ACS Publications. Most Trusted. Most Cited. Most Read
Highly Diastereo- and Enantioselective Synthesis of Trifluoromethyl-Substituted Cyclopropanes via Myoglobin-Catalyzed Transfer of Trifluoromethylcarbene
My Activity

Figure 1Loading Img
    Communication

    Highly Diastereo- and Enantioselective Synthesis of Trifluoromethyl-Substituted Cyclopropanes via Myoglobin-Catalyzed Transfer of Trifluoromethylcarbene
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of Rochester, Rochester, New York 14620, United States
    Other Access OptionsSupporting Information (2)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2017, 139, 15, 5293–5296
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.7b00768
    Published April 2, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We report an efficient strategy for the asymmetric synthesis of trifluoromethyl-substituted cyclopropanes by means of myoglobin-catalyzed olefin cyclopropanation reactions in the presence of 2-diazo-1,1,1-trifluoroethane (CF3CHN2) as the carbene donor. These transformations were realized using a two-compartment setup in which ex situ generated gaseous CF3CHN2 is processed by engineered myoglobin catalysts expressed in bacterial cells. This approach was successfully applied to afford a variety of trans-1-trifluoromethyl-2-arylcyclopropanes in high yields (61–99%) and excellent diastereo- and enantioselectivity (97–99.9% de and ee). Furthermore, mirror-image forms of these products could be obtained using myoglobin variants featuring stereodivergent selectivity. These reactions provide a convenient and effective biocatalytic route to the stereoselective synthesis of key fluorinated building blocks of high value for medicinal chemistry and drug discovery. This work expands the range of carbene-mediated transformations accessible via metalloprotein catalysts and introduces a potentially general strategy for exploiting gaseous and/or hard-to-handle carbene donor reagents in biocatalytic carbene transfer reactions.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b00768.

    • Supplementary tables and figures, experimental procedures, characterization data, and X-ray data (PDF)

    • Crystallographic data (CIF)

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 180 publications.

    1. Giulio Fittolani, Dennis A. Kutateladze, Andrei Loas, Stephen L. Buchwald, Bradley L. Pentelute. Automated Flow Synthesis of Artificial Heme Enzymes for Enantiodivergent Biocatalysis. Journal of the American Chemical Society 2025, 147 (5) , 4188-4197. https://doi.org/10.1021/jacs.4c13832
    2. James G. Zhang, Anthony J. Huls, Philip M. Palacios, Yisong Guo, Xiongyi Huang. Biocatalytic Generation of Trifluoromethyl Radicals by Nonheme Iron Enzymes for Enantioselective Alkene Difunctionalization. Journal of the American Chemical Society 2024, 146 (50) , 34878-34886. https://doi.org/10.1021/jacs.4c14310
    3. Ying Liu, Zhihong Zhu, Yunxiao Zhang, Yizhi Zhang, Shanshan Liu, Xiao Shen. Stereoselective Synthesis of Silyl Enol Ethers with Acylsilanes and α,β-Unsaturated Ketones. Organic Letters 2024, 26 (28) , 5911-5916. https://doi.org/10.1021/acs.orglett.4c01782
    4. Julia Altarejos, Estíbaliz Merino, David Sucunza, Juan J. Vaquero, Javier Carreras. One-Pot (3 + 2) Cycloaddition–Isomerization–Oxidation of 2,2,2-Trifluorodiazoethane and Styryl Derivatives. The Journal of Organic Chemistry 2023, 88 (15) , 11258-11262. https://doi.org/10.1021/acs.joc.3c00396
    5. Veronika Myronova, Dominique Cahard, Ilan Marek. Stereoselective Preparation of CF3-Containing Cyclopropanes. Organic Letters 2022, 24 (49) , 9076-9080. https://doi.org/10.1021/acs.orglett.2c03714
    6. Shunzhi Huang, Wen-Hao Deng, Rong-Zhen Liao, Chunmao He. Repurposing a Nitric Oxide Transport Hemoprotein Nitrophorin 2 for Olefin Cyclopropanation. ACS Catalysis 2022, 12 (21) , 13725-13731. https://doi.org/10.1021/acscatal.2c03515
    7. Thach Nguyen, Sanil Sreekumar, Shuai Wang, Qi Jiang, Florian Montel, Frederic Buono. Enantioselective Synthesis of trans-Disubstituted Cyclopropyltrifluoroborate Building Blocks through Ru-Catalyzed Cyclopropanation. Organic Process Research & Development 2022, 26 (10) , 2979-2985. https://doi.org/10.1021/acs.oprd.2c00265
    8. Casey Van Stappen, Yunling Deng, Yiwei Liu, Hirbod Heidari, Jing-Xiang Wang, Yu Zhou, Aaron P. Ledray, Yi Lu. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chemical Reviews 2022, 122 (14) , 11974-12045. https://doi.org/10.1021/acs.chemrev.2c00106
    9. Jacob A. Iannuzzelli, John-Paul Bacik, Eric J. Moore, Zhuofan Shen, Ellen M. Irving, David A. Vargas, Sagar D. Khare, Nozomi Ando, Rudi Fasan. Tuning Enzyme Thermostability via Computationally Guided Covalent Stapling and Structural Basis of Enhanced Stabilization. Biochemistry 2022, 61 (11) , 1041-1054. https://doi.org/10.1021/acs.biochem.2c00033
    10. Xinyu Zhang, Paramasivam Sivaguru, Giuseppe Zanoni, Xinyue Han, Minghui Tong, Xihe Bi. Catalytic Asymmetric C(sp3)–H Carbene Insertion Approach to Access Enantioenriched 3-Fluoroalkyl 2,3-Dihydrobenzofurans. ACS Catalysis 2021, 11 (22) , 14293-14301. https://doi.org/10.1021/acscatal.1c04523
    11. Jian Wang, Lianjie Li, Minxue Chai, Shumin Ding, Jing Li, Yongjia Shang, Haixia Zhao, Dan Li, Qiang Zhu. Enantioselective Construction of 1H-Isoindoles Containing Tri- and Difluoromethylated Quaternary Stereogenic Centers via Palladium-Catalyzed C–H Bond Imidoylation. ACS Catalysis 2021, 11 (19) , 12367-12374. https://doi.org/10.1021/acscatal.1c03682
    12. Anuj Kumar, Anamika Dhami, Jaleel Fairoosa, Ruchir Kant, Kishor Mohanan. Silver-Catalyzed Direct Synthesis of Trifluoromethylated Enaminopyridines and Isoquinolinones Employing Trifluorodiazoethane. Organic Letters 2021, 23 (15) , 5815-5820. https://doi.org/10.1021/acs.orglett.1c01969
    13. Julia Altarejos, David Sucunza, Juan J. Vaquero, Javier Carreras. Enantioselective Copper-Catalyzed Synthesis of Trifluoromethyl-Cyclopropylboronates. Organic Letters 2021, 23 (15) , 6174-6178. https://doi.org/10.1021/acs.orglett.1c02420
    14. Amandine Pons, Laetitia Delion, Thomas Poisson, André B. Charette, Philippe Jubault. Asymmetric Synthesis of Fluoro, Fluoromethyl, Difluoromethyl, and Trifluoromethylcyclopropanes. Accounts of Chemical Research 2021, 54 (14) , 2969-2990. https://doi.org/10.1021/acs.accounts.1c00261
    15. Xinyu Zhang, Chunqi Tian, Zhanjing Wang, Paramasivam Sivaguru, Steven P. Nolan, Xihe Bi. Fluoroalkyl N-Triftosylhydrazones as Easily Decomposable Diazo Surrogates for Asymmetric [2 + 1] Cycloaddition: Synthesis of Chiral Fluoroalkyl Cyclopropenes and Cyclopropanes. ACS Catalysis 2021, 11 (14) , 8527-8537. https://doi.org/10.1021/acscatal.1c01483
    16. Yang Yang, Frances H. Arnold. Navigating the Unnatural Reaction Space: Directed Evolution of Heme Proteins for Selective Carbene and Nitrene Transfer. Accounts of Chemical Research 2021, 54 (5) , 1209-1225. https://doi.org/10.1021/acs.accounts.0c00591
    17. Donggeon Nam, Viktoria Steck, Robert J. Potenzino, Rudi Fasan. A Diverse Library of Chiral Cyclopropane Scaffolds via Chemoenzymatic Assembly and Diversification of Cyclopropyl Ketones. Journal of the American Chemical Society 2021, 143 (5) , 2221-2231. https://doi.org/10.1021/jacs.0c09504
    18. Pavel K. Mykhailiuk. 2,2,2-Trifluorodiazoethane (CF3CHN2): A Long Journey since 1943. Chemical Reviews 2020, 120 (22) , 12718-12755. https://doi.org/10.1021/acs.chemrev.0c00406
    19. Noah P. Dunham, Frances H. Arnold. Nature’s Machinery, Repurposed: Expanding the Repertoire of Iron-Dependent Oxygenases. ACS Catalysis 2020, 10 (20) , 12239-12255. https://doi.org/10.1021/acscatal.0c03606
    20. Guo-Shu Chen, Xiao-Xue Yan, Shu-Jie Chen, Xiang-Yu Mao, Zhao-Dong Li, Yun-Lin Liu. Diastereoselective Synthesis of 1,3-Diyne-Tethered Trifluoromethylcyclopropanes through a Sulfur Ylide Mediated Cyclopropanation/DBU-Mediated Epimerization Sequence. The Journal of Organic Chemistry 2020, 85 (10) , 6252-6260. https://doi.org/10.1021/acs.joc.0c00162
    21. Jiuling Li, Dan Zhang, Jianghui Chen, Chaoqun Ma, Wenhao Hu. Enantioselective Synthesis of Fluoroalkyl-Substituted syn-Diamines by the Asymmetric gem-Difunctionalization of 2,2,2-Trifluorodiazoethane. ACS Catalysis 2020, 10 (8) , 4559-4565. https://doi.org/10.1021/acscatal.0c00972
    22. Hayato Inoue, Nga Phan Thi Thanh, Ikuhide Fujisawa, Seiji Iwasa. Synthesis of Forms of a Chiral Ruthenium Complex Containing a Ru–Colefin(sp2) Bond and Their Application to Catalytic Asymmetric Cyclopropanation Reactions. Organic Letters 2020, 22 (4) , 1475-1479. https://doi.org/10.1021/acs.orglett.0c00050
    23. Xinkun Ren, Ajay L. Chandgude, Rudi Fasan. Highly Stereoselective Synthesis of Fused Cyclopropane-γ-Lactams via Biocatalytic Iron-Catalyzed Intramolecular Cyclopropanation. ACS Catalysis 2020, 10 (3) , 2308-2313. https://doi.org/10.1021/acscatal.9b05383
    24. Vladimir S. Ostrovskii, Irina P. Beletskaya, Igor D. Titanyuk. Trifluoroacetaldehyde N-Tosylhydrazone as a Precursor of Trifluorodiazoethane in Reactions of Insertion into the Heteroatom–Hydrogen Bond. Organic Letters 2019, 21 (22) , 9080-9083. https://doi.org/10.1021/acs.orglett.9b03471
    25. Rudi Fasan, S. B. Jennifer Kan, Huimin Zhao. A Continuing Career in Biocatalysis: Frances H. Arnold. ACS Catalysis 2019, 9 (11) , 9775-9788. https://doi.org/10.1021/acscatal.9b02737
    26. Daniela M. Carminati, Rudi Fasan. Stereoselective Cyclopropanation of Electron-Deficient Olefins with a Cofactor Redesigned Carbene Transferase Featuring Radical Reactivity. ACS Catalysis 2019, 9 (10) , 9683-9697. https://doi.org/10.1021/acscatal.9b02272
    27. Juner Zhang, Xiongyi Huang, Ruijie K. Zhang, Frances H. Arnold. Enantiodivergent α-Amino C–H Fluoroalkylation Catalyzed by Engineered Cytochrome P450s. Journal of the American Chemical Society 2019, 141 (25) , 9798-9802. https://doi.org/10.1021/jacs.9b04344
    28. Ajay L. Chandgude, Xinkun Ren, Rudi Fasan. Stereodivergent Intramolecular Cyclopropanation Enabled by Engineered Carbene Transferases. Journal of the American Chemical Society 2019, 141 (23) , 9145-9150. https://doi.org/10.1021/jacs.9b02700
    29. Meng-Yu Rong, Lijun Yang, Jing Nie, Fa-Guang Zhang, Jun-An Ma. Construction of Chiral β-Trifluoromethyl Alcohols Enabled by Catalytic Enantioselective Aldol-Type Reaction of CF3CHN2. Organic Letters 2019, 21 (11) , 4280-4283. https://doi.org/10.1021/acs.orglett.9b01468
    30. Jian Xu, Yixin Cen, Warispreet Singh, Jiajie Fan, Lian Wu, Xianfu Lin, Jiahai Zhou, Meilan Huang, Manfred T. Reetz, Qi Wu. Stereodivergent Protein Engineering of a Lipase To Access All Possible Stereoisomers of Chiral Esters with Two Stereocenters. Journal of the American Chemical Society 2019, 141 (19) , 7934-7945. https://doi.org/10.1021/jacs.9b02709
    31. Hao-Yu Jia, Min-Hua Zong, Gao-Wei Zheng, Ning Li. Myoglobin-Catalyzed Efficient In Situ Regeneration of NAD(P)+ and Their Synthetic Biomimetic for Dehydrogenase-Mediated Oxidations. ACS Catalysis 2019, 9 (3) , 2196-2202. https://doi.org/10.1021/acscatal.8b04890
    32. Xiongyi Huang, Marc Garcia-Borràs, Kun Miao, S. B. Jennifer Kan, Arjun Zutshi, K. N. Houk, Frances H. Arnold. A Biocatalytic Platform for Synthesis of Chiral α-Trifluoromethylated Organoborons. ACS Central Science 2019, 5 (2) , 270-276. https://doi.org/10.1021/acscentsci.8b00679
    33. Antonio Tinoco, Yang Wei, John-Paul Bacik, Daniela M. Carminati, Eric J. Moore, Nozomi Ando, Yong Zhang, Rudi Fasan. Origin of High Stereocontrol in Olefin Cyclopropanation Catalyzed by an Engineered Carbene Transferase. ACS Catalysis 2019, 9 (2) , 1514-1524. https://doi.org/10.1021/acscatal.8b04073
    34. Kai Wu, Cong-Ying Zhou, Chi-Ming Che. Perfluoroalkyl Aziridines with Ruthenium Porphyrin Carbene Intermediates. Organic Letters 2019, 21 (1) , 85-89. https://doi.org/10.1021/acs.orglett.8b03514
    35. Miquel Torrent-Sucarrat, Iosune Arrastia, Ana Arrieta, Fernando P. Cossío. Stereoselectivity, Different Oxidation States, and Multiple Spin States in the Cyclopropanation of Olefins Catalyzed by Fe–Porphyrin Complexes. ACS Catalysis 2018, 8 (12) , 11140-11153. https://doi.org/10.1021/acscatal.8b01492
    36. Eric J. Moore, Viktoria Steck, Priyanka Bajaj, Rudi Fasan. Chemoselective Cyclopropanation over Carbene Y–H Insertion Catalyzed by an Engineered Carbene Transferase. The Journal of Organic Chemistry 2018, 83 (14) , 7480-7490. https://doi.org/10.1021/acs.joc.8b00946
    37. Oliver F. Brandenberg, Christopher K. Prier, Kai Chen, Anders M. Knight, Zachary Wu, Frances H. Arnold. Stereoselective Enzymatic Synthesis of Heteroatom-Substituted Cyclopropanes. ACS Catalysis 2018, 8 (4) , 2629-2634. https://doi.org/10.1021/acscatal.7b04423
    38. Anders M. Knight, S. B. Jennifer Kan, Russell D. Lewis, Oliver F. Brandenberg, Kai Chen, Frances H. Arnold. Diverse Engineered Heme Proteins Enable Stereodivergent Cyclopropanation of Unactivated Alkenes. ACS Central Science 2018, 4 (3) , 372-377. https://doi.org/10.1021/acscentsci.7b00548
    39. Victor Sosa, Marya Melkie, Carolina Sulca, Jennifer Li, Lawrence Tang, Jeffrey Li, Justin Faris, Bridget Foley, Tam Banh, Mallory Kato, and Lionel E. Cheruzel . Selective Light-Driven Chemoenzymatic Trifluoromethylation/Hydroxylation of Substituted Arenes. ACS Catalysis 2018, 8 (3) , 2225-2229. https://doi.org/10.1021/acscatal.7b04160
    40. Yang Wei, Antonio Tinoco, Viktoria Steck, Rudi Fasan, Yong Zhang. Cyclopropanations via Heme Carbenes: Basic Mechanism and Effects of Carbene Substituent, Protein Axial Ligand, and Porphyrin Substitution. Journal of the American Chemical Society 2018, 140 (5) , 1649-1662. https://doi.org/10.1021/jacs.7b09171
    41. Gopeekrishnan Sreenilayam, Eric J. Moore, Viktoria Steck, and Rudi Fasan . Stereoselective Olefin Cyclopropanation under Aerobic Conditions with an Artificial Enzyme Incorporating an Iron-Chlorin e6 Cofactor. ACS Catalysis 2017, 7 (11) , 7629-7633. https://doi.org/10.1021/acscatal.7b02583
    42. Matthew D. Truppo . Biocatalysis in the Pharmaceutical Industry: The Need for Speed. ACS Medicinal Chemistry Letters 2017, 8 (5) , 476-480. https://doi.org/10.1021/acsmedchemlett.7b00114
    43. Xinyu Duan, Dong Cui, Mengdi Wang, Chenlu Jin, Xiaochen Cai, Zhiguo Wang, Jian Xu. Ground-state flavin-dependent enzymes catalyzed enantioselective radical trifluoromethylation. Nature Communications 2025, 16 (1) https://doi.org/10.1038/s41467-025-56437-1
    44. Hua He, Jia‐Xin Yan, Jian‐Xiang Zhu, Si‐Jia Liu, Xiao‐Qi Liu, Peng Chen, Xin Wang, Zhi‐Jun Jia. Enantioselective Trifluoromethylazidation of Styrenyl Olefins Catalyzed by an Engineered Nonheme Iron Enzyme. Angewandte Chemie 2025, 136 https://doi.org/10.1002/ange.202423507
    45. Hua He, Jia‐Xin Yan, Jian‐Xiang Zhu, Si‐Jia Liu, Xiao‐Qi Liu, Peng Chen, Xin Wang, Zhi‐Jun Jia. Enantioselective Trifluoromethylazidation of Styrenyl Olefins Catalyzed by an Engineered Nonheme Iron Enzyme. Angewandte Chemie International Edition 2025, https://doi.org/10.1002/anie.202423507
    46. Dongrun Ju, Vrinda Modi, Rahul L. Khade, Yong Zhang. Mechanistic investigation of sustainable heme-inspired biocatalytic synthesis of cyclopropanes for challenging substrates. Communications Chemistry 2024, 7 (1) https://doi.org/10.1038/s42004-024-01371-4
    47. Yu Zhou, Yiwei Liu, Haoran Sun, Yi Lu. Creating novel metabolic pathways by protein engineering for bioproduction. Trends in Biotechnology 2024, 330 https://doi.org/10.1016/j.tibtech.2024.10.017
    48. Victor Sosa Alfaro, Hannah Palomino, Sophia Y. Liu, Cybele Lemuh Njimoh, Nicolai Lehnert. Combined experimental and molecular dynamics approach towards a rational design of the YfeX biocatalyst for enhanced carbene transferase reactivity. Catalysis Science & Technology 2024, 14 (18) , 5218-5233. https://doi.org/10.1039/D3CY01489D
    49. Yoshiyuki Kagawa, Koji Oohora, Tomoki Himiyama, Akihiro Suzuki, Takashi Hayashi. Redox Engineering of Myoglobin by Cofactor Substitution to Enhance Cyclopropanation Reactivity. Angewandte Chemie 2024, 136 (36) https://doi.org/10.1002/ange.202403485
    50. Yoshiyuki Kagawa, Koji Oohora, Tomoki Himiyama, Akihiro Suzuki, Takashi Hayashi. Redox Engineering of Myoglobin by Cofactor Substitution to Enhance Cyclopropanation Reactivity. Angewandte Chemie International Edition 2024, 63 (36) https://doi.org/10.1002/anie.202403485
    51. Juan D. Villada, Jadab Majhi, Valentin Lehuédé, Michelle E. Hendricks, Katharina Neufeld, Veronica Tona, Rudi Fasan. Biocatalytic Strategy for the Highly Stereoselective Synthesis of Fluorinated Cyclopropanes. Angewandte Chemie 2024, 136 (33) https://doi.org/10.1002/ange.202406779
    52. Juan D. Villada, Jadab Majhi, Valentin Lehuédé, Michelle E. Hendricks, Katharina Neufeld, Veronica Tona, Rudi Fasan. Biocatalytic Strategy for the Highly Stereoselective Synthesis of Fluorinated Cyclopropanes. Angewandte Chemie International Edition 2024, 63 (33) https://doi.org/10.1002/anie.202406779
    53. Yiyang Sun, Yinian Tang, Jing Zhou, Bingchen Guo, Feiyan Yuan, Bo Yao, Yang Yu, Chun Li. Computational design of myoglobin-based carbene transferases for monoterpene derivatization. Biochemical and Biophysical Research Communications 2024, 722 , 150160. https://doi.org/10.1016/j.bbrc.2024.150160
    54. Iman Omar, Michele Crotti, Chuhan Li, Krisztina Pisak, Blazej Czemerys, Salvatore Ferla, Aster van Noord, Caroline E. Paul, Kersti Karu, Cagakan Ozbalci, Ulrike Eggert, Richard Lloyd, Sarah M. Barry, Daniele Castagnolo. Insights into E. coli Cyclopropane Fatty Acid Synthase (CFAS) Towards Enantioselective Carbene Free Biocatalytic Cyclopropanation.. Angewandte Chemie International Edition 2024, 63 (29) https://doi.org/10.1002/anie.202403493
    55. Iman Omar, Michele Crotti, Chuhan Li, Krisztina Pisak, Blazej Czemerys, Salvatore Ferla, Aster van Noord, Caroline E. Paul, Kersti Karu, Cagakan Ozbalci, Ulrike Eggert, Richard Lloyd, Sarah M. Barry, Daniele Castagnolo. Insights into E. coli Cyclopropane Fatty Acid Synthase (CFAS) Towards Enantioselective Carbene Free Biocatalytic Cyclopropanation.. Angewandte Chemie 2024, 136 (29) https://doi.org/10.1002/ange.202403493
    56. Minghan Yao, Shanliang Dong, Xinfang Xu. Asymmetric Carbene Transformations for the Construction of All‐Carbon Quaternary Centers. Chemistry – A European Journal 2024, 30 (26) https://doi.org/10.1002/chem.202304299
    57. Rabia Ashraf, Ameer Fawad Zahoor, Kulsoom Ghulam Ali, Usman Nazeer, Muhammad Jawwad Saif, Asim Mansha, Aijaz Rasool Chaudhry, Ahmad Irfan. Development of novel transition metal-catalyzed synthetic approaches for the synthesis of a dihydrobenzofuran nucleus: a review. RSC Advances 2024, 14 (21) , 14539-14581. https://doi.org/10.1039/D4RA01830C
    58. David A. Vargas, Xinkun Ren, Arkajyoti Sengupta, Ledong Zhu, Satyajit Roy, Marc Garcia-Borràs, K. N. Houk, Rudi Fasan. Biocatalytic strategy for the construction of sp3-rich polycyclic compounds from directed evolution and computational modelling. Nature Chemistry 2024, 16 (5) , 817-826. https://doi.org/10.1038/s41557-023-01435-3
    59. D. E. Vetrov, P. K. Sazonov, I. P. Beletskaya, I. D. Titanyuk. Trifluoroacetaldehyde N-tosylhydrazone in [3+2] cycloaddition reaction for the synthesis of 5-(trifluoromethyl)pyrazolines. Russian Chemical Bulletin 2024, 73 (4) , 1011-1017. https://doi.org/10.1007/s11172-024-4215-9
    60. Raphaël Dollet, Juan D. Villada, Thomas Poisson, Rudi Fasan, Philippe Jubault. Chemoenzymatic synthesis of optically active α-cyclopropyl-pyruvates and cyclobutenoates via enzyme-catalyzed carbene transfer with diazopyruvate. Organic Chemistry Frontiers 2024, 11 (7) , 2008-2014. https://doi.org/10.1039/D3QO01987J
    61. Thanh V. Le, Girish G. Ramachandru, Olafs Daugulis. Trifluoroethylation and Pentafluoropropylation of C(sp 3 )−H Bonds. Chemistry – A European Journal 2024, 30 (17) https://doi.org/10.1002/chem.202303190
    62. Yongyue Ning, Dandan Wei, Xiaolong Zhang, Swastik Karmakar, Xihe Bi. Catalytic C(sp 2 )−H Trifluoroethylation of Indoles via Iron‐Carbene Insertion. European Journal of Organic Chemistry 2024, 27 (11) https://doi.org/10.1002/ejoc.202301140
    63. Feiyan Yuan, Jing Ding, Yiyang Sun, Jianhua Liang, Yunzi Luo, Yang Yu. Synthesis of Trifluoromethylated Monoterpenes by an Engineered Cytochrome P450. Chemistry – A European Journal 2024, 30 (10) https://doi.org/10.1002/chem.202302936
    64. John H. Reed, Florian P. Seebeck. Reagent Engineering for Group Transfer Biocatalysis. Angewandte Chemie International Edition 2024, 63 (7) https://doi.org/10.1002/anie.202311159
    65. John H. Reed, Florian P. Seebeck. Reagent Engineering for Group Transfer Biocatalysis. Angewandte Chemie 2024, 136 (7) https://doi.org/10.1002/ange.202311159
    66. L. C. Peyrical, A. B. Charette. 1.3 Synthesis of Small Fluorinated Carbocycles. 2024https://doi.org/10.1055/sos-SD-243-00170
    67. Donggeon Nam, John-Paul Bacik, Rahul L. Khade, Maria Camila Aguilera, Yang Wei, Juan D. Villada, Michael L. Neidig, Yong Zhang, Nozomi Ando, Rudi Fasan. Mechanistic manifold in a hemoprotein-catalyzed cyclopropanation reaction with diazoketone. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-43559-7
    68. Mahipal Bhardwaj, Pranay Kamble, Priyanka Mundhe, Monika Jindal, Payal Thakur, Priyanka Bajaj. Multifaceted personality and roles of heme enzymes in industrial biotechnology. 3 Biotech 2023, 13 (12) https://doi.org/10.1007/s13205-023-03804-8
    69. Wan-Chen Cindy Lee, Duo-Sheng Wang, Yiling Zhu, X. Peter Zhang. Iron(III)-based metalloradical catalysis for asymmetric cyclopropanation via a stepwise radical mechanism. Nature Chemistry 2023, 15 (11) , 1569-1580. https://doi.org/10.1038/s41557-023-01317-8
    70. Matthias Peeters, Jonathan Decaens, Alois Fürstner. Taming of Furfurylidenes by Chiral Bismuth‐Rhodium Paddlewheel Catalysts. Preparation and Functionalization of Optically Active 1,1‐Disubstituted (Trifluoromethyl)cyclopropanes. Angewandte Chemie 2023, 135 (44) https://doi.org/10.1002/ange.202311598
    71. Matthias Peeters, Jonathan Decaens, Alois Fürstner. Taming of Furfurylidenes by Chiral Bismuth‐Rhodium Paddlewheel Catalysts. Preparation and Functionalization of Optically Active 1,1‐Disubstituted (Trifluoromethyl)cyclopropanes. Angewandte Chemie International Edition 2023, 62 (44) https://doi.org/10.1002/anie.202311598
    72. Cheng-Feng Gao, Yue-Ji Chen, Jing Nie, Fa-Guang Zhang, Chi Wai Cheung, Jun-An Ma. Synthesis of di/trifluoromethyl cyclopropane-dicarbonitriles via [2+1] annulation of fluoro-based diazoethanes with (alkylidene)malononitriles. Chemical Communications 2023, 59 (78) , 11664-11667. https://doi.org/10.1039/D3CC03897A
    73. Yupian Deng, Ying Liu, Jingjing He, Pai Zheng, Zhudi Sun, Song Cao. Efficient synthesis of functionalized trifluoromethyl cyclopropanes via cyclopropanation of α-trifluoromethyl styrenes with chloroacetonitrile and ethyl chloroacetate. New Journal of Chemistry 2023, 47 (35) , 16604-16610. https://doi.org/10.1039/D3NJ02607H
    74. Ritwika Chatterjee, Garima Jindal. Role of mutations in a chemoenzymatic enantiodivergent C(sp 3 )–H insertion: exploring the mechanism and origin of stereoselectivity. Chemical Science 2023, 14 (33) , 8810-8822. https://doi.org/10.1039/D3SC02788K
    75. Shunsuke Kato, Koki Takeuchi, Motonao Iwaki, Kentaro Miyazaki, Kohsuke Honda, Takashi Hayashi. Chitin‐ and Streptavidin‐Mediated Affinity Purification Systems: A Screening Platform for Enzyme Discovery. Angewandte Chemie 2023, 135 (31) https://doi.org/10.1002/ange.202303764
    76. Shunsuke Kato, Koki Takeuchi, Motonao Iwaki, Kentaro Miyazaki, Kohsuke Honda, Takashi Hayashi. Chitin‐ and Streptavidin‐Mediated Affinity Purification Systems: A Screening Platform for Enzyme Discovery. Angewandte Chemie International Edition 2023, 62 (31) https://doi.org/10.1002/anie.202303764
    77. Claire Empel, Zhen Yang, Rene M. Koenigs. Homologation Reactions for the Synthesis of Fluorinated Molecules. 2023, 595-617. https://doi.org/10.1002/9783527830237.ch16
    78. Pavel S. Nosik, Yaroslav V. Mykhalchuk, Oleksandr S. Liashuk, Andriy I. Kysil, Oleksandr O. Grygorenko. Two‐Step Synthesis of Trisubstituted Trifluoromethyl Cyclopropanes Using in situ Generated CF 3 CHN 2. ChemistrySelect 2023, 8 (25) https://doi.org/10.1002/slct.202302143
    79. Xiu-Qing Cui, Meng-Meng Zheng, Xiaodong Tang, Zhi-Qi Zhang, Xiao-Song Xue, Ilan Marek, Jun-An Ma, Fa-Guang Zhang. Dirhodium(II)-catalyzed enantioselective cyclopropenation of internal alkynes with trifluoromethyl carbene. Chem Catalysis 2023, 3 (6) , 100637. https://doi.org/10.1016/j.checat.2023.100637
    80. Xinyu Zhang, Yongquan Ning, Chunqi Tian, Giuseppe Zanoni, Xihe Bi. Asymmetric [2+1] cycloaddition of difluoroalkyl-substituted carbenes with alkenes under rhodium catalysis: Synthesis of chiral difluoroalkyl-substituted cyclopropanes. iScience 2023, 26 (3) , 105896. https://doi.org/10.1016/j.isci.2022.105896
    81. Lucas Schaus, Anuvab Das, Anders M. Knight, Gonzalo Jimenez‐Osés, K. N. Houk, Marc Garcia‐Borràs, Frances H. Arnold, Xiongyi Huang. Protoglobin‐Catalyzed Formation of cis ‐Trifluoromethyl‐Substituted Cyclopropanes by Carbene Transfer. Angewandte Chemie 2023, 135 (4) https://doi.org/10.1002/ange.202208936
    82. Lucas Schaus, Anuvab Das, Anders M. Knight, Gonzalo Jimenez‐Osés, K. N. Houk, Marc Garcia‐Borràs, Frances H. Arnold, Xiongyi Huang. Protoglobin‐Catalyzed Formation of cis ‐Trifluoromethyl‐Substituted Cyclopropanes by Carbene Transfer. Angewandte Chemie International Edition 2023, 62 (4) https://doi.org/10.1002/anie.202208936
    83. Chun-Hui Xing, Wen-Bo Chen, Long Lu, Yong-Bin Xie, Xiao-Dong Liu, Ming-Xu Zhang. A Convenient Synthesis of 5-Trifluoromethyl-5-cyclopropyl-Substituted Pyrazolines. HETEROCYCLES 2023, 106 (4) , 716. https://doi.org/10.3987/COM-23-14815
    84. Bo Couture, Anwita Chattopadhyay, Rudi Fasan. Biocatalytic Carbene and Nitrene Transfer Reactions. 2023https://doi.org/10.1016/B978-0-32-390644-9.00103-7
    85. Juliette Martin. Carbon–Carbon Bond Formation Via Biocatalytic Transformations. 2023https://doi.org/10.1016/B978-0-32-390644-9.00127-X
    86. Eerappa Rajakumara, Dubey Saniya, Priyanka Bajaj, Rajanna Rajeshwari, Jyotsnendu Giri, Mehdi D. Davari. Hijacking Chemical Reactions of P450 Enzymes for Altered Chemical Reactions and Asymmetric Synthesis. International Journal of Molecular Sciences 2023, 24 (1) , 214. https://doi.org/10.3390/ijms24010214
    87. Rudi Fasan, Mary G. Siriboe. Engineered Myoglobin Catalysts for Asymmetric Intermolecular Cyclopropanation Reactions. Bulletin of Japan Society of Coordination Chemistry 2022, 80 (0) , 4-13. https://doi.org/10.4019/bjscc.80.4
    88. Sanoop P. Chandrasekharan, Anamika Dhami, Sandeep Kumar, Kishor Mohanan. Recent advances in pyrazole synthesis employing diazo compounds and synthetic analogues. Organic & Biomolecular Chemistry 2022, 20 (45) , 8787-8817. https://doi.org/10.1039/D2OB01918C
    89. Victor Sosa Alfaro, Sodiq O. Waheed, Hannah Palomino, Anja Knorrscheidt, Martin Weissenborn, Christo Z. Christov, Nicolai Lehnert. YfeX – A New Platform for Carbene Transferase Development with High Intrinsic Reactivity. Chemistry – A European Journal 2022, 28 (65) https://doi.org/10.1002/chem.202201474
    90. Qianyi Zhao, Qiu‐Yue Yao, Yan‐Jiao Zhang, Ting Xu, Jie Zhang, Xuenian Chen. Selective Cyclopropanation/Aziridination of Olefins Catalyzed by Bis(pyrazolyl)borate Cu(I) Complexes. European Journal of Organic Chemistry 2022, 2022 (35) https://doi.org/10.1002/ejoc.202200790
    91. Yifei Liu, Ka Lun Lai, Kenward Vong. Transition Metal Scaffolds Used To Bring New‐to‐Nature Reactions into Biological Systems. European Journal of Inorganic Chemistry 2022, 2022 (21) https://doi.org/10.1002/ejic.202200215
    92. Ling Chen, Thi Minh Thi Le, Jean‐Philippe Bouillon, Thomas Poisson, Philippe Jubault. Catalytic Enantioselective Synthesis of Functionalized Cyclopropanes from α‐Substituted Allyl Sulfones with Donor‐Acceptor or Diacceptor Diazo Reagents. Chemistry – A European Journal 2022, 28 (42) https://doi.org/10.1002/chem.202201254
    93. Zhen Deng, Liu‐Yan Qiu, Wenjie Pan, Baiyu Qian, Jie Chen, Hui Zhang, Qing‐Yun Chen, Weiguo Cao, Xiao‐Jun Tang. TFA‐Promoted Intermolecular Friedel‐Crafts Alkylation of Arenes with 2,2,2‐Trifluoroethylaryl Sulfoxides. Chemistry – An Asian Journal 2022, 17 (14) https://doi.org/10.1002/asia.202200190
    94. Yizhi Zhang, Gang Zhou, Xingxing Gong, Zhuanzhuan Guo, Xiaotian Qi, Xiao Shen. Diastereoselective Transfer of Tri(di)fluoroacetylsilanes‐Derived Carbenes to Alkenes. Angewandte Chemie 2022, 134 (25) https://doi.org/10.1002/ange.202202175
    95. Yizhi Zhang, Gang Zhou, Xingxing Gong, Zhuanzhuan Guo, Xiaotian Qi, Xiao Shen. Diastereoselective Transfer of Tri(di)fluoroacetylsilanes‐Derived Carbenes to Alkenes. Angewandte Chemie International Edition 2022, 61 (25) https://doi.org/10.1002/anie.202202175
    96. Sara Gutiérrez, María Tomás-Gamasa, José Luis Mascareñas. Organometallic catalysis in aqueous and biological environments: harnessing the power of metal carbenes. Chemical Science 2022, 13 (22) , 6478-6495. https://doi.org/10.1039/D2SC00721E
    97. Anuj Kumar, Waqas Ahmad Khan, Shakir Ahamad, Kishor Mohanan. Trifluorodiazoethane: A versatile building block to access trifluoromethylated heterocycles. Journal of Heterocyclic Chemistry 2022, 59 (4) , 607-632. https://doi.org/10.1002/jhet.4416
    98. Soumitra V. Athavale, Kai Chen, Frances H. Arnold. Engineering Enzymes for New‐to‐Nature Carbene Chemistry. 2022, 95-138. https://doi.org/10.1002/9783527829170.ch4
    99. Xinyu Zhang, Yongquan Ning, Chunqi Tian, Giuseppe Zanoni, Xihe Bi. Asymmetric [2+1] Cycloaddition of Difluoromethylene Carbenes With Alkenes Under Rhodium Catalysis: Synthesis of Chiral Difluoromethylene Cyclopropanes. SSRN Electronic Journal 2022, 54 https://doi.org/10.2139/ssrn.4199634
    100. Philippe Jubault, Thomas Poisson, Yoko Hasegawa, Thomas Cantin. Olefin Difunctionnalization With the Same Atoms; Cyclopropanation of Olefins. 2022https://doi.org/10.1016/B978-0-32-390644-9.00016-0
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2017, 139, 15, 5293–5296
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.7b00768
    Published April 2, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    7233

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.