration mechanism as a generalizable approach to improve the sensitivity of biosensors and bioassays. Chemical Science 2022, 13 (41) , 12219-12228. https://doi.org/10.1039/D2SC03901J
    47. Adam McHenry, Mark Friedel, Jason Heikenfeld. Voltammetry Peak Tracking for Longer-Lasting and Reference-Electrode-Free Electrochemical Biosensors. Biosensors 2022, 12 (10) , 782. https://doi.org/10.3390/bios12100782
    48. Shaoguang Li, Andrés Ferrer-Ruiz, Jun Dai, Javier Ramos-Soriano, Xuewei Du, Man Zhu, Wanxue Zhang, Yuanyuan Wang, M. Ángeles Herranz, Le Jing, Zishuo Zhang, Hui Li, Fan Xia, Nazario Martín. A pH-independent electrochemical aptamer-based biosensor supports quantitative, real-time measurement in vivo. Chemical Science 2022, 13 (30) , 8813-8820. https://doi.org/10.1039/D2SC02021A
    49. Miguel Aller Pellitero, Netzahualcóyotl Arroyo-Currás. Study of surface modification strategies to create glassy carbon-supported, aptamer-based sensors for continuous molecular monitoring. Analytical and Bioanalytical Chemistry 2022, 414 (18) , 5627-5641. https://doi.org/10.1007/s00216-022-04015-5
    50. Tao Yao, Jiejie Feng, Qichen Xiong, Changshun Chu, Yang Xu, Zhanfang Ma, Hongliang Han. Regenerating electrochemical detection platform by electro-oxidation mediated host–guest dissociation between 6-mercapto-6-deoxy-β-cyclodextrin and N,N-dimethylaminomethylferrocene. Chemical Engineering Journal 2022, 439 , 135599. https://doi.org/10.1016/j.cej.2022.135599
    51. Rebecca Bockholt, Shaleen Paschke, Lars Heubner, Bergoi Ibarlucea, Alexander Laupp, Željko Janićijević, Stephanie Klinghammer, Sascha Balakin, Manfred F. Maitz, Carsten Werner, Gianaurelio Cuniberti, Larysa Baraban, Peter Markus Spieth. Real-Time Monitoring of Blood Parameters in the Intensive Care Unit: State-of-the-Art and Perspectives. Journal of Clinical Medicine 2022, 11 (9) , 2408. https://doi.org/10.3390/jcm11092408
    52. Annelies Dillen, Jeroen Lammertyn. Paving the way towards continuous biosensing by implementing affinity-based nanoswitches on state-dependent readout platforms. The Analyst 2022, 147 (6) , 1006-1023. https://doi.org/10.1039/D1AN02308J
    53. Madoka Nagata, Jinhee Lee, Stephen Henley, Kazunori Ikebukuro, Koji Sode. An Amine-Reactive Phenazine Ethosulfate (arPES)—A Novel Redox Probe for Electrochemical Aptamer-Based Sensor. Sensors 2022, 22 (5) , 1760. https://doi.org/10.3390/s22051760
    54. Hao Fan, Yani He, Qingxia Shu, Xinru Wang, Hanfeng Cui, Yuping Hu, Guobing Wei, Huanhuan Dong, Jing Zhang, Nian Hong. Three-dimensional self-powered DNA walking machine based on catalyzed hairpin assembly energy transfer strategy. Analytical Biochemistry 2022, 639 , 114529. https://doi.org/10.1016/j.ab.2021.114529
    55. Yao Xu, Shu-wei Huang, Yu-qiang Ma, Hong-ming Ding. Loading of DOX into a tetrahedral DNA nanostructure: the corner does matter. Nanoscale Advances 2022, 4 (3) , 754-760. https://doi.org/10.1039/D1NA00753J
    56. Zheshun Xiong, Kewei Ren, Matthew Donnelly, Mingxu You, Guangyu Xu. Spectrally filtered photodiode pairs for on-chip ratiometric aptasensing of cytokine dynamics. Sensors and Actuators B: Chemical 2021, 345 , 130330. https://doi.org/10.1016/j.snb.2021.130330
    57. Ying Jin, Xin Li, Ying Jiang. Selectively Probing Neurochemicals in Living Animals with Electrochemical Systems. ChemNanoMat 2021, 7 (5) , 489-501. https://doi.org/10.1002/cnma.202100035
    58. Yan Sheng, Tenghua Zhang, Shihong Zhang, Midori Johnston, Xiaohe Zheng, Yuanyue Shan, Tong Liu, Zena Huang, Feiyang Qian, Zihui Xie, Yiru Ai, Hankang Zhong, Tairong Kuang, Can Dincer, Gerald Anton Urban, Jiaming Hu. A CRISPR/Cas13a-powered catalytic electrochemical biosensor for successive and highly sensitive RNA diagnostics. Biosensors and Bioelectronics 2021, 178 , 113027. https://doi.org/10.1016/j.bios.2021.113027
    59. Sam A. Spring, Sean Goggins, Christopher G. Frost. Ratiometric Electrochemistry: Improving the Robustness, Reproducibility and Reliability of Biosensors. Molecules 2021, 26 (8) , 2130. https://doi.org/10.3390/molecules26082130
    60. Sumin Bian, Bowen Zhu, Guoguang Rong, Mohamad Sawan. Towards wearable and implantable continuous drug monitoring: A review. Journal of Pharmaceutical Analysis 2021, 11 (1) , 1-14. https://doi.org/10.1016/j.jpha.2020.08.001
    61. Christopher Edozie Sunday, Mahabubur Chowdhury. Review—Aptamer-Based Electrochemical Sensing Strategies for Breast Cancer. Journal of The Electrochemical Society 2021, 168 (2) , 027511. https://doi.org/10.1149/1945-7111/abe34d
    62. Margarita Vázquez-González, Itamar Willner. Aptamer-Functionalized Hybrid Nanostructures for Sensing, Drug Delivery, Catalysis and Mechanical Applications. International Journal of Molecular Sciences 2021, 22 (4) , 1803. https://doi.org/10.3390/ijms22041803
    63. Chao Tan, Elaine M. Robbins, Bingchen Wu, Xinyan Tracy Cui. Recent Advances in In Vivo Neurochemical Monitoring. Micromachines 2021, 12 (2) , 208. https://doi.org/10.3390/mi12020208
    64. Shaoguang Li, Lancy Lin, Xueman Chang, Zhixiao Si, Kevin W. Plaxco, Michelle Khine, Hui Li, Fan Xia. A wrinkled structure of gold film greatly improves the signaling of electrochemical aptamer-based biosensors. RSC Advances 2021, 11 (2) , 671-677. https://doi.org/10.1039/D0RA09174J
    65. Hualan Zhou, Xiaodi Li, Lehui Wang, Yingfang Liang, Aikedan Jialading, Zishuo Wang, Jianguo Zhang. Application of SERS quantitative analysis method in food safety detection. Reviews in Analytical Chemistry 2021, 40 (1) , 173-186. https://doi.org/10.1515/revac-2021-0132
    66. Hiroto Fujita, Yuka Kataoka, Masayasu Kuwahara. Bifunctional Aptamer Drug Carrier Enabling Selective and Efficient Incorporation of an Approved Anticancer Drug Irinotecan to Fibrin Gels. Applied Sciences 2020, 10 (23) , 8755. https://doi.org/10.3390/app10238755
    67. Hyebin Yoo, Hyesung Jo, Seung Soo Oh. Detection and beyond: challenges and advances in aptamer-based biosensors. Materials Advances 2020, 1 (8) , 2663-2687. https://doi.org/10.1039/D0MA00639D
    68. Hui Dong, Yanli Zhou, Yuanqiang Hao, Le Zhao, Shuo Sun, Yintang Zhang, Baoxian Ye, Maotian Xu. “Turn-on” ratiometric electrochemical detection of H2O2 in one drop of whole blood sample via a novel microelectrode sensor. Biosensors and Bioelectronics 2020, 165 , 112402. https://doi.org/10.1016/j.bios.2020.112402
    69. Ting Guo, Changtong Wu, Andreas Offenhäusser, Dirk Mayer. A Novel Ratiometric Electrochemical Biosensor Based on a Split Aptamer for the Detection of Dopamine with Logic Gate Operations. physica status solidi (a) 2020, 217 (13) https://doi.org/10.1002/pssa.201900924
    70. Wei Xu, Tian Jin, Yifan Dai, Chung Chiun Liu. Surpassing the detection limit and accuracy of the electrochemical DNA sensor through the application of CRISPR Cas systems. Biosensors and Bioelectronics 2020, 155 , 112100. https://doi.org/10.1016/j.bios.2020.112100
    71. Mengying Deng, Min Li, Xiuhai Mao, Fan Li, Xiaolei Zuo. Nucleic Acid Nanoprobes for Biosensor Development in Complex Matrices. Chemical Research in Chinese Universities 2020, 36 (2) , 185-193. https://doi.org/10.1007/s40242-020-9073-x
    72. Netzahualcoyotl Arroyo-Currás, Philippe Dauphin-Ducharme, Karen Scida, Jorge L. Chávez. From the beaker to the body: translational challenges for electrochemical, aptamer-based sensors. Analytical Methods 2020, 12 (10) , 1288-1310. https://doi.org/10.1039/D0AY00026D
    73. Wei Zhang, Ruiguo Wang, Fang Luo, Peilong Wang, Zhenyu Lin. Miniaturized electrochemical sensors and their point-of-care applications. Chinese Chemical Letters 2020, 31 (3) , 589-600. https://doi.org/10.1016/j.cclet.2019.09.022
    74. Miguel Aller Pellitero, Alexander Shaver, Netzahualcóyotl Arroyo-Currás. Critical Review—Approaches for the Electrochemical Interrogation of DNA-Based Sensors: A Critical Review. Journal of The Electrochemical Society 2020, 167 (3) , 037529. https://doi.org/10.1149/2.0292003JES
    75. Hui Li, Shaoguang Li, Jun Dai, Chengcheng Li, Man Zhu, Hongxing Li, Xiaoding Lou, Fan Xia, Kevin W. Plaxco. High frequency, calibration-free molecular measurements in situ in the living body. Chemical Science 2019, 10 (47) , 10843-10848. https://doi.org/10.1039/C9SC04434E
    76. Shaolin Liang, Andrew B. Kinghorn, Margaritis Voliotis, Julia K. Prague, Johannes D. Veldhuis, Krasimira Tsaneva-Atanasova, Craig A. McArdle, Raymond H. W. Li, Anthony E. G. Cass, Waljit S. Dhillo, Julian A. Tanner. Measuring luteinising hormone pulsatility with a robotic aptamer-enabled electrochemical reader. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-08799-6
    77. Rozenblum, Pollitzer, Radrizzani. Challenges in Electrochemical Aptasensors and Current Sensing Architectures Using Flat Gold Surfaces. Chemosensors 2019, 7 (4) , 57. https://doi.org/10.3390/chemosensors7040057
    78. Karen Scida, Kevin W. Plaxco, Brian G. Jamieson. High frequency, real-time neurochemical and neuropharmacological measurements in situ in the living body. Translational Research 2019, 213 , 50-66. https://doi.org/10.1016/j.trsl.2019.07.004
    79. Yong Zhang, Xiaoyuan Chen. Nanotechnology and nanomaterial-based no-wash electrochemical biosensors: from design to application. Nanoscale 2019, 11 (41) , 19105-19118. https://doi.org/10.1039/C9NR05696C
    80. Masayasu Kuwahara, Hiroto Fujita, Yuka Kataoka, Yasuyo Nakajima, Masanobu Yamada, Naoki Sugimoto. In situ condensation of an anti-cancer drug into fibrin gel enabling effective inhibition of tumor cell growth. Chemical Communications 2019, 55 (78) , 11679-11682. https://doi.org/10.1039/C9CC06418D
    81. Wenjing Wang, Sha Yu, Shan Huang, Sai Bi, Heyou Han, Jian-Rong Zhang, Yi Lu, Jun-Jie Zhu. Bioapplications of DNA nanotechnology at the solid–liquid interface. Chemical Society Reviews 2019, 48 (18) , 4892-4920. https://doi.org/10.1039/C8CS00402A
    82. Zhiguang Suo, Jingqi Chen, Xialing Hou, Ziheng Hu, Feifei Xing, Lingyan Feng. Growing prospects of DNA nanomaterials in novel biomedical applications. RSC Advances 2019, 9 (29) , 16479-16491. https://doi.org/10.1039/C9RA01261C
    83. Lukasz Poltorak, Ernst J.R. Sudhölter, Marcel de Puit. Electrochemical cocaine (bio)sensing. From solid electrodes to soft junctions. TrAC Trends in Analytical Chemistry 2019, 114 , 48-55. https://doi.org/10.1016/j.trac.2019.02.025
    84. Ying Liu, Zhencai Zhu, Chao Wang, Rui Gao, Xiaoyan Yang, Shufeng Liu. Responsive surface bioaffinity binding to construct flexible and sensitive electrochemical aptasensors. The Analyst 2019, 144 (6) , 2130-2137. https://doi.org/10.1039/C8AN02313A
    85. Juncai Zhao, Di Shu, Zhanfang Ma. Target-inspired Zn2+-dependent DNAzyme for ultrasensitive impedimetric aptasensor based on polyacrylic acid nanogel as amplifier. Biosensors and Bioelectronics 2019, 127 , 161-166. https://doi.org/10.1016/j.bios.2018.12.030
    86. Yue Zheng, Yunwang Zhao, Ya Di, Chenlin Xiu, Lei He, Shiqi Liao, Dongdong Li, Baihai Huang. DNA aptamers from whole-serum SELEX as new diagnostic agents against gastric cancer. RSC Advances 2019, 9 (2) , 950-957. https://doi.org/10.1039/C8RA08642G
    87. Ann‐Kathrin Schneider, Christof M. Niemeyer. DNA Surface Technology: From Gene Sensors to Integrated Systems for Life and Materials Sciences. Angewandte Chemie 2018, 130 (52) , 17204-17212. https://doi.org/10.1002/ange.201811713
    88. Ann‐Kathrin Schneider, Christof M. Niemeyer. DNA Surface Technology: From Gene Sensors to Integrated Systems for Life and Materials Sciences. Angewandte Chemie International Edition 2018, 57 (52) , 16959-16967. https://doi.org/10.1002/anie.201811713
    89. Baoting Dou, Jin Li, Bingying Jiang, Ruo Yuan, Yun Xiang. Electrochemical screening of single nucleotide polymorphisms with significantly enhanced discrimination factor by an amplified ratiometric sensor. Analytica Chimica Acta 2018, 1038 , 166-172. https://doi.org/10.1016/j.aca.2018.07.027
    90. Chia-Wei Liu, Tien-Chun Tsai, Masatoshi Osawa, Hsien-Chang Chang, Ruey-Jen Yang. Aptamer-based sensor for quantitative detection of mercury (II) ions by attenuated total reflection surface enhanced infrared absorption spectroscopy. Analytica Chimica Acta 2018, 1033 , 137-147. https://doi.org/10.1016/j.aca.2018.05.037
    91. Beibei Shan, Yuhan Pu, Yingfan Chen, Mengling Liao, Ming Li. Novel SERS labels: Rational design, functional integration and biomedical applications. Coordination Chemistry Reviews 2018, 371 , 11-37. https://doi.org/10.1016/j.ccr.2018.05.007
    92. Hunter J. Sismaet, Edgar D. Goluch. Electrochemical Probes of Microbial Community Behavior. Annual Review of Analytical Chemistry 2018, 11 (1) , 441-461. https://doi.org/10.1146/annurev-anchem-061417-125627
    93. Dongsheng Zhang, Weixiang Li, Zhanfang Ma. Improved sandwich-format electrochemical immunosensor based on “smart” SiO2@polydopamine nanocarrier. Biosensors and Bioelectronics 2018, 109 , 171-176. https://doi.org/10.1016/j.bios.2018.03.027
    94. Jing Zhang, Liang-Liang Wang, Mei-Feng Hou, Yao-Kun Xia, Wen-Hui He, An Yan, Yun-Ping Weng, Lu-Peng Zeng, Jing-Hua Chen. A ratiometric electrochemical biosensor for the exosomal microRNAs detection based on bipedal DNA walkers propelled by locked nucleic acid modified toehold mediate strand displacement reaction. Biosensors and Bioelectronics 2018, 102 , 33-40. https://doi.org/10.1016/j.bios.2017.10.050
    95. Chunyan Sun, Ruifang Su, Jiaxin Bie, Hongjing Sun, Shangna Qiao, Xinyue Ma, Rui Sun, Tiehua Zhang. Label-free fluorescent sensor based on aptamer and thiazole orange for the detection of tetracycline. Dyes and Pigments 2018, 149 , 867-875. https://doi.org/10.1016/j.dyepig.2017.11.031
    96. Meihua Lin, Xiaolei Zuo. Electrochemical Sandwich Assays for Nucleic Acid Detection. 2018, 127-147. https://doi.org/10.1007/978-981-10-7835-4_8
    97. Scott G. Harroun, Carl Prévost-Tremblay, Dominic Lauzon, Arnaud Desrosiers, Xiaomeng Wang, Liliana Pedro, Alexis Vallée-Bélisle. Programmable DNA switches and their applications. Nanoscale 2018, 10 (10) , 4607-4641. https://doi.org/10.1039/C7NR07348H
    98. Chao Li, Xiaolu Hu, Jianyang Lu, Xiaoxia Mao, Yang Xiang, Yongqian Shu, Genxi Li. Design of DNA nanostructure-based interfacial probes for the electrochemical detection of nucleic acids directly in whole blood. Chemical Science 2018, 9 (4) , 979-984. https://doi.org/10.1039/C7SC04663D
    99. Hui Li, Philippe Dauphin‐Ducharme, Netzahualcóyotl Arroyo‐Currás, Claire H. Tran, Philip A. Vieira, Shaoguang Li, Christina Shin, Jacob Somerson, Tod E. Kippin, Kevin W. Plaxco. A Biomimetic Phosphatidylcholine‐Terminated Monolayer Greatly Improves the In Vivo Performance of Electrochemical Aptamer‐Based Sensors. Angewandte Chemie 2017, 129 (26) , 7600-7603. https://doi.org/10.1002/ange.201700748
    100. Hui Li, Philippe Dauphin‐Ducharme, Netzahualcóyotl Arroyo‐Currás, Claire H. Tran, Philip A. Vieira, Shaoguang Li, Christina Shin, Jacob Somerson, Tod E. Kippin, Kevin W. Plaxco. A Biomimetic Phosphatidylcholine‐Terminated Monolayer Greatly Improves the In Vivo Performance of Electrochemical Aptamer‐Based Sensors. Angewandte Chemie International Edition 2017, 56 (26) , 7492-7495. https://doi.org/10.1002/anie.201700748
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect